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Abstract 
This paper considers machine-component cell formation problem of cellular manufacturing sys-
tem. Since this problem comes under combinatorial category, development of a meta-heuristic is a 
must. In this paper, a hybrid genetic algorithm is presented. Normally, in genetic algorithm, the in-
itial population is generated by random assignment of genes in each of the chromosomes. In this 
paper, the initial population is created using ideal seed heuristic. The proposed algorithm is com-
pared with four other algorithms using 28 problems from literature. Through a completed factori-
al experiment, it is observed that the proposed algorithm outperforms the other algorithms in 
terms of grouping efficiency as well as grouping efficacy. 
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1. Introduction 
The productivity of an organization is very much affected by the type of layout and the design of the layout used. 
In reality, there are four different layouts, viz. process layout, product layout, cellular layout and fixed position 
layout. The cellular layout combines the benefits of process layout and product layout. In this paper, the cellular 
layout is considered. 

The objective of the cellular layout design is to group a given number of components which uses a set of ma-
chines into a distinct machine-component cells such that the processing requirements of the components as-
signed to each machine cell are fully met within that cell itself. This problem comes under combinatorial cate-
gory. Hence, the usage of heuristics is inevitable. 

Several methods have been developed to solve this cell formation problem, like mathematical programming 
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approach (Mahdavi et al. [1], Khaksar-Haghani et al. [2], Arkat et al [3]), meta-heuristic approach includes Ge-
netic Algorithm (GA) (Saeedi et al [4], Banerjee and Das [5], Arkat et al [6], Yin and Khoo [7], Ozcelik and 
Sarac [8], Sarac and Ozcelik [9]), Simulated Annealing (SA) (Wu et al. [10], Lin et al. [11], Paydar et al. [12], 
Kia et al. [13]) and Hybrid heuristics (Rezaeian et al. [14], Ghezavati and Saidi-Mehrabad [15], Elbenani and 
Ferland [16], Rafiei and Ghodsi [17], Paydar and Saidi-Mehrabad [18], Dalfard [19]). Nevertheless, the com-
plexity of the problem and the significant issues involved in obtaining the result create necessity for more effec-
tive algorithms. 

In this paper, a hybrid genetic algorithm is developed to obtain machine-component cells to maximize each of 
the measures, viz. grouping efficiency and grouping efficacy. 

2. Literature Review 
As there are many methodologies to solve machine-component cell formation problem, generating a meaningful 
machine groups and component families using an algorithm gives a good start to obtain the best solution. Srini-
vasan and Narendran [20] proposed a non-hierarchical clustering algorithm in which initial seed is generated by 
maximum density rule. Srinivasn [21] used minimum spanning tree (MST) method to identify the initial seed for 
the machine-component cell formation problem from the given machine-component incidence matrix. A com-
parative study is carried out by Miltenburg and Zhang [22] and reported that the quality of the solution obtained 
by the seed generation algorithms is better than that of ROC (Rank Order Cluster) algorithm, SLINK or ALINK. 
Kao and Li [23] initially generated component seeds by applying the ant colony recognition algorithm and used 
the seed to obtain a complete block diagonal matrix. Nambirajan and Panneerselvam [24] developed a simulated 
annealing algorithm for the machine-component cell formation problem and compared its results with a set of 
existing algorithms and found that their algorithm surpassed the other algorithms in terms of grouping efficiency 
as well as grouping efficacy. 

The genetic algorithm proposed by Holland [25] has applications in optimization of different problems of re-
ality. Its application has been formalized by Goldberg [26]. This method is further implemented by Venugopal 
and Narendran [27] to handle multi-objective cell formation problem in which the volume of inter-cell moves 
and the total within cell moves are minimized. Balakrishna and Jog [28] initially formed the similarity index 
matrix and then proposed parallel genetic algorithm to solve the cell formation problem. Joines et al. [29], Su 
and Hsu [30] and Mahdavi et al. [31] proposed a mathematical model and then implemented a genetic algorithm 
to minimize the inter-cell moves. Many researchers (James et al. [32], Kelling et al. [33] and Tunnukij and 
Hicks [34]) developed hybrid-genetic algorithm and measured the quality of the machine-component cell forma-
tion by grouping measures, viz. grouping efficiency, grouping efficacy, grouping index, etc. Tariq et al. [35] and 
Pailla et al. [36] applied genetic algorithm (GA) with local search heuristic (LSH) to maximize the machine uti-
lization and to minimize the inter-cell moves. Banerjee and Das [5] investigated the cell formation problem by 
Predator-Prey Genetic Algorithm by local selection strategy. Sarac and Ozcelik [9] introduced three different 
selection and crossover operations and tested the performance of proposed algorithm with an existing algorithm 
using 15 test problems. Vin and Delchambre [37] defined the generalized cell formation problem and developed 
a grouping genetic algorithm to solve it. Li et al. [38] developed a genetic algorithm for virtual cell reconfigura-
tion problem. Deep and Sing [39] designed a cellular manufacturing system for a dynamic environment. They 
first developed a mathematical model for this problem and then developed a genetic algorithm to solve this 
problem. 

