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ABSTRACT

In this article, we study the problem of predicting future records and order statistics (two-sample prediction) based on
progressive type-II censored with random removals, where the number of units removed at each failure time has a dis-
crete binomial distribution. We use the Bayes procedure to derive both point and interval bounds prediction. Bayesian
point prediction under symmetric and symmetric loss functions is discussed. The maximum likelihood (ML) prediction
intervals using “plug-in” procedure for future records and order statistics are derived. An example is discussed to illus-

trate the application of the results under this censoring scheme.
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1. Introduction

In many practical problems of statistics, one wishes to
use the results of previous data (past samples) to predict
a future observation (a future sample) from the same
population. One way to do this is to construct an interval
which will contain the future observation with a specified
probability. This interval is called a prediction interval.
Prediction has been applied in medicine, engineering,
business, and other areas as well. Hahn and Meeker [1]
have recently discussed the usefulness of constructing
prediction intervals. Bayesian prediction bounds for a
future observation based on certain distributions have
been discussed by several authors. Bayesian prediction
bounds for future observations from the exponential dis-
tribution are considered by Dunsmore [2], Lingappaiah
[3], Evans and Nigm [4], and Al-Hussaini and Jaheen [5].
Bayesian prediction bounds for future lifetime under the
Weibull model have been derived by Evans and Nigm
[6,7], and Bayesian prediction bounds for observable
having the Burr type-XII distribution were obtained by
Nigm [8], Al-Hussaini and Jaheen [9,10], and Ali Mousa
and Jaheen [11,12]. Prediction was reviewed by Patel
[13], Nagraja [14], Kaminsky and Nelson [15], and Al-
Hussaini [16], and for details on the history of statistical
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prediction, analysis, and applications, see, for example,
Aitchison and Dunsmore [17], Geisser [18]. Bayesian
prediction bounds for the Burr type-X model based on
records have been derived from Ali Mousa [19], and
Bayesian prediction bounds from the scaled Burr type X
model were obtained by Jaheen and AL-Matrafi [20].
Bayesian prediction with Outliers and random sample
size for the Burr-X model was obtained by Soliman [21],
Bayesian prediction bounds for order statistics in the one
and two-sample cases from the Burr type X model were
obtained by Sartawi and Abu-Salih [22]. Recently, Ah-
madi and Balakrishnan [23] discussed how one can pre-
dict future usual records (order statistics) from an inde-
pendent Y-sequence based on order statistics (usual re-
cords) from an independent X-sequence and developed
nonparametric prediction intervals. Ahmadi and Mir Mo-
staface [24], Ahmadi et al. [25] obtained prediction in-
tervals for order statistics as well as for the mean lifetime
from a future sample based on observed usual records
from an exponential distribution using the classical and
Bayesian approaches, respectively.

The rest of the paper is as follows. In Section 2, we
present some preliminaries as the model, priors and the
posterior distribution. In Section 3, Bayesian predictive
distribution for the future lower records (two-sample pre-
diction) is based on progressive type-II censored with
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random removals. In Section 4, the ML prediction both
point and interval prediction using “plug-in” procedure
are derived. In Section 5, Bayesian predictive distribution
for the future order statistics based on progressive type-II
censored with random removals. In Section 6, the ML
prediction both point and interval prediction using “plug-
in” procedure for the future order statistics are derived. A
practical example using generating data set Progressively
type-1I censored random sample from Burr-X distribu-
tion, and a simulation study has been carried out in or-
der to compare the performance of different methods of
prediction are presented in Section 8. Finally we con-
clude the paper in Section 8.

