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ABSTRACT 

The positions and linear stability of the equilibrium points of the Robe’s circular restricted three-body problem, are gen- 
eralized to include the effect of mass variations of the primaries in accordance with the unified Meshcherskii law, when 
the motion of the primaries is determined by the Gylden-Meshcherskii problem. The autonomized dynamical system 
with constant coefficients here is possible, only when the shell is empty or when the densities of the medium and the 
infinitesimal body are equal. We found that the center of the shell is an equilibrium point. Further, when 1  ;   
being the constant of a particular integral of the Gylden-Meshcherskii problem; a pair of equilibrium point, lying in the 

-plane  with each forming triangles with the center of the shell and the second primary exist. Several of the points 

exist depending on ; hence every point inside the shell is an equilibrium point. The linear stability of the equilibrium 
points is examined and it is seen that the point at the center of the shell of the autonomized system is conditionally sta- 
ble; while that of the non-autonomized system is unstable. The triangular equilibrium points on the 



-plane  of both 

systems are unstable. 
 
Keywords: Robe’s Problem; Meshcherskii Law; GMP; Equilibruim Points 

1. Introduction 

The restricted three-body problem (R3BP) describes the 
motion of an infinitesimal mass moving under the gravi- 
tational effects of the two finite masses, called primaries, 
which move in circular orbits around their common cen- 
ter of mass on account of their mutual attraction and the 
infinitesimal mass not influencing the motion of the pri- 
maries. The R3BP is one of the most widely studied ar- 
eas in space dynamics as well as in celestial mechanics. 
The studies cover both analytical and numerical aspects. 
The analytic aspect considered mostly the circular, planar 
R3BP, in which all particles are confined to a plane and 
the primaries are in circular orbits around their centre of 
mass. The numerical aspect allowed consideration of the 
more general problem. The applications of the R3BP 
span solar system dynamics, lunar theory, motion of space 
craft and stellar dynamics. 

Generally, we assume in the classical problem that the 
masses of celestial bodies don’t change with time. The 
phenomenon of isotropic radiation or absorption in stars 
led scientists to formulate the restricted problem of three 

bodies with variable masses. During evolution, the masses 
of celestial bodies change, especially in a double star sys- 
tem were masses change rather intensively. Dufour [1] 
seems to have been the first to examine the astronomical 
phenomena of variable mass relating the secular variation 
of lunar acceleration with the increase of the Earth’s mass 
due to the impact of meteorites. Later, Gylden [2] estab- 
lished the differential equations of motion for the prob- 
lem when the mass are subject to variation. The inte- 
grable case to this differential equation was then given by 
Meshcherskii [3] for a particular mass variation law. Me- 
shcherskii [4] showed that the Gylden problem is a par- 
ticular case of the problem of two bodies with variable 
mass under the condition that the laws of variation are 
the same while the relative motion of the particles sepa- 
rating or attaching to them is zero everywhere. This law 
and its following generalization are referred to as Mesh- 
cherskii law. After this contribution, the physical mean- 
ing of the problem became clear and it is known as Gyl- 
den-Meshcherskii Problem (GMP).  

The GMP is a generalization of the two-body problem 
with constant masses; a set up wherein both masses are 
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allowed to vary. The interest in this model arises from 
cometary dynamics. When orbiting the Sun, comets lose 
part or even all of their mass due to thermal out-gassing 
of volatiles and due to interaction between the solar wind 
and the cometary surface. It also models an isotropic 
change in the mass of the gravitating bodies. That is, the 
primaries loss mass without causing a reactive force. 
Beside this, the GMP is used to describe the evolution of 
binary stars during secular mass loss owing to photon 
and corpuscular activity. This problem has also received 
considerable attention in the restricted three-body prob- 
lem. In this approach, the motion of the primaries is as- 
sumed to be determined by the GMP. Thus, one has to 
only study the motion of the body of infinitesimal mass 
which does not affect the motion of the primaries.  