Among different algorithms reviewed in this paper, the genetic algorithm is considered for further improve-
ment, because the population used in this algorithm consists of chromosomes whose genes are generated ran-
domly. This amounts to searching the entire solution space of the machine-component cell formation problem. 

3. Problem Definition 
Let ( )1 2, , , , ,j nC C C C C   be the set of components to be manufactured and ( )1 2, , , , ,i mM M M M M   be 
the set of machines which are required to manufacture the given set of components. Here, n is the total number 
of component types and m is the total number of machine types. 

Let 1ija = , if the component j requires processing on machine i; 
= 0, otherwise. 
for 1, 2,3, 4, ,i m=   and 1,2,3,4, ,j n=  . 
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A sample machine-component incidence matrix ( )ija  is shown in Figure 1. The rearrangement of rows and 
columns of this matrix gives an alternate form of machine-component incident matrix as shown in Figure 2. 

The machine-component incidence matrix shown in Figure 1 consists of 5 machines and 7 components. This 
is converted to a form as shown in Figure 2, which shows a block diagonal form with two odd elements in the 
off-diagonal blocks. This solution has two machine-component cells. The machines 1 and 4 and the components 
6, 2 and 4 form the machine-component cell 1. Similarly the machines 2, 3 and 5 and the components 5, 7, 1 and 
3 form the machine-component cell 2. From Figure 2, it is clear that there are two exceptional elements, which 
are with respect to machine 3 and component 6 and machine 1 and component 5. So, the exceptional element of 
component 6 should be processed in machine-component cell 2, because the machine 3 is assigned to it. Simi-
larly the exceptional elements of component 5 should be processed in machine-component cell 1. In this process, 
the component 6 as well as the component 5 moves to another cell to process missing operation. Such move-
ments between machine-component cells are called inter-cell moves which should be minimized 

The objective of the design of the cellular layout is to obtain a block diagonal form such that the desired 
measures of performance are optimized. The grouping efficiency and grouping efficacy are the well known 
measures of performance of the cellular layout, whose formulas are as given below. 

The grouping efficiency is introduced by Chandrasekharan and Rajagopalan [40] [41] to define the quality of 
the solution, named as grouping efficiency ( )η , which is the weighted sum of two functions as given below. 

( )1 21q qη η η= + −  

where 1η  is the ratio of number of 1s  in the diagonal blocks to the total number of elements in the diagonal 
blocks. 

2η  is the ratio of number of 0s  in the off-diagonal blocks to the total number of elements in the off-di- 
agonal blocks. 

q  is a weighting factor ( )0 1q≤ ≤  and it is usually assumed as 0.5. 
Kumar and Chandrasekaran [42] proposed another measure namely grouping efficacy ( )E  to overcome the 

weaker discriminating power of grouping efficiency measure by assigning equal weight for the number of voids 
and the number of exceptional elements. This measure is defined as follows. 

0

v

e e
E

e e
−

=
−

 

where e : Total number of 1s in the matrix. 
0e : The number of exceptional elements. 
ve : The number of voids in the diagonal box. 

 
 c1 c2 c3 c4 c5 c6 c7 

m1 0 1 0 1 1 1 0 

m2 1 0 1 0 0 0 0 

m3 1 0 1 0 0 1 1 

m4 0 1 0 1 0 1 0 

m5 1 0 0 0 1 0 1 

Figure 1. Sample machine-component incidence matrix. 
 

 c6 c2 c4 c5 c7 c1 c3 

m1 1 1 1 1 0 0 0 

m4 1 1 1 0 0 0 0 

m2 0 0 0 0 0 1 1 

m3 1 0 0 0 1 1 1 

m5 0 0 0 1 1 1 0 

Figure 2. Rearranged machine-component matrix (block-diagonal matrix). 
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In this paper, these two measures are considered to measure the grouping accuracy of machine-component 
cell formation. 