2. TheModd, Prior and Posterior
Distribution

Let random variable X have an Burr-X distribution with
Parameter 6. the probability density function and the
cumulative distribution function of X are respectively

Xz)(l—exp(—

xz))g, X,0 > 0.

f(x)= ZHXexp(— xz))gfl ,X0>0
(D

F(9 = (1-exp(-

Suppose that (X,R),(%,R,),,(X,,R,), denote a

progressively type-1I censored sample, where X < X, <
-+ < X, with pre-determined number of removals, say
R=r,R=r,-,R,=r, the conditional likelihood
function can be written as,

L(H;X|R:r):C]j fx)[1-Fx)]'. @

where C=n(n-r,—-1)(n-r,—r,=2),-,(n=r, —-=1, —
m+1) and OSris(n—m—rl—'“—rH) for
i=1,2,3,--,m-1,

substituting (1), (2) into (3) we get

0(6) emi-- iGexp(@Zm:(ki +1)anij, 3)

where
G:(‘l)kﬁwkm(lzju{li:j’ U, (1 exp(—X )) @)

If the parameter ¢ is unknown, from the In-likelihood
function given by (3), the MLEs, 6,,, =6 can be ob-
tained by the following equations,

n¢(6)=ming+83 - 363 (k +1)lnU,.  (5)

k=0  Kp=0 il

The first derivative of In/(6) with respect to @is

filn_f() M S 36 (k+)nU, (6

00 k=0 kp=0 =l
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. 0ln/(6) ) o
setting 0 - 0 we get the maximum likelihood
estimator of fas the following

5 -m
eMLE =T m m s (7)
2 2.6 (k +1)ny,

k=0 Kkp=0 =l
consider a gamma conjugate prior for #in the form

(6|, ﬂ)—%@" ) exp(-6),

From (3) and (8) the conditional posterior (pdf) of &1is
given by

0>0,c,8>0.(8)

§ m
Zl: . z Gom™e) exp(—ﬁqk )

" (6]x) == ©)

r(m+a) Z ZGq‘m “

k=0

where

(kI +1)InU; .

Ma

o =45

3. Bayesian Prediction for Record Value

Suppose n independent items are put on a test and the
lifetime distribution of each item is given by (2). Let
X, X5, X5, X, be the ordered m-failures observed
under the type-II progressively censoring plan with bi-
nomial removals (R,--+,R,), and that Y. Y, Y, be
a second independent sample (of size my) of future lower
record observed from the same distribution (future sam-
ple). Our aim is to make Bayesian prediction about the
s", then the marginal pdf of Vg is given by see
Ahmadi and Mir Mostafaee [24] is

[~logF(Y)]™"

=) f(Y) (10)

fvs(Y):
where
F(Y)=(1-exp(-Y2)) ,
(¥) ( exp s)) . an
F(Y)=20Y,exp(-Y2)(1-exp(-Y7))
US:(I—exp(—Yj)), g, = -logU.,

q)(YS):{ZYSeXp(—YSZ)J (12)

l—exp(—YS2 ) .

Applying (11), (12) in (10) we obtain

fy (Y)= *

(%)= exp (-6, ) D (Y;). (13)
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Combining the posterior density (9) with (13) and in-
tegrating out & we obtain the Bayes predictive density

f (Y, X) jf I (6] X)de

Aoy )kZ kZOG(qk+qs> e a9
Zqu m+a
km=0

The Bayesian prediction bounds for the future Y,
s=12,---,m are obtained by evaluating Pr [YS > t1| 5]
for some given value of t;, It follows from (14) that

N

B(Sm+a)) -

ki =0

PrlYs > t[x]=[ T (Ve|x)d¥,
226l (V) (15)
K=0  kp=0

m ’
B(Sm+a)d - > Gg ™
Km=0

k =0 -

where

. q(s_])
L, (Y,) =] W@(YS)dYS. (16)

(g +a,

The predictive bounds of a two-sided interval with
cover 7 (7100%) for the future lower record Yg, may
thus obtained by solving the following two equation for
the lower L, andupper U, bounds:

> ZG'()

k=0 1+r

, 347
B(S, m+a)z ze ) 2
and
Z Zm:Glu (YS) 1
k=0  kp=0 _ ;T’ (18)

T m
B(S.m+a)Y - 3 Gg ™)
K0 ky=0

where |_(Ys) and 1, (Ys) are given by Equation (16).