Gelf’gat [5] examined the restricted three-body prob- 
lem of variable masses in which the primary bodies move 
within the framework of the GMP and established the 
existence of five libration points (collinear & triangular) 
analogous to the classical libration points. Bekov [6] 
found two additional equilibrium points, called the co- 
planar points. A few recent characterizations of the GMP 
were examined by Gurfil and Belyanin [7] and Singh and 
Leke [8]. The majority of the authors have been inter- 
ested in the stellar applications of this problem than the 
solar system. 

A new kind of the restricted three-body problem was 
formulated by Robe [9], in which one of the primaries of 
mass 1 , is a rigid spherical shell, filled with homoge- 
nous, incompressible fluid of density 1

m
 , with the sec- 

ond mass point
 2  outside the shell and moving around 

the first primary in a Keplerian orbit; and the infinitesi- 
mal mass 3  as a small solid sphere of an infinitesimal 
radius, and of density 3

m

m
 , moving inside the shell and is 

subject to the attraction of 2  and the buoyancy force 
due to the fluid. He discussed the linear stability of an 
equilibrium point obtained in two cases; the first being 
the case when the orbit of 2  around 1  is circular 
and in the second case, when it is elliptic, but the shell is 
empty (there is no fluid inside it) or densities of 1  and 

3  are equal. Since then, various studies under different 
assumptions have been carried out by some researchers 
(e.g., Shrivastava and Garain [10]; Hallan and Rana [11]; 
Hallan and Mangang [12]). The Robe’s problem can be 
used to study the small oscillation of the Earth inner core 
taking into account the Moon’s attraction and the stabil- 
ity of the Earth’s centre (Robe [9]). 

m

m m

m
m

Modern concepts of the change in the distance be- 
tween the Earth and the Moon, and the change in their 
masses due to, out-gassing, impact of meteorites, aster- 
oids, comets and space dust lead to the necessity of in- 
vestigating dynamics problem in the Earth-Moon system 
under these conditions. It is believed that the Earth gains 
100,000 kilograms of mass each year from space, one 

million kilograms of mass every day due to in falling 
meteors. However, the Earth’s mass change appears to be 
exceedingly tiny, and seemingly, not nearly enough to 
change the dynamics in any significant way. Hence, in 
this paper, we investigate the motion of a test particle of 
infinitesimal mass under the set up of the Robe [9] model 
given that the masses of both primaries vary in propor- 
tion to each other according to the unified Meshcherskii 
[4] law and their motion determined by the Gylden-Me- 
shcherskii problem (Gylden [2]; Meshcherskii [3]). The 
existence and the long time stability behavior of equilib- 
rium points are investigated. This paper is a generaliza- 
tion of the paper by Robe [9], in the sense that the masses 
of the primaries are assumed to vary with time. Further, 
we restrict our study to the case when the shell is empty 
or when the densities of the medium and the infinitesimal 
body are equal. We found that every point inside the 
shell is an equilibrium point contrary to just one found at 
the center of the shell in the work of Robe [9].  

The paper is organized as follows: Section 2 represents 
the equations of motion; the existence of the equilibrium 
points is mentioned in Section 3, while Section 4 inves- 
tigates their linear stability; Section 5 discusses the ob- 
tained results; and the conclusion is drawn in Section 6. 

2. The Equations of Motion 

The absolute motion of a body whose mass depends on 
time is described by the Meshcherskii equation for a 
point of variable mass, (see Sommerfeld [13]) as 

m m   F v u v                (1) 

where  is the velocity of the center of mass of the 
absorbed mass immediately before its attachment with 
the body (or of the ejected mass immediately after its se- 
paration);  is the velocity of the point measured in an 
inertial coordinate and 

u

v
F  is the combined force act- 

ing on it which is also measured in an inertial coordinate 
system. There are two special cases of equation. How- 
ever, we shall consider in the case when mass is ejected 
with the same velocity of the body at any moment 
 u v , that is, mass ejection does not produce a reac- 
tive force. This case can be used to study the motion of a 
body ejecting matters isotropically (or radiating energy). 