4. Fundamentals of Genetic Algorithm 
Genetic algorithm (GA) applied to the machine-component cell formation problem involves the following. 
• Representation of the genes in chromosomes; 
• Selection of chromosomes for crossover; 
• Crossover and mutation operations; 
• Repair strategy. 

In the GA algorithm proposed in this paper, an initial population is generated randomly and the fitness func-
tion value of each of the chromosomes is then evaluated. Then, the processes of crossover and mutation are ap-
plied over the chromosomes of a subpopulation to produce their offspring. Then their fitness function values are 
evaluated. Then these offsprings replace the corresponding chromosomes in the population. This process is re-
peated for a specified number of iterations (generations) and finally the best fitness function value among the 
machine-component cell formations with respect to the top most machine chromosome and component chro-
mosome of all the generations is selected as the final solution and the corresponding machine-component cell 
formation result is suggested for implementation. 

4.1. Representation and Selection of Chromosomes 
In this paper, each chromosome is represented based on the representation followed by Venugopal and Naren-
dran’s [27]. The chromosomes are classified into two types, viz. machine chromosomes and component chro-
mosomes. 

Gene positions from left to right in a machine chromosome represent the machine numbers from low to high, 
respectively. The number of genes in a machine chromosome is equal to the number of machines. The gene val-
ue at a particular gene position of a machine chromosome represents the cell number to which the corresponding 
machine is assigned. 

Similarly, gene positions from left to right in a component chromosome represent the component numbers 
from low to high, respectively. The number of genes in a component chromosome is equal to the number of 
components. The gene value at a particular gene position of a component chromosome represents the cell num-
ber to which the corresponding component is assigned. 

4.2. Two-Point Crossover Method 
The genetic algorithm uses two-point crossover method for machine chromosomes as well as component chro-
mosomes. Consider two machine chromosomes as shown in Figure 3. The chromosomes consist of eight genes. 
The number of machine cells 4. So, the gene values in both the chromosomes are in between 1 and 4, both in-
clusive. 

Now, randomly generate two crossover points and let them be 3 and 6. The offsprings based on the two-point 
crossover method are shown in Figure 4. 
 

   
 

 
  

 

 
  

Gen position 1 2 3 4 5 6 7 8 
Machine chromosome 1 1 1 2 4 1 3 2 1 
Machine chromosome 2 2 2 3 1 4 2 1 4 

Figure 3. Machine chromosomes. 
 

Gen position 1 2 3 4 5 6 7 8 
Machine offspring 1 1 1 3 1 4 2 2 1 
Machine offspring 2 2 2 2 4 1 3 1 4 

Figure 4. Machine chromosomes. 
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In Figure 4, the machine offspring 1 is obtained by copying the genes at gene positions 1 and 2 of the ma-
chine chromosome 1 and the genes at the gene positions 3, 4, 5 and 6 of the machine chromosome 2 and the 
genes at the gene positions 7 and 8 of the machine chromosome 1. Similarly, the machine offspring 2 is obtained 
by copying the genes at the gene positions 1 and 2 of the machine chromosome 2, genes at the gene positions 3, 
4, 5 and 6 of the machine chromosome 1 and the genes at the gene positions 7 and 8 of the machine chromosome 2. 

The consecutive pairs of machine chromosomes are taken at a time and then the two-point crossover method 
is applied on them to obtain their corresponding offspring. The method is also used for the component chromo-
somes. 

4.3. Mutation 
Mutation is the process of randomizing the genes by swapping the genes at two randomly selected positions of 
each offspring obtained after crossover of two chromosomes. This is done based on a given probability for mu-
tation. If the generated probability is less than or equal, say 0.30, then mutation will be performed; otherwise, 
the mutation will be not performed on the offspring. 

4.4. Repair Strategy for Offspring 
The offspring obtained after the crossover and mutation operations may be infeasible or ill-structured. Under 
such situation, a new repair strategy is applied to obtain a feasible offspring. 

Let a sample new machine offspring after the crossover and mutation operations be as shown below. 
New machine offspring: 2 4 1 4 1 2 
In the machine offspring, the machine cell numbers are 1, 2 and 4. In this distribution of machine cell num-

bers, the machine cell 3 is missing, which makes the machine offspring infeasible. Hence, the cell numbers must 
be modified such that they are in continuous order starting from 1. 

Start from left of the offspring and make the first gene to 1 and then wherever the gene value is equal to the 
gene value in the first position of the offspring, make it to 1. 