Now by using (14) the Bayesian point prediction of the
future lower record values Ysunder SE (BS) and LINEX
loss functions (BL) are given, respectively, as

Y~s( BS) IYs

0

(VX )a¥,

Z ZG'( ) (19)

k=0

B(S,m+a)z-~ Zqu(m)
k=0  kp=0

>
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Ve = Log ! exp(—=cY; ) f (Vs|§)dYs}

Y 361, (Y,) (20)
k=0  kp=0

1
:_ELOg il 'm

B(Sm+a)d - Y &g ™
L k=0  Kp=0

where
0 Sl
N X ey, e
o +qs

and

o ~(S-1)
ol exp (oY,
L(Y,)= I#

0 (q| +qs

One can use a numerical integration technique to get
the above integration, given by (21), (22).

Special case: In special case it is important to predict
the first unobserved lower record value Y, .

When s = 1, in (17) and (18), the lower and upper
Bayesian prediction bounds with cover 7 of Y, are
obtained from the numerical solution of the following
equations

T o(Y,)dY,. (22)

2 26l (Y)
k=0 k=0

: . :l-iz-r’ 23)
B(Lm+a)y - Zqu’("‘*“)
k=0  kp=0
and
n 'm
Sofet)
k=0 k,:::o - _ — (24)
B(Lm+a)d - Gg ™

where 1, (Y;) and I, (Y,) given by Equation (16), and
solving the resulting equations numerically.

4. ML Prediction for Record Value

The commonly used frequentist approaches such as the
maximum likelihood estimate and the “plug-in” proce-
dure, which is to substitute a point estimate of the un-
known parameters into the predictive distribution are
reviewed and discussed. In this section the ML prediction
both point and interval using “plug-in” procedure for
future lower record based on progressive type-II cen-
sored sample defined by (2). By replacing & in the mar-
ginal pdf of Vg (13) by @ which we can find it from
the numerical solution of the Equation (7), then
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%"
1Vs '5) - F(S)
The ML prediction bounds for the future Yy are ob-

tained by evaluating Pr [YS > t2| 5] for some given
value of t,, It follows from (25) that

CD(Ys)exp(—éqs). (25)

Pr Y >t |x] .[ f]V Ingamma(t*;S,l)

1
(s
(26)
where Ingamma (@;t,t,) is the incomplete gamma
function defined by

Ingamma (¢;t,,t,)

= T 2" exp[t,z]dz, and t" = -0 log(l - exp[—tz2 J)
0

27

The predictive bounds of a two-sided interval with

cover 7 for the future lower record Yy, may thus ob-

tained by solving the following two equation for the
lower L, andupper U, bounds:

l+7
ﬁlngamma(L ;S l) - (28)
and
1 .. -7
F(S) Ingamma(Us,S,l) :T. (29)
Special case

When S= 1, in (28) and (29), the lower and upper ML
prediction bounds with cover z of Y, are obtained
from the numerical solution of the following equations:

) 1+7

Ingamma ( ;L1 — (30)

and

1-7

Ingamma(Ul*;l,l): (31)

The ML point prediction of the lower record value Y
is given, from (25), as

Y, ML) JYs flvS (Ys)dYs

= é Tgs‘ exp(-6a, )Y, (Y,)dY,

S S s*

(32)

One can use a numerical integration technique to get
the above integration, given by (32).

5. Bayesian Prediction for Order Statistics

Order statistics arise in many practical situations as well
as the reliability of systems. It is well-known that a sys-
tem is called a k-out-of-m system if it consists of m
components functioning satisfactorily provided that at
least k(<m) components function. If the lifetimes of
the components are independently distributed, then the
lifetime of the system coincides with that of the
(m—k+1)th order statistic from the underlying distri-
bution. Therefore, order statistics play a key role in stu-
dying the lifetimes of such systems. See Arnold €t al. [26]
and David and Nagaraja [27] for more details concerning
the applications of order statistics.

