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ABSTRACT 

The concept of optimal Delaunay triangulation (ODT) and the corresponding error-based quality metric are first intro- 
duced. Then one kind of mesh smoothing algorithm for tetrahedral mesh based on the concept of ODT is examined. 
With regard to its problem of possible producing illegal elements, this paper proposes a modified smoothing scheme 
with a constrained optimization model for tetrahedral mesh quality improvement. The constrained optimization model is 
converted to an unconstrained one and then solved by integrating chaos search and BFGS (Broyden-Fletcher-Goldfarb- 
Shanno) algorithm efficiently. Quality improvement for tetrahedral mesh is finally achieved by alternately applying the 
presented smoothing scheme and re-triangulation. Some testing examples are given to demonstrate the effectiveness of 
the proposed approach. 
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1. Introduction 

The mesh improvement procedure can be basically divided 
into two categories, topological optimization and geo- 
metrical optimization (also called smoothing). Topologi- 
cal optimization changes the topology of a mesh, i.e. 
node-element connectivity relationship, while the geo- 
metrical optimization or smoothing improves mesh qual- 
ity by simply moving or adjusting the position of nodes 
without changing the topology of a mesh. Usually, the 
optimization-based smoothing procedure would lead to 
better results. However, due to the complexity of models 
and algorithms, the optimization-based smoothing is dif- 
ficult to implement, and with the increase of the number 
of design variables, the computational cost significantly 
increases. Therefore, in many works, smoothing was com- 
monly performed by Laplacian smoothing technique, i.e. 
shifting each interior free node to the center of the sur- 
rounding polygon or polyhedron. Although computation- 
ally inexpensive, this method, may produce invalid or 
illegal elements occasionally that are unacceptable in 
numerical analysis. The topological optimization im-
proves local and whole mesh quality by changing the 
topology of a mesh, i.e. node-element connectivity rela-

tionship. The most frequently used operations of topo-
logical optimization are so-called basic or elementary 
flips. Delaunay triangulation can also be proved to be a 
topological optimization tool to improve the quality of a 
mesh. 

Chen et al. [1] presented the concept of ODT (Optimal 
Delaunay Triangulation) in 2004 and developed a kind of 
quality smoothing algorithm [2] for triangular mesh by 
minimizing the linear interpolation error-based mesh 
quality metric. The algorithm can calculate the optimal 
location of each interior node directly according to the 
location of its neighbor nodes without solving the opti- 
mization model. The computational cost of such algo-
rithm is as low as that of Laplacian smoothing. Combin-
ing this smoothing algorithm and the concept of ODT, 
Alliez et al. [3] proposed a Delaunay-based variational 
approach for tetrahedral mesh by minimizing a simple 
mesh-dependent energy through global and updated both 
vertex positions and connectivity, which is very effective 
to improve the quality of “bad” tetrahedrons.  

However, through numerical investigation and analy- 
sis we find that the smoothing formula used [3] for up- 
dating vertex positions also suffers the problem of pro- 
ducing illegal elements. To this end, this paper proposes 
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a modified smoothing scheme for tetrahedral mesh which 
avoids the possibility of producing illegal elements while 
maintaining high efficiency of the original scheme. The 
corresponding optimization model is then solved by in-
tegrating chaos search and BFGS algorithm efficiently. 
Quality improvement for tetrahedral mesh is finally 
achieved by alternately applying the presented smoothing 
scheme and re-triangulation. 

An outline of this paper is as follows. Section 2 intro- 
duces the concept of ODT and the corresponding error- 
based quality metric. Then in Section 3, smoothing scheme 
through minimizing the interpolation error among all 
triangulations with the same number of vertices in the 
local patch is discussed and tested. A modified smooth- 
ing scheme which avoids the possibility of producing 
illegal elements is proposed in Section 4. Section 5 gives 
the quality improvement cycle by alternately applying 
the presented smoothing scheme and re-triangulation. Se- 
veral examples are given in Section 6 to illustrate per- 
formance of the proposed method. 

2. ODT and Error-Based Quality Metric 

Chen et al. [1] presented the concept of ODT and proved 
the following theorem: 

For a given finite point set V in Rn, let Ω be a convex 
hull of V, T a triangulation of Ω, and fI,T the piecewise 
linear finite element interpolation of a given continuous 
function f defined on Ω. Define 
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Then for the Delaunay triangulation of V, DT, 
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where TV denotes all possible triangulations of Ω by us- 
ing the points in V. 

This theorem shows that for all the possible traingula- 
tions, Delaunay triangulation makes the linear interpola- 
tion error  2

, ,Q T x p  take the minimum. 
Based on the linear interpolation error defined in 

above theorem,  , ,Q T f p , Chen et al. [2] derived an 
error-based mesh quality metric, i.e. the energy metric 
named as EODT in [3], 
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where n is dimension (for tetrahedral mesh n = 3) and Ωi 
denotes the first ring of vertex xi. 