Then move to next non-updated gene location (L) and make it to 2 and then wherever the non-updated gene 
value is equal to the gene value at the gene location L, make it to 2. Continue this process, until all the gene val-
ues are updated. 

The resultant repaired offspring is as shown below. 
Repaired offspring: 1 2 3 2 3 1 
Similarly logic can be applied to repair any component offspring, if there is discontinuity in component cell 

numbers. 

4.5. Density Index of Matching Machine Groups with Component Families 
While applying the genetic algorithm to the machine-component cell formation problem, after forming machine 
cells and component families, next these must be matched based on certain measure. In existing researches, 
there is no specific method to perform this step. 

In this paper, the machine cells and component families are matched based on a measure called “density in-
dex”. The computation of the density index by assigning the machine group i to the component family j is ex-
plained using some sample result shown in Figure 5. 

Actually, in Figure 5, the machine cells are appropriately matched with the component families to give a 
sample block diagonal form. The fitness value is then calculated for this block diagonal matrix. The grouping 
efficiency and the grouping efficacy of this machine-component cell formation are 61.90% and 34.28%, respec-
tively. The summary of machine-component cells is given in Table 1. 

Each machine cell can be assigned to each component cell. As an example if the machine cell 1 (MC1), which 
consists of machines m1 and m6 is assigned to the component cell 1 (CC1), which consists of components c1 and 
c5, then the corresponding density index D11 is computed using the following formula. This value and other val-
ues of the density matrix are shown in Figure 6. 

11
Number of 1s in the machine-component cell w.r.t. MC1 and CC1 3 = 0.75

Size of the machine-component cell w.r.t. MC1 and CC1 4
D = =  
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After applying Hungerian method designed for the assignment problem, which is proposed in this paper to 
match the machine groups with component families, the grouping of machine cells and component families are 
changed. The new block diagonal form is obtained and shown in Figure 7. The grouping efficiency and group-
ing efficacy of this machine-component cell formation are 70.67% and 45.45%, respectively, which are im-
proved from the respective previous values. 

5. Hybrid Genetic Algorithm 
In this section, a hybrid genetic algorithm (HGA) is presented to form machine-component cells for a given cel-
lular manufacturing system. 
 

 c1 c5 c2 c3 c7 c9 c4 c6 c8 

m1 1 1 0 0 0 1 0 0 0 

m6 0 1 0 1 0 0 0 0 0 

m2 0 0 1 1 1 0 1 1 1 

m4 0 0 0 0 1 0 1 1 0 

m3 0 0 1 1 1 0 1 0 1 

m5 0 0 1 0 1 1 0 1 0 

m7 0 0 0 0 1 0 1 1 0 

Figure 5. Block-diagonal matrix. 
 

Table 1. Summary of machine component cells of Figure 5. 

Machine Cell No. Machines Component Cell (Family) No. Components 

MC1 m1,m6 CC1 c1,c5 

MC2 m2,m4 CC2 c2,c3,c7,c9 

MC3 m3,m5,m7 CC3 c4,c6,c8 

 
 CC1 CC2 CC3 

MC1 0.75 0.25 0 

MC2 0 0.5 0.83 

MC3 0 0.58 0.55 

Figure 6. Density matrix. 
 

 c1 c5 c2 c3 c7 c9 c4 c6 c8 

m1 1 1 0 0 0 1 0 0 0 

m6 0 1 0 1 0 0 0 0 0 

m2 0 0 1 1 1 0 1 1 1 

m4 0 0 0 0 1 0 1 1 0 

m3 0 0 1 1 1 0 1 0 1 

m5 0 0 1 0 1 1 0 1 0 

m7 0 0 0 0 1 0 1 1 0 

Figure 7. New block diagonal matrix. 
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The steps of the algorithm are presented below. 
Step 1: Input the following. 

• Number of machines ( )m ; 
• Number of components ( )n ; 
• Machine component incidence matrix ija   ; 
• Size of the population of machine chromosomes (N1) as well as component chromosomes (N1) ; 
• Set generation count (GC) = 1. 
• Maximum number of generations to be carried out (MNG) 

Step 2: Find the integer values of m/2 and n/2 rounded to next integer and find the minimum of them.Treat it 
as the maximum number of cells (MC). 

Step 3: Generate an initial population of machine chromosomes by assigning the machines to different cells in 
the range from 1 to MC. A sample machine chromosome is shown in Table 2 by assuming MC as 2. 

Step 4: For each of the machine chromosomes, find ideal seed for machine chromosome as well as for com-
ponent chromosome by performing the following. 