Suppose n independent items are put on a test and the
lifetime distribution of each item is given by (2). Let
X, X5, X5+, X, be the ordered m-failures observed
under the type-1I progressively censoring plan with bi-
nomial removals (R,---,R), and that Y, Yy, Yy, be
a second independent random sample (of size M) of fu-
ture order statistics observed from the same distribution.
Our aim is to obtain Bayesian prediction about some
functions of YlaYz»"'asz~

Let Y, bethe s" ordered lifetime in the future sam-
ple of m, lifetimes. The density function of Y, for given
@is of the form

h (¥:|2)
=D (9)[1-F(YJ0)[*[F(¥|o)] f(¥]e).

where D’(s)= S[nslz} For the Burr-X model, substi-

(33)

tuting (11) and (12) in (22), we obtain

h(¥.|€)
m-s

1=0

Therefore, from (9) and (34), the Bayes predictive
density function of Y, will be (see Equation (35)).

where ¥(1)=D"(s) 3 (~1) [”‘f) and ®(Y,), U,

1=0

ke Y|

— ()0 (Y,)(ma)

jh (Y.|o)7" (6]x)do
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are given by Equation (12).
The Bayesian prediction bounds for the future
Y,, S=L12,---,m, are obtained by evaluating

Pr[YS > '91|§} = ij** (YS|§)dYs

Pr[Ys > x| for some given value of &, It follows
from (35) that

w(l )ki‘:) . krzm_“oe(q;(mw _ [qk —(s+I )log(l - exp(—ﬁl2 ))]—(mw)j (36)

(s+1)3 -+ > Gg, ™)

The predictive bounds of a two-sided interval with
cover 7 (7100%) for the future order statistics Y,

il

¥ (1)

O...k?‘OG(qk(mm) - [qk —(s+l )log(l —exp(—LLi))J(mW)j

k=0  Kp=0

may thus obtained by solving the following two equation
for the lower LL; and upper UU, bounds:

Now by using (35) the Bayesian point prediction of the
future order statistics Y, under SE (BS) and LINEX loss
functions (BL) are given, respectively, as

©

— -2 67
(s+1)> > Gg ™)
K=0  kp=0
il 'm (mea —(m+a)
‘P(I)Z”‘ZG[qk( )—[qk—(S+|)1og(l—exp(—UU52))J j
K=0  Kp=0 :l—T' (38)
(S+|)ZI:”‘Zm:Gq;(m+a) 2
K=0 Kn=0
and
15 (Ye)
“ “(mra+ 42
:jexp(—cvs)(qk—(s+|)1ogus)( I)CD(YS)dYs.( :
0

=Y. £ (Y[x)aY,

Ys( BS)

YoSEY) 69

z . Z qu:(mwz)

k=0 k=0
and
7 1 K *ok
YS(BL) = —ELog[Iexp(—ch) f (YS|§)dYS:|
0
r Tm
S NG(Y,) @O
=¥ (1)(m+ @)
Z .. Zqu:(m*a)
k=0 k=0
where

©

17 (Y.) = [ Y. (a,~(s+1)1ogu,) ™ o (Y, )aY,, @1)

0
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We can use a numerical integration technique to get
the above integration, given by (41), (42).