Chen et al. [2] presented that EODT achieves the mini- 
mum if all edge lengths of the triangulation are equal; If 
reducing the value of EODT, the differences between edge 

length and volume of mesh can also be reduced. There- 
fore, reducing the value of EODT by topological or geo- 
metrical optimization approach can lead to improvement 
of the mesh quality. 

3. Mesh Smoothing Based on Interpolation 
Error 

3.1. Smoothing Scheme 

When performing mesh quality improvement, the error- 
based mesh quality metric defined in the local patch Ωi 
for free vertex xi is used. The local quality metric for 
tetrahedral patch Ωi, can be defined according to [2] and 
derived as 
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where |Tj| is the volume of tetrahedron Tj with respect 
to vertex xi, |Ωi| denotes the volume of Ωi. If reducing 
the value of this local quality metric, the quality of 
whole mesh will be improved. Then the smoothing 
scheme can be established by minimizing the local 
quality metric in Equation (4) by the manner of point 
by point. According to [2,3], this optimization-based 
smoothing model could be solved explicitly, so that 
the computational cost is as low as that of Laplacian 
smoothing. In [3], the optimal position of xi is derived 
and given by 
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where 
ix jT  is the gradient of the volume of the 

tetrahedron Tj with respect to xi. 
Formula (5) can be used to directly update the location 

of free vertex xi in tetrahedral mesh through the positions 
of its neighbors and thus improves the mesh quality. 
Combining this smoothing algorithm and the concept of 
ODT, Alliez et al. [3] proposed a Delaunay-based 
variational approach for tetrahedral meshing by mini- 
mizing a simple mesh-dependent energy through glo- 
bal updates of both vertex positions and connectivity, 
which is very effective to improve the quality of poor- 
ly tetrahedrons. However, through numerical investi- 
gation and analysis we find Formula (5) for updating 
position of xi also suffers the deficiency of producing 
illegal elements. 

3.2 Algorithm Analysis and Testing 

Formula (5) can be derived by making the derivative of 

i
E  zero. However, the feasible domain of xi

* should be 
restricted in a certain region inside Ωi. The position of xi 
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that makes the derivative of 
i

E  zero in this region not 
always exists. Under some circumstances, especially for 
poorly mesh, some vertexes after updating by Formula (5) 
will locate outside of Ωi. Some numerical tests also 
demonstrate Formula (5) has possibility to lead to illegal 
elements. For example, for the Delaunay triangulation in 
a cubic region shown in Figure 1, perform smoothing 
approach for the interior nodes by Formula (5). As we 
see, some new positions of vertexes locate far outside the 
cubic region. 
 

 
(a) 

 
(b) 

Figure 1. Mesh in cubic region before and after smoothing. 
(a) Initial mesh; (b) New mesh after smoothing. 

4. Modified Mesh Smoothing Scheme 

4.1. Modified Smoothing Scheme and  
Corresponding Optimization Model 

It is unacceptable for producing illegal elements in smooth- 
ing process. There are some strategies to handle this 
problem. The simplest strategy is to discard the new po- 
sition of xi if illegal element is detected. We test this 
strategy with the mesh in Figure 1, and no illegal ele- 
ment is found to be produced. However, for such a modi- 
fication, the effect of quality improvement is not satis- 
factory despite of its high efficiency. 

The better way may be to directly solve the optimiza- 
tion-based model by minimizing the local quality metric 
in Equation (4) with constraint of feasible domain, which 
needs to calculate feasible domain 

i
F  first, and then 

solve a constrained optimization model: 
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To skip the extra calculation of the feasible domain, 
we prefer to realize the equivalent constraint by intro- 
ducing the condition of positive volume, i.e. |Tj| > 0. 
Thus we get a modified smoothing scheme and corre- 
sponding optimization model as follows: 

Step 1) Calculate the new position of xi
* by Formula 

(5); 
Step 2) Check if xi

* causes illegal element. A container 
of Ωi can be first constructed to reduce the checking cost. 
If xi

* locates outside of this container, there must exist 
illegal element; otherwise, further volume calculation for 
tetrahedral elements using the new position of xi

* is 
needed. 

Step 3) If no illegal element is found to be produced, 
accept the new position; otherwise, solve the optimiza- 
tion problem min 

i
E  with volume constraints 

0jT   to obtain the new position of xi
*. 

In order to obtain better numerical stability, the local 
quality metric in Equation (4) can be expressed as  
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by coordinate translation. Then the constrained optimiza- 
tion model in Step 3) can be defined by 
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In order to solve this kind of constrained optimization 
model efficiently, we can convert it to an unconstrained 
one with differentiable objective function according to 
[4]. First, the volume constraint |Tj| > 0 can be converted 
to the following maximum constraint: 
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Then construct the L  penalty function 
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and replace the non-differentiable term in Equation (10) 
by its aggregate function. Thus the differentiable objec- 
tive function is obtained as: 
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When the penalty factor α is greater than some threshold 
value α0 and the parameter q approaches to infinity, the 
solution of the unconstrained model for minimizing the dif- 
ferentiable objective function in Equation (11) approaches 
to the solution of the original constrained model (8). 