4.1) Form machine groups. The machine groups of the machine chromosome shown in Table 2 are given in 
Table 3. 

4.2) Form component groups based on the machine groups by following the guidelines given below. 
• Assign a component to a machine cell in which it has the maximum number of operations; 
• In case of tie on the maximum number of operations, break the tie randomly. 

Let the number of component groups be CG. 
4.3) If the number of machine groups is equal to the number of component families, find the desired measure 

of performance: Grouping efficiency (or) Grouping efficacy and go to Step 5; 
Otherwise, go to Step 4.4. 
4.4) Form machine groups based on the component groups obtained in Step 4.2 by following the guidelines 

given below. 
• Assign a machine to a component cell in which it processes maximum number of components; 
• In case of tie on the maximum number of components processed by the machine, break the tie randomly. 

Let the number of machine groups be MG. 
4.5) If the number of machine groups is equal to the number of component groups, find the desired measure 

of performance: Grouping efficiency (or) Grouping efficacy and go to Step 5; Otherwise, go to Step 4.2. 
Step 5: Sort the machine groups and component groups together in the decreasing order of their fitness func-

tion values, either grouping efficiency or grouping efficacy as the case may be. 
Step 6: Select the top most 30% of the sorted population rounded to an even number and let the size of this 

subpopulation be N2. 
Step 7: For each of the successive two machine chromosomes as well as for each of the successive two com-

ponent chromosomes, perform the following. 
7.1) Perform two-point crossover operation to obtain their corresponding two offspring. 
7.2) Perform mutation with a mutation probability of 0.30 on each of the machine offsprings as well as com-

ponent offsprings. 
7.3) If some of the machine cell numbers are missing in a machine offspring, repair the respective machine 

offspring, which will modify the machine cell numbers so that they are continuous from the machine cell num-
ber 1 onwards. 
 

Table 2. Sample machine chromosome. 

Machine 1 2 3 4 5 

Cell Number 2 1 1 2 2 

 
Table 3. Machine groups of machine chromosome. 

Machine Cell Machines 

1 2 3  

2 1 4 5 
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7.4) If some of the component facility numbers are missing in a component offspring, repair the respective 
component offspring, which will modify the component family numbers so that they are continuous from the 
component family number 1 onwards. 

7.5) Perform further repair on either machine offspring or component offspring to bring equality in the num-
ber of machine cells and the number of component families. 

7.6) For each of the machine offspring and component offspring combination, perform the following. 
7.6.1) Form density matrix ijD   , which represents density of 1s in the sub matrix in the machine-component 

incidence matrix with respect to the thi  machine cell and the thj  component family, for 1, 2,3, ,MCi =   
and 1,2,3, ,MCj =  . 

7.6.2) Using Hungarian method which is designed for assignment problem, match the machine groups with 
the component families such that the resultant sum of the density values is maximized to obtain a machine- 
component cell formation. 

7.6.3) Find the fitness function value (grouping efficiency or grouping efficacy) for the machine-component 
cell formation obtained in Step 7.6.2. 

Step 8: Store the machine offspring and component offspring of the subpopulation in the respective chromo-
somes of the population. 

Step 9: Sort the machine chromosomes and component chromosomes together in the decreasing order of their 
fitness function values, either grouping efficiency or grouping efficacy as the case may be. 

Step 10: Increment the generation count by 1 (GC = GC + 1). 
Step 11: If GC ≤ MNG then go to Step 6. 
Step 12: Rework the results of the topmost machine chromosome and component chromosome by following 

the step 7.6 and print the corresponding machine-component cell formation and the grouping efficiency or 
grouping efficacy. 

6. Comparison of HGA with Existing Algorithms 
The performance of the hybrid genetic algorithm (HGA) presented in this research is compared with four other 
existing algorithms, viz. ZODIAC (Chandrasekharan and Rajagopalan [43]), GRAFICS (Srinivasan and Naren-
dran [20]), Algorithm-1 (Nambirajan and Panneerselvam [44]) and Algortihm-2 (Nambirajan and Panneersel-
vam [24]). The HGA algorithm is coded in C++ and all experiments are executed on personal computer with i5 
processor in Window-7 operating system. 

A complete factorial experiment is designed to examine the effects of two factors, viz. “Problem Size” and 
“Algorithm” and their interaction on grouping efficiency as well as groping efficacy. 