Now, let 1m  be the mass of the first primary which is 
a rigid spherical shell of constant radius  with center 
at 1


M , and filled with a homogenous incompressible 

fluid of constant density 1


 
and volume fV . Also, let 

 be the mass of the second primary with center at 

2

2m
M  which describes a circular orbit around the first one. 
Both masses are assumed to vary with time due to the 
attachment or separation of particles to or from them. We 
assume that the variation in mass of the first primary 
occurs and does not affect the fluid inside it. Therefore, 
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the mass of the first primary is 

   1 s fm t m t m                 (2) 

where,  is the mass of the shell;  sm t 1f fm V ;  
4π

3fV  . 

Now, if , then reactive forces are absent 
from Equation (1) and the relative motion is described by 
the GMP (Gylden [2]; Meshcherskii [3]): 

0 u v

  12
12 3

12

t
r


 

r
r                (3) 

where   1 2t    ; 1 1fm  , 2 2fm  ; f  is 
the gravitational constant and  is the posi- 
tion vector of  relative to . 

12 
m

1 2r M M
2 1

Further, we let 3  be the mass of the infinitesimal 
body with center at 3

m
m

M , having density 3  and sup- 
pose it is lying inside the spherical shell (see Figure 1). 
Consequently, following Robe [9] and knowing that the 
distances between the centers of the primaries vary with 
time; then, the forces acting on the third body are 

1) The force of attraction of  which is given by 2m

 
2

2 3 2

3
23

m
t m

r


 
M M

F 3              (4) 

2) The gravitational force AF  exerted by the fluid of 
density 1

 : 

3
3 1 1 3

3
13

4π

3A
mf

r


 
M MF            (5) 

3) The buoyancy force exerted by the fluid, which is 
given by 

3 2
3 1

1 3
13 3

4π
.

3B
f m

r




F M M            (6) 

Now, the equation of motion of the third body in the 
inertial system taking into account the combined forces 
acting on it, is 
 

 

Figure 1. The Robe R3BP. 

3
2 32 1

133 3
332 13

4π
1

3

f
r r
 



 
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 

r
R r         (7) 

where 3R OM  
In a synodic coordinates system 0xyz  rotating with 

angular velocity  t  and origin at the center of mass,
 

O, of the primaries; the equation of motion of  is 3m

 

   

2

2

3
2 21

13 3
313 23

2

4π
1

3

t tt
x xf x x

r r






  
      

 
 

     
 

r r r r  
     (8) 

where 

 

 is the position vector of the third body rela- 
tive to the center of mass, 

r
k̂ . 

The Equation (8) in a Cartesian coordinate system, 
takes the form: 

 

 

3
2 1

13
313

2 2

3
23

3
2 1 2

3 3
313 23

3
1 2

3 3
313 23

4π
2 1

3

4π
2 1

3

4π
1

3

fx y x y x x
r

x x
r

yf yy x y x
r r

zf zz
r r


  





 
  



 








 
      

 




 
      

 
 

    
 

 

 



   (9) 

where the over-dot denotes differentiation with respect to 
time . The coordinates t  , ,x y z  of the third body is 
connected with the distances between the center of the 
third body and centers of the primaries by the relation 

 22 2
13 1r x x y z2    ,   22 2

23 2r x x y z    2

while the barycentric x-coordinates 1x  and 2x  of the 
primaries are connected with the distance  between 
them by the expressions 

12r

   
     

 1 2 2 1
12 12

,
t t

x t x t
r t r t
 

          (10) 

Now, our aim is to transform Equation (9) to the au- 
tonomized form with constant coefficients using a Me- 
shcherskii’s transformation; the particular solutions of 
the GMP and the unified Meshcherskii [4] law. However, 
this is possible here, only when the densities of the me- 
dium and the infinitesimal body are equal, or the shell is 
empty  1 0  . Proceeding in this regards, using a Me- 
shcherskii’s transformation: 

       2d

d

tx R t y R t z R t R t  


      (11) 

 13 13r R t  23 23r R, ; t

the particular solutions of the GMP 

Copyright © 2013 SciRes.                                                                                 IJAA 



J. SINGH, O. LEKE 116 

 
 

     0
1 1 2 2 12 122

,t x R t x R t r R t
R t


      

(12) 

and the unified Meshcherskii [4] law: 

           
0 10

1 2, ,t t t
R t R t R t

20  
       (13) 

where   2
0 10 202 : , , , , ,R t t t            are 

constants, 
The system of Equation (9), when the shell is empty in 

the autonomized forms: 

0

0

2 ,

2

.