6. ML Prediction for Order Statistics

In this section the ML prediction both point and interval
using “plug-in” procedure for the future order statistics
based on progressive type-II censored sample defined by
(2). From (34) by replacing € in the density function of
Y, for given &by 6 which we can find it from the nu-
merical solution of the Equation (7), then the density
function of Y, for given 0

- ; 43
Sl e T

The ML prediction bounds for the future Y, are ob-
tained by evaluating Pr [YS > £2| 5] for some given
value of ¢&,, It follows from (43) that
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Pr[YS > £2|§J

o, n ‘P(|) ) é(l+s) (44)
= (Y| 0)dy, = T [1—(l—exp(—£2 )

The predictive bounds of a two-sided interval with
cover 7 for the future order statistics Y, may thus
obtained by solving the following two equation for the
lower LL; andupper UU; bounds:

+{) [1—(1 —exp(—LL’f))é(HS)} - HTT (45)

and

w(l) o] 1-7
(I+S)|:1—(1—exp(—UUS )) }:T. (45)

From (43) the ML point prediction of the order statis-
tics Ysis given by

Y~S(ML) = J‘Yshl* (Ys
0

0)dy,
- (46)
=W (1)]Y, (20¥, exp(-¥2 ) )u " a,,
0
One can use a numerical integration technique to get
the above integration, given by (46)

7. lllustrative Example and Simulation
Study

Example 1: In this example, a progressive type-II cen-
sored sample with random removals from the Burr-X
distribution have been generated using the following al-
gorithm.

Algorithm 1.

1) Specify the value of n.

2) Specify the value of m.

3) Specify the value of parameters #and p

4) Generate a random sample with size m from Burr-X
and sort it.

5) Generate a random number r; from bio(n—m, p).

6) Generate a random number r; from

i—1
bio(n— m->r, p], for each i,i=2,3,---,m—1.
1=1
7) Set 'y according to the following relation,

i—1 i—1
n-m->r ifn-m->Tr>0
= I=1 1=1

m

0 ow

In these sample, we assumed that the exact value of 8
and P are respectively 1.6374, 0.4 and n=10 and m=7,
the sample obtained is given as follows (X,R):
(0.4406,1), (0.5449,1), (0.6728,0), (0.9914,0), (1.2655,1),
(1.3680,0), (1.4271,0).

We used the above sample to compute:

Copyright © 2013 SciRes.

1) Bayesian point prediction, under SE and LINEX
loss function;

2) The 95% Bayesian prediction intervals of the s"
unobserved lower records (order statistics);

3) The maximum likelihood prediction ML;

4) The 95% maximum likelihood prediction intervals
ofthe s™ unobserved lower records (order statistics);

5) The results obtained are given in Tables 1-4.

Example 2: Simulation Study In this example, we
discuss results of a simulation study comparing the per-
formance of the prediction results obtained in this paper.
Firstly we generate (M, = 5) lower record values (order
statistics) from the Burr-X distribution & = 1.6374. By
using the generating data we predict the 90% and 95%
Bayesian prediction intervals for the future observations
S™ lower record (order statistics) from the the Burr-X
distribution and by repeated the generations 1000 time
we can find the Percentage (C.P) and we use prior
(a,B) equal (2,3). Tables 5-8 show the 90% and 95%
Bayesian (B) and maximum likelihood (ML) prediction
intervals for the future S™ lower record (order statis-
tics). The sample obtained is given as follows, (0.4640,1),
(0.5124,1), (0.7323,0), (0.8293,1), (0.8665,0), (0.8713,1),
(1.1322,0), (1.4969,0).

8. Conclusions

In this paper, we consider the two-sample prediction
wherein the observed progressive Type-II censored sam-
ples with random removals from the Burr-X distribution
form the informative samples and discussed how point
prediction and prediction intervals can be constructed for
future lower records (order statistics). Bayesian and ML
predictions both the point prediction and the prediction
intervals are presented and discussed in this paper.

The commonly used frequentist approaches such as the
maximum likelihood estimate and the “plug-in” proce-
dure, which is to substitute a point estimate of the un-
known parameters into the predictive distribution are
reviewed and discussed. Numerical example using simu-
lated data were used to illustrate the procedures devel-
oped here. Finally, simulation studies are presented to
compare the performance of different methods of predic-
tion. A study of 1000 randomly generated future samples
from the same distribution shows that the actual predic-
tion levels are satisfactory. From the results we note the
following:

1) The results in Tables 1-4 show that the lengths of
the prediction intervals using “plug-in” procedure (MLPI)
are shorter than that of prediction intervals using Bayes
procedure.