The number of levels of the factor “Problem Size” is 14 and they are in terms of “Number of machines” and 
“Number of components” are 5 × 7, 7 × 7, 8 × 20, 9 × 10, 10 × 12, 12 × 19, 14 × 24, 15 × 10, 20 × 20, 20 × 40, 
24 × 40, 30 × 50, 40 × 20 and 40 × 40. The number of levels of the factor “Algorithm” is 5 (Proposed algorithm 
and four existing algorithms). The number of replications carried out under each of the experimental combina-
tions is 2. So, the total number of observations of this experiment is 140 (14 × 5 × 2) for each of the grouping 
measures. The data for all the replications under each experimental combination are selected from literature, 
which are as cited in Table 4 for grouping efficiency as well as in Table 5 for grouping efficacy. 

The model of ANOVA is as given below. 

( ) ( )ijk i j ij kijY A B AB eµ= + + + +  

where ijkY  is the thk  replication under the thi  treatment of the Factor A and the thj  treatment of the 
Factor B. 

µ  is the overall mean of the response. 
iA  is the effect of the thi  treatment of the Factor A on the response. 
jB  is the effect of the thj  treatment of the Factor B on the response. 

( )ijAB  is the interaction effect of the thi  treatment of the Factor A and the thj  treatment of the Factor B 
on the response. 

( )ij ke  is the random error associated with the thk  replication under the thi  treatment of the Factor A and the 
thj  treatment of the Factor B. 
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Table 4. Results of grouping efficiency. 

S. No Problem Size Reference REP ZODIAC GRAFICS Algorithm-1 Algorithm-2 HGA 

1 5 × 7 
King and Nakornchai [45] 1 85.62 85.62 85.62 91.30 91.30 

Waghodekar and Sahu [46] 2 72.20 74.51 73.85 77.10 82.61 

2 7 × 7 
Nambirajan [47] 1 68.20 70.90 73.00 81.35 87.61 

Vohra et al [48] 2 74.34 75.09 79.97 82.14 92.11 

3 8 × 20 
Chandrasekharan, and Rajagopalan [40] [41] 1 95.83 95.83 95.83 95.83 95.83 

Chandrasekharan, and Rajagopalan [40] [41] 2 71.87 76.30 71.88 71.88 79.24 

4 9 × 10 
Choobineh [49] 1 81.63 81.63 87.51 87.51 93.06 

Safer et al [50] 2 77.11 77.11 77.11 83.84 88.16 

5 10 × 12 
Nambirajan [47] 1 71.31 74.41 80.73 88.54 89.63 

Nambirajan [47] 2 83.33 83.33 83.33 88.32 92.04 

6 12 × 19 
De Witte [51] 1 78.58 74.43 81.26 81.26 87.46 

Tam [52] 2 76.18 76.18 77.74 77.74 87.46 

7 14 × 24 
Askin and Subramanian [53] 1 82.54 82.54 82.54 85.14 89.51 

Stanfel [54] 2 83.90 83.90 83.90 84.84 91.32 

8 15 × 10 
Balasubramanian and Panneerselvam [55] 1 88.31 88.31 88.31 90.69 93.23 

Chan and Milner [56] 2 96.00 96.00 96.00 96.00 96.00 

9 20 × 20 
Mosier and Taube [57] 1 53.05 71.15 74.63 70.06 85.70 

Nambirajan [47] 2 69.57 73.96 75.09 78.98 83.43 

10 20 × 40 
Nambirajan [47] 1 72.17 77.44 76.02 79.95 82.99 

Nambirajan [47] 2 61.28 65.08 79.15 79.17 81.89 

11 24 × 40 
Chandrasekharan and Rajagopalan [58] 1 100.00 100.00 100.00 100.00 100.00 

Chandrasekharan and Rajagopalan [58] 2 91.16 91.16 91.16 91.82 93.43 

12 30 × 50 
Stanfel [54] 1 75.35 85.24 85.28 86.52 81.62 

Stanfel [54] 2 62.92 85.56 86.00 87.53 81.70 

13 40 × 20 
Nambirajan [47] 1 71.51 73.19 70.66 78.99 78.53 

Nambirajan [47] 2 58.91 64.47 79.75 79.55 80.05 

14 40 × 40 
Nambirajan [47] 1 60.15 71.96 83.52 84.07 79.97 

Nambirajan [47] 2 50.51 61.10 75.33 75.49 78.53 
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Table 5. Results of grouping efficacy. 