  

,



  





  

  


 


              (14) 

where  

    2 2 2 22
2 20

322 2

    
20 

 


  
      

 22 2
13 1 ,2          22 2

13 2 ,2         

20
1 12

0


 


  , 10

2 12
0


 


 , 12  is constant and the  

dashes denote differentiation with respect to  . 
Without loss of generality, we introduce the mass pa-  

rameter  , defined as 20

0





 , 10

0

1





  : 0 1  ,  

and make choice at initial time 0  respectively for the 
unit of mass, distance and time such that 

t
0 f  , 

12 1  , 0 1   Consequently, 

2 20
1 2 0, 1 , 1, and


         


        

(15) 

The last Equation of (15) differs from the mass ratio 
given in Robe [9].  

The equations of motion in the dimensionless Carte- 
sian coordinates are 

2 , 2 ,    
  

          
  

     (16) 

where 

   2 2 2

32

1

2 2

     


 
     

 22 2
13 ,2          22

23 1 ,

3. Equilibrium Points 

The positions of the equilibrium points are the solutions 
of the equations 

0                     (17) 

That is, 

 

 

  

  

3
2 2 2 2

3
2 2 2 2

3
2 2 2 2

1
0,

1

1 0

1

1 0

1

  


   

 

   

 

   

 
 
     

 
 
  
 

     
 
 
 

,

.  
 

     

     (18) 

The last equation shows that if , it must have a 
solution 

1 
0  , otherwise it has a different solution. 

Therefore, the equilibrium points are the solutions of the 
following systems of equations: 

 

 
3

2 2 2 2

1
0, 0, 0

1

  
 

   

 
   

     

   (19) 

 

 

 

3
2 2 2 2

3
2 2 2 2

1
0,

1

1
0, 0, 0, 1.

1

  


   

    


   

 
 
     


    
     

(20) 

 

 

 

3
2 2 2 2

3
2 2 2 2

1
0,

1

1 0,

1

  


   

  
   

 
 
     

0, 0,   
     

   (21) 

Now, substituting the second Equation of (21) in its 
first one, we have 

 

 
3

2 2 2

1
0

1

 

  




    

           (22) 

which is not possible since 0

2 2          

1   . Hence, we search 
for the equilibrium points on the -plane  (see Figure 
2). 
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Figure 2. Equilibrium points on the -plane.  

3.1. Point at the Center of the Shell 

The equilibrium point at the center of the shell is found 
by solving Equation (19). To do this, we denote its first 
equation when 0    by  f  , that is 

 
 2

0
1

f  
 

 
  

   
          (23) 

Now,  for   0f   1   . Therefore,  f   is 
increasing in the open interval  ,1   . 

As    ,  and as  f     1   , 
. Consequently,  f     f   is zero only once in 

the interval  ,1   . Hence, Equation (23) has only 
one root in this interval. Solving it, we get 

   .                  (24) 

This gives the equilibrium point at the center of the 
spherical shell and is fully analogous to that obtained by 
Robe [9]. 

3.2. Triangular Points 

The triangular points are found in the classical restricted 
three-body problem, but the existence of these points was 
not pointed out in the Robe [9] problem. However, the 
investigations concerning these points, when the shell is 
not empty, were carried out by Hallan and Rana [11]. 
The positions of the triangular equilibrium points in our 
case are the solutions of Equation (20). Here, we suppose 
that  and 1 0   0  . Solving its second equation 
for 23 , we at once have 

1

3

23 1



   






               (25) 

Substituting Equation (25) in the first Equation of (20), 
results in 

 1 1                   (26) 

Equation (26) gives the abscissae of the triangular 
points, which is less than the coordinate of the second 
primary (i.e., 1   ) for 1  and lies within 

the shell. 