4.2. Solution Algorithm 

For consideration of efficiency and precision, the scheme 
that integrates chaos search and BFGS is employed to 
solve the optimization model. Chaos search has good 
global search ability, but its convergence rate is low. 
BFGS method is one of the most representative algo- 
rithms in solving unconstrained optimization problem 
with good numerical stability. The combination of chaos 
search and BFGS can make full use of both global search 
ability of chaos search and fast convergence rate near the 
optimal solution of BFGS. 

Based on the above consideration, the solution of op- 
timization problem in Step 3) can be divided into two 
steps: first obtain the approximated solution by chaos 
search algorithm as the initial input values; then do opti- 
mization by BFGS algorithm. 

The procedure of chaos search algorithm is simply de- 
scribed as follows: first map the design variable xi to 
chaotic variable, then to the objective function 

i
E  in 

Equation (8) directly search the best solution that satis- 
fies the constraints. The volume of each tetrahedron is 
calculated before evaluating the objective function; there- 
fore, if the current position does not satisfy the con- 

straints, directly go to the next searching. 
Then using the approximated solution by chaos search 

algorithm as the initial input values, do optimization to 
the differentiable objective function in Equation (11) by 
the BFGS algorithm for optimal solution. 

Due to stochastic property of chaos search algorithm, 
the approximated solutions may be different. In practice 
calculation, four or five approximated solutions obtained 
by chaos search are taken as the initial inputs for BFGS 
algorithm. Then the best solution by BFGS algorithm is 
chosen as the final optimal solution. 

5. Mesh Quality Improvement 

To improve mesh quality, smoothing or topological op- 
timization alone may not achieve ideal results. In general, 
alternately applying smoothing and topological optimiza- 
tion technique can improve mesh quality significantly [5]. 
Smoothing process changes the location and distribution 
of nodes, and may provide further space of improving 
mesh quality for topological process. Therefore, this pa- 
per combines these two approaches, alternately applying 
smoothing and topological optimization to achieve better 
results. The most frequently used operations of topologi- 
cal optimization are so-called basic or elementary flips. 
Recently, Liu et al. [6] proposed a new topological opti- 
mization operation named small polyhedron reconnec- 
tion (SPR), to search the optimal topological configura- 
tion in an enlarged region which usually includes 30 ~ 40 
tetrahedrons. Delaunay triangulation can also be proved 
to be a topological optimization tool to improve the qual- 
ity of mesh. This paper adopts re-triangulation as topo- 
logical approach, makes a new Delaunay triangulation 
after nodes updating by the proposed smoothing scheme. 
Such an approach can reduce the value of quality metric 
based on interpolation error further [3] (Among all the 
triangulations, Delaunay triangulation makes the value 
take minimum [2]). Meanwhile, reconnection of nodes 
also provides optimization space for next smoothing 
step. 

6. Examples and Conclusions 

The proposed approach is tested by a number of exam- 
ples to illustrate its effectiveness. Quality improvement is 
performed by applying the presented smoothing scheme 
and re-triangulation for topological optimization alterna- 
tively. Only interior nodes are repositioned during 
smoothing, while the nodes on boundaries keep fixed. 
Three testing meshes are shown in Figure 2. The first 
testing mesh consists of 10,926 nodes and 58,615 tetra- 
hedrons initially. The second testing mesh consists of 
19,149 nodes and 76,188 tetrahedrons. The third mesh in-
cludes 6534 nodes and 25,177 tetrahedrons initially. Table 
1 shows the statistics of initial quality and quality after 10 



S. L. SUN  ET  AL. 

Open Access                                                                                             IIM 

195

 

     
(a)                                      (b)                                        (c) 

Figure 2. Initial meshes for the three testing examples. (a) The first example; (b) The second example; (c) The third exam- 
ple. 
 

Table 1. Statistics of initial mesh quality and the quality after optimization. 

 Initial mesh After 10 optimization cycles 

 min Average 
Number of elements with  

quality below 0.01 
min Average 

Number of elements with  
quality below 0.01 

Example 1 5.74E−6 0.795 66 0.062 0.899 0 

Example 2 2.92E−7 0.804 11 0.081 0.873 0 

Example 3 0.008 0.794 11 0.035 0.865 0 

 
optimization cycles. The radius ratio ρ [5] is adopted as 
the quality measurement for tetrahedral element, which 
takes the value of 1 for regular tetrahedron and 0 for de-
generated element. 

From the optimization results, it can be seen that the 
quality optimization approach presented is able to im- 
prove significantly the average quality of the mesh, even 
the boundary nodes are fixed. More important, the num-
ber of poorly elements decreases remarkably and the worst 
mesh quality also be improved. 

The presented smoothing scheme is efficient and ro- 
bust. No illegal element is produced. Testing results show 
that the proposed smoothing approach is suitable for 
combining with the topological optimization procedure, 
and effective to eliminate poor elements as well as im- 
prove mesh quality. 
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