S. No Problem Size Reference REP ZODIAC GRAFICS Algorithm-1 Algorithm-2 HGA 

1 5 × 7 
King and Nakornchai [45] 1 73.68 73.68 73.68 75.00 75.00 

Waghodekar and Sahu [46] 2 56.62 60.87 62.50 68.00 69.57 

2 7 × 7 
Nambirajan [47] 1 42.14 44.45 48.00 61.11 68.75 

Vohra et al [48] 2 52.91 53.33 60.87 65.22 70.00 

3 8 × 20 
Chandrasekharan, and Rajagopalan [40] [41] 1 85.24 85.24 85.24 85.24 85.25 

Chandrasekharan, and Rajagopalan [40] [41] 2 58.33 58.13 58.33 58.33 58.72 

4 9 × 10 
Choobineh [49] 1 62.16 62.16 64.52 64.52 65.71 

Safer et al [50] 2 52.63 52.63 52.63 57.58 57.58 

5 10 × 12 
Nambirajan [47] 1 46.61 48.65 55.17 73.08 76.92 

Nambirajan [47] 2 61.11 61.11 61.11 65.63 73.33 

6 12 × 19 
De Witte [51] 1 56.56 52.80 54.55 54.55 57.96 

Tam [52] 2 54.63 54.63 56.31 56.31 57.67 

7 14 × 24 
Askin and Subramanian [53] 1 64.36 64.36 64.36 68.75 73.24 

Stanfel [54] 2 65.55 65.55 67.05 67.86 71.62 

8 15 × 10 
Balasubramanian and Panneerselvam [55] 1 75.00 75.00 75.00 77.08 77.08 

Chan and Milner [56] 2 92.00 92.00 92.00 92.00 92.00 

9 20 × 20 
Mosier and Taube [57] 1 21.63 38.26 40.29 40.85 42.76 

Nambirajan [47] 2 39.27 42.55 43.33 46.91 57.93 

10 20 × 40 
Nambirajan [47] 1 42.38 47.11 45.24 48.65 59.05 

Nambirajan [47] 2 27.43 29.95 45.45 45.45 55.96 

11 24 × 40 
Chandrasekharan and Rajagopalan [58] 1 100.00 100.00 100.00 100.00 100.00 

Chandrasekharan and Rajagopalan [58] 2 37.85 73.51 73.51 72.97 72.87 

12 30 × 50 
Stanfel [54] 1 46.06 56.32 56.99 56.45 54.81 

Stanfel [54] 2 21.11 47.96 48.72 49.47 43.46 

13 40 × 20 
Nambirajan [47] 1 34.28 35.98 35.9 39.90 46.86 

Nambirajan [47] 2 29.13 31.79 39.15 38.62 48.23 

14 40 × 40 
Nambirajan [47] 1 27.30 31.31 35.69 36.57 35.48 

Nambirajan [47] 2 24.98 28.03 31.96 31.43 39.90 
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In this model, the Factor iA  (Problem size) is a random factor and the Factor jB  (Algorithm) is a fixed 
factor. Since, the Factor A is a random factor, the interaction ijAB  is also a random factor. The replications are 
always random and the number of replication under each experimental combination is k. The derivation of the 
expected mean square (EMS) formulas for this combination of factors is given in Panneerselvam [59]. To test 
the effect of iA  as well as ijAB , the respective F ratio is formed by dividing the mean sum of squares of the 
respective component ( iA  or ijAB ) by the mean sum of squares of error. The F ratio for the component jB  is 
formed by dividing its mean sum of squares by the mean sum of squares of ijAB . 

The alternative hypotheses of this model are as stated below. 
H1: There is a significant difference between the different pairs of treatments of the Factor A (Problem Size) 

in terms of grouping efficiency/grouping efficacy. 
H2: There is a significant difference between the different pairs of treatments of the Factor B (Algorithm) in 

terms of grouping efficiency/grouping efficacy. 
H3: There is a significant difference between the different pairs of interaction between Factor A and Factor B 

in terms of grouping efficiency/grouping efficacy. 

6.1. Comparison of Algorithms Based on Grouping Efficiency 
This section presents the comparison of algorithms based on grouping efficiency. The ANOVA results of the 
grouping efficiency measure shown in Table 4 are shown in Table 6. 

From the results shown in the Table 6, it is clear that the factor “Problem Size” and the factor “Algorithm” 
are having significant effect on the grouping efficiency. 

Since there is significant difference between the algorithms in terms of grouping efficiency, next the best al-
gorithm is obtained using Duncan’s multiple range test. 