  

Now, knowing that  2 2
23 1       , substi- 

tuting Equations (25) and (26) in it and solving, we get 

 
 

1

22 3 2 3
22

2 3
1

1

  



 

    
  

         (27) 

Equation (26) and (27) give the position of a pair of 
equilibrium points  ,0,   which exist for 1   and 
lies in the -plane,  with each forming triangles with 
the center of the shell and the second primary; that is 
why we call them “triangular points” (see Figure 2: not 
drawn to scale and Figures 3 and 4, drawn to scale). We 
observe that the every point in the shell that is not col- 
linear with the center of the shell is a triangular equilib- 
rium points because they form triangles with the centers 
of both primaries, though this depends on the parameter 
 . Numerically, in the Earth-Moon system when 

0.01   and 0    , the triangular points exist for 
1.0035 1.01  . When , we have 1.01     
−0.0099 and 0.0827985    which lies inside the 
shell. However, when 0.3  , these points exist for 
1.115 1.42 

1
, (see Tables 1 and 2 in Section 4.2). 

When   , we have 0   which lies outside the 
shell and since   

L
, it is seen that infinite remote 

equilibrium points   do not exist for any value of 
0 1  . 
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Figure 3. Equilibrium points on the -plane  for    
. 0.01
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Figure 4. Equilibrium points on the -plane  for  0.3 . 
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points and the characteristic roots Table 1. Positions of triangular  1,2 1  ,  3,4 2  ,  5,6 3   for  0.01 . 

 ,     1p
 2p

 3p
 1  2  3  

1 0 Infinity - - - - - - 

1.  −0.  

0  −1. 92 0.989164 1.11562 0.953427 

- - 

001 00099 1.9138 - - - - - - 

1.0035 −0.00347 1.0155 - - - - - - 

1.0036 −0.00356 .996806 98 1.23 .09i  0 0.792 0.09i 

1.01 −0.0099 0.0827985 −1.97 0.999591 1.63765 1.01912 1.24 0.08i  0.814 0.07i 

1.01   1   Negative Imaginary - - - - 

 
Table 2. Positions of triangular points and the characteristic roots  1,2 1  ,  3,4 2  ,  5,6 3   for  0.3 . 

      1p
 2p

 3p
 1  2  3  

1 0 Infinity - - - - - - 

1.  −0. 7 

 −  

−1. 17 0.3532 1.26775 0.979603 

0

  

001 000 6.6598 - - - - - - 

1.16 −0.112 1.00963 - - - - - - 

1.162 −0.113 1.00257 - - - - - - 

1.16273 0.11391 1.00001 - - - - - - 

1.16274 −0.11392 0.999977 51 1.33 111i  0. 0.691 0.111i   

1.20 −0.14 0.879845 −1.4 .278741 1.35846 0.999571 1.41 0.01i  0.66 0.09i   

1.25 −0.175 0.738069 −1.25 0.234216 1.49261 1.02947 1.53 0.07i  0.62 0.07i   

1.428 −0.2996 0.03772 −0.716 0.993912 2.26607 1.15512 

1.42   9   Negative Imaginary - - - - - - 

 
The equilibrium point at the center of the shell and the 

triangular equilibrium points of the system of Equation 
(9) when the densities of the medium and the infinitesi- 
mal body are equal, or the shell is empty  0

1  , are 
sought using the Meshcherskii’s [4] transf , in 
the forms: 

 

ormation

                 2 2 2,3 (2,3), ,1x t   R t x t R t z t R t   
(28) 

where,  2 , and are the triangular points o

4. Stability of Equilibrium Points 



nfinite

     (29) 

where the partial derivatives are evaluated at the equi- 
librium point under consideration. 