2) The simulation results show that, for all cases (low-
er records and order statistics), the proposed prediction
levels are satisfactory compared with the actual predic-
tion levels 90% and 95%.
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Table 1. Point and interval BP for the future lower record Yj.

LINEX 95% BPI for Y,
Y, SE
c=-1 C, =0.0001 G=1 [Lower, Upper] Length
Y, 0.9681 1.0863 0.9735 0.8672 [0.1892,1.9866] 1.7973
Y 0.5931 0.6535 0.5933 0.5407 [0.0727,1.3417] 1.2690
Y3 0.3998 0.4366 0.4010 0.3679 [0.0305,1.0073] 0.9768
Y 0.2799 0.3033 0.2849 0.2596 [0.0133,0.7844] 0.7711
Ys 0.2000 0.2150 0.2335 0.1869 [0.0059,0.6211] 0.6152
Table 2. Point and interval 95% MLPI for Y.
Y, ML [Lower, Upper] Length
Y 1.0686 [0.3295,2.0415] 1.7120
Y, 0.6966 [0.1810,1.4055] 1.2245
Y3 0.4958 [0.1082,1.0717] 0.9635
Y4 0.3644 [0.0671,0.8455] 0.7784
Ys 0.2721 [0.0426,0.6769] 0.6343
Table 3. Point and interval BP for the future order statistics Y.
LINEX 95% BPI for Y,
Y, SE
c =-1 c, =0.0001 c=1 [Lower, Upper] Length
Y, 0.4847 0.5150 0.4848 0.4563 [0.0777,0.9992] 0.9215
Y, 0.7202 0.7540 0.7201 0.6875 [0.2425,1.2453] 1.0028
Y; 0.9334 0.9716 0.9334 0.8963 [0.4145,1.4887] 1.0742
Y 1.1730 1.2201 1.1730 1.1278 [0.6040,1.7968] 1.1928
Ys 1.5292 1.6070 1.5292 1.4592 [0.8470,2.3554] 1.5085
Table 4. Point and interval 95% MLPI for Y.
Ys ML [Lower, Upper] Length
Yi 0.5895 [0.1978,1.0525] 0.8546
Y, 0.8301 [0.4219,1.2973] 0.8754
Ys 1.0394 [0.6046,1.5407] 0.9361
Y, 1.2707 [0.7848,1.8482] 1.0634
Ys 1.6134 [1.0033,1.4023] 1.3990

Table 5. Two sample prediction for the future lower record.-90% and 95% BPI for Y, S=1,2,---,5 and their actual pre-
diction with =2, =3, #=1.6374,p=04,n=12, m=8.

90% BPI for Ys 95% BPI for Ys
Y, [Lower, Upper] Length C.P [Lowe, Upper] Length C.P
Yi [0.2723,1.7970] 1.5247 0911 [0.1902,1.9814] 1.7912 0.960
Y, [0.1174,1.1967] 1.0793 0.921 [0.0743,1.3332] 1.2589 0.964
Y; [0.0550,0.8810] 0.8261 0.911 [0.0318,0.9962] 0.9644 0.959
Ys [0.0266,0.6709] 0.6443 0.903 [0.0141,0.7715] 0.7573 0.949
Ys [0.0131,0.5184] 0.5053 0.909 [0.0064,0.6070] 0.6006 0.954

Copyright © 2013 SciRes. 1M
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Table 6. Two sample prediction for the future lower record-90% and 95% MLPI for Y., S=1,2,---,5 and their actual pre-
diction with =2, =3, 0=1.6374,p=04,n=12, m=8.

90% MLPI for Ys 95% MLPI for Ys
Ys [