The treatment means in terms of grouping efficiency with respect to the algorithm are shown in Figure 8 in 
ascending order from left to right. The standard error is obtained using the following formula. One can notice 
the fact that the mean sum of squares of the interaction term AB is used in estimating the standard error, because 
the F ratio for the factor ‘Algorithm” is obtained by dividing its mean sum of squares by the mean sum of 
squares of the interaction ( )ijAB  (Panneerselvam [59]). 

0.5 0.5MSS 30.082SE 1.0365
28

AB

n
  = = =  

   
 

By referring to Duncan’s table (Panneerselvam [59]), at a significant level of 0.05, the Least Significant Range 
(LSR) for each of the pairs of treatments of the Factor B is computed and shown in Figure 8 along with the actual 
difference between the means of that pair of treatments. From Figure 8, it is clear that the proposed HGA is signif-
icantly different from all other algorithms and it is superior to all of them in terms of grouping efficiency. 

6.2. Comparison of Algorithms Based on Grouping Efficacy 
This section presents the comparison of algorithms based on grouping efficacy. The ANOVA results of the 
grouping efficiency measure shown in Table 5 are shown in Table 7. 

From the results shown in the Table 7, it is clear that the factor “Problem Size” and the factor “Algorithm” 
are having significant effect on the grouping efficacy. 
 
Table 6. ANOVA results of grouping efficiency measure. 

Source of 
Variation 

Sum of 
Square 

Degree of 
Freedom 

Mean Sum 
of Squares 

Formula 
for F ratio FCalculated 

FTable at 
α = 0.05 Remarks 

Problem (A) 6319.438 13 486.111 2

MSSA

σ
 11.889 1.863 Accept alternative 

hypothesis, H1 

Algorithm (B) 2307.438 4 576.859 
MSS
MSS

B

AB

 19.176 2.503 Accept alternative 
hypothesis, H1 

A × B 1564.250 52 30.082 2

MSSAB

σ
 0.736 1.524 Reject alternative 

hypothesis, H1 

Error 2862.063 70 40.887 
 

Total 13053.190 139  
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Table 7. ANOVA results of grouping efficacy. 

Source of 
Variation 

Sum of 
Square 

Degree of 
Freedom 

Mean Sum 
of Squares 

Formula 
for F ratio FCalculated 

FTable at 
α = 0.05 Remarks 

Problem (A) 33359.350 13 2566.103 2

MSSA

σ
 22.676 1.863 Accept alternative 

hypothesis, H1 

Algorithm (B) 2337.375 4 584.344 
MSS
MSS

B

AB

 16.704 2.503 Accept alternative 
hypothesis, H1 

A × B 1819.031 52 34.981 2

MSSAB

σ
 0.309 1.524 Reject alternative 

hypothesis, H1 

Error 7921.407 70 113.163 
 

Total 45437.160 139  

 

 

HGA = 87.30 

 
Figure 8. Duncan’s multiple range tests for grouping efficiency. 
 

 
Figure 9. Duncan’s multiple range tests for grouping efficacy. 
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Since there is significant difference between the algorithms in terms of grouping efficacy, next the best algo-
rithm is obtained using Duncan’s multiple range test. 

The treatment means in terms of grouping efficacy with respect to the algorithm are shown in Figure 9 in as-
cending order from left to right. The standard error for this performance measure is 1.1177. 

By referring to Duncan’s table (Panneerselvam [59]), at a significant level of 0.05, the Least Significant 
Range (LSR) for each of the pairs of treatments of the Factor B is computed and shown in Figure 9 along with 
the actual difference between the means of the grouping efficacy of that pair of treatments. From Figure 9, it is 
clear that the proposed HGA is significantly different from all other algorithms and it is superior to all of them 
in terms of grouping efficacy. 

7. Conclusion 
The cellular manufacturing system helps companies to improve productivity by way of combining the benefits 
of process layout and product layout. In this paper, the design of machine-component cells for a given machine- 
component incidence matrix is attempted. Since this problem is a combinatorial problem, a hybrid genetic algo-
rithm is developed to maximize each of the performance measures, viz. grouping efficiency and grouping effi-
cacy. Then, it is compared with four existing algorithms for each of the performance measures using a complete 
factorial experiment, in which the problem is treated as one factor and the algorithm is treated as another factor. 
It is found that the proposed hybrid genetic algorithm surpasses the performances of all other four algorithms. 
The construction of machine chromosomes and component chromosomes, and also the use of Hungerian method 
to match the machine groups with component families are unique contribution of this research. 
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