4.1. Equilibrium Point at the Center of

In order to consider the motion near the equilibrium point 
at the center of the shell, we let solutions of the first two 

 2,3  
s. T

f the 
autonom  system he equilibrium points in this case 
are function of time t . 

ized

Let the third body be displaced to  0 0 0,u  ,v w    
ents in the coordinateswhere , ,u v w  are small displacem  

of the i simal mass. Then, Equation (20) in the lin- 
earized form are 

        
     

     

0 0 0

0 0 0

0 0 0

2 ,

2 ,

.

u v u v w

v u u v w

w u v w

  

  

  

    

       

      

 

 the Shell 

equations of (29) be    exp , expu A v B   , 
where ,A B  and   are constants. Taking first and se- 
cond derivatives of the above, substituting them into the 

 first two equations of system (29) and simplifying we ob-
tain the matrix which has non-zero solution when 

   
   

2 0 0

0

2

2

 

 

 



 



        (3 ) 

Expanding the determinant, the characteristic equation 
corresponding to the variational equations when motion 
is considered in the -plane

2 0
0

 
 0

  is 

   24 0 0 2 0 0 04             
Now, the values of the second order partial derivatives 

co
su

    (31) 

mputed at the equilibrium point  ,0,0  with the 
bstitution, 0    are: 
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   
 

0 0

0

1 2 , 1 ,

1 1

    

 

     

   0 0,         
 

0 0.
   (32) 

Substituting Equation of (32) in the variatio
tio

,
           (33) 

.w       

nal Equa- 
n (29), at once results in 

 


2 1 2 ,u v u 



   

  2 1v u v 
 

 1 1w             (34) 

Equation (34) is independent of Equation (33) and de- 
picts that the motion parallel to the   axis is stable  

when 
 

1
1  

1



 


 for 0 1  , and unstable when 

the converse holds. 
Now, the characteristic Equation (3

tution of Equation (32) becomes 

where 

1) with the substi- 

4 2 0P Q                  (35) 

   2 4 2 ,   1 1 2P Q          , 
, 0Q  , while   0   Here P  when  

 
4

  
2 

   respectively. 
  

The roots of Equation (35) are 

 2
1,2

2 4

2

D
           (36) 

 


  


w

         (37) 

Now, when   only when 

here 

1 , D  is zero 

  16 1 9 8D         
8

9
  . 

W nishes when hen 1   , the discriminant va

 4
1 9 8

9c


                (38) 

where c  is the different values of  , at which the 
discrim nant is zero.

 
i c  

ffe
are the criti

ters w xist for di rent values of  Equation (38)  
ca
 .

l mass parame- 
hich e

exists only for 
8

9
  .  

Now from Equation (37), we have 

 d
2 9 4

d

and is zero when 

D    ,             (39) 

4

9



  . Therefore, Equation (39) is 

positive when 
4

 and negative when 
9





4

9



 . 

Th sing when the for-  
mer holds and strictly decreasing w
Now, when 

is means that D  is strictly increa
hen the later occurs. 

0   in Equation (37)

              (40) 

, we have 

 16 1D     

However, when 
4

9



 , Equation (37) reduces to 

 16 9 10

9

 
           ) D      (41

and is negative when 
10

9
  . Further, as   increases 

c , D  to increases from the va

as 

lue in (41) to 0. Finally,  

c  increases to 1, the discriminant increases from 
ze

6

ro to 
29 24 1D                  (42) 

An inspection of Equation (42) reveals that for 
0    , we have 

Now, since the nature of the roots depend on the na- 
t, ma

0D  . 

ture of the discriminan ss ratio, and the constant 
 of a particular inte

ble  w
gral of the Gylden-Meshcherskii 

pro m; e consider the three regions of Equation (37) 
coupled with the changes in P , which depends on   
and  . 

1) When simultaneously 
4

2
 or 





4

2 


  

and 0 c   , D 0 ; h  roots are respectively  t e

 

 

1

2
1,2 1

1

2
3,4 1

1
2 4 ,

2

1
2 4

2

i

i

   

   

      

      

        (43) 

and  

 

 

1

2
1

3,4 1

2
2

1

2

i  1,2

1

2

1
4 ,

4 2 i

 

   

    

      

 

where 1i D  . 
The real parts of the two of the roots a

equal in both cases. Therefore, the equilibrium point is 
unstable. 

hen 

re positive and 

2) W c  , 0D  . The following cases are 
e. 

a) If 

possibl
4

2






, two of the roots are ,  

while the other two are negative and equal as well. The 
ium point is unstable in this case. 

real and equal

equilibr

b) If 
4

2






, here all the roots are zero, and the 

equilibrium

 

 point is unstable 

c) If 
4

2






, all four roots are im  

po and equa
In this case we have 

3) When 

aginary, with two 

sitive l and the other two negative and equal. 
positive stable resonance. 

,  is positive. Therefore, D1c  
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when 
4

2






, the roots are: 

 1, 2ni n                (44) 1,2,3,4

where 

 
1

21 
1,2 2  

In this case both values of   are negativ

P D     

e and all 
th istinct and imag

 point is r, for 

n
e roots are d ary. Therefore, the equi-  

librium  stable. Howeve

in
4

2





 ,  there 

are two positive equal roots and two negative equal roots. 

When 
4

2






, the roots are real and distinct and the  

equilibrium point is unstable due to a positive root, in 
both cases. Hence, we conclude that the equilibrium point 

 of the autonomized system is stable for  , 0,0

1c    provided 
4

2






 and unstable for 

0 c    and 1c    provided 
4

2






. This 

is characterized by the arbitrary constant   of the 
Gylden rskii problem and the mass ratio -Meshche  . 

The otion is given by range of the stable m

4 4 9 8 8
1, provided

9 9

  



         (45) 

1 , Equation es 

9

When  (45) becom 8
1

9
   and is  

motion . Hence, as reasing 
Equation (45) is approaching zero and the regi n of sta- 
bility is increasing. 

fully analogous to that of Robe [9], when the shell is 
empty and  is circular  is inc

o

4.

For the stability of the triangular equilibrium po
have the following values of the partial derivatives: 



2. Stability of Triangular Points 

ints, we 

0 0 01,   0        , 

   2 5 34 3
0

2 3

3 1 1
1

  

 

           (46) 

  5 31 3
0 

2 3
3 1 1



   
  

     2 2 3

Substituting the trial solutions 

4 3
0

2 3

1 1
3 1 1

  




  
    

  
 

 exp ,u A    

 exp ,v B    expw C 
 then substituting

haracter
6 4

1 2p p 

, in the ariational Equ- 
 the partial derivatives 

istic equation in this case: 

 v
ations (29), and
(46), we obtain the c

2
3 0p  

3 5

          (47) 

where,

 

1p    

   
 

 

     

5 3 54 3 2
2

2 3 2 3

4 5 34 3

3 1 3 1
1

3 1 1

    3

2 7 6

5 3

p

2 3

 
 

  

 
 


 

 


 



  

 


   
 

   
 

   
 

   

2 5 3 2 8 32 2

3 4 3 2 3

3 1 1 18 1 1
1p

     

 

   
  

 

4 10 34 3

4 3 4 3

18 1 1 18 1 1
+

   

 

  


4 13 3  
 

  1 22 1 3 1 3
1 21

1,2 1 3

2

3 3 32

p pp N
N


           

 

2 2
1 1 1 2

3,4 2 3 1 3 2 3 1 32 3 1 3

1 2
1 3 1 3

2
2 3 1 3 1 31 3

3 32 22 3

3

2 6222 3

p p ip p
N NN

i p N N
N

     


   



 (48) 

2 2
1 1 1 2

5,6 2 3 1 3 2 3 1 32 3 1 3

1 2
1 3 1 3

2
2 3 1 3 1 31 3

3 32 22 3

3

2 6222 3

p p ip p
N NN

i p N N
N

     


   



 

where  

  

3
1 1 2 3

3 22 3
2 1 1 1 2 3

2 9 27

4 3 2 9 27

N p p p p

p p p p p p

  

    
 

 
The stability of the triangular points

 
is determined by 

the roots (48) of the characteristic equation. The six roots 
of characteristic equation and the positions of the train- 
gular points are presented in Tables 1 and 2 numerically 
for  and 0.3 0.01   respectively with various 
valu e paes of th rameter  . When 0.01 

ts ex
 the train- 

d th eristic roo ist only for gular po
1.0035

ints an
1

e charact
.01  , because here 0   and 1    

 the roots lies in sh
ex lues o

side the 
ist for va

ell. In Tabl
f 

e 2, these points and
  in the interval  1.16273,1 28  .4

whe ss pan the ma rameter 0.3 
iangula

is po
ss pa

. Our nume
points exist, the c
tive and p
eter. It

rical analy- 
oef-

3  is posi- 
 is clear from 

sis re
ficient ne
tiv th cases of th

veals that

1p  is 
e in bo

 when the tr
e, 2p  

e ma

r 
si

ram

 
gativ
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th

e triang ts. He
i uilibriu

In the case of  solu 8) corre-

L on of stable so
 we ha

  

e table that for a specific set of values of the parameters 
at least one of the roots is real and positive or at one has 
a positive real part. We conclude that a positive root and 
positive real part of the complex roots induce instability 
at th ular poin nce the motion of the infini- 
tesimal mass around the tr angular eq m points is 
unstable.  

the stability of the tions (2  
sponding to the equilibrium point at the center of the 
shell, on the basis of yapunov’s definiti - 
lution (Krasnov et al. [14]), ve 

   lim lim
t t

x t R t
 

           (49) 

Equation (49) proves the instability of the equilibrium 
point at the center of the shell varying with time accord- 
ing to the Lyapunov’s theorem as they tend to infinity as 
time t  is tending to infinity, which is however not pos- 
sible in reality. However, when t  is tending to infinity, 
  is approaching a finite value (Singh and Leke [8]) and 
the Lyapunov Characteristic Numbers are positive for 
so

are unstable induce 
instability to the solutions. This also app
of the triangular solutions. Hence, the eq
of

e

xistence of two or more triang
ass ratio provided

shell. Numerically, 

lutions with negative exponents, negative for solutions 
with positive exponents and zero for solutions with os- 
cillatory and constant solutions. We conclude that solu- 
tions with positive exponents which 

lies in the case 
uilibrium points 

 the non autonomous system of equations are unstable 
with respect to time. 

5. Discussion and Conclusion 

We have derived the equations of motion of the infini- 
t simal mass under the effects of the buoyancy force ex- 
erted by the fluid, the gravitational attraction of the fluid 
and the attraction of the second primary; when the 
masses of the primaries vary with respect to time in the 
absence of reactive forces. We have found that the equa- 
tions of motion can be transformed, when the motion of 
the primaries is determined by the GMP, to the autono- 
mized forms, only when the shell is empty. 

One equilibrium point which lies on the center of the 
spherical shell and fully analogous to that of Robe [9] 
exists. Further, the e ular 

 points is found which depends on the m
1  , and if the points lie within the 

when 0.01   and 1.01  , there are two triangular 
point positioned at 0.0099    and 0.0827985.    
However, for 0    , there is more than just a pair of 
these points. When 0.3  , infinitely many triangular 
points exist depending on the value of the constant of the 
GMP in the interval  1.16273,1.428 . These equilibrium 
points are different from those of restricted three-body 

The linear stability of the equilibrium points obtained 
has been studied and it is seen that the tria

problem with variable masses and those of Robe [9]. 

ngular points 
of

celes
at the of this 

s problem in rth under the at
Moon. 

2. 

[2]

 the autonomized and time dependent systems are un- 
stable. The point on the center of the shell of the auto- 
nomized systems is stable under some certain conditions, 
while that dependent on time is unstable. The masses of 

tial bodies are changing with time; therefore it is 
hoped th results paper will be useful in the 
study of the dynamic  the Ea - 
traction of the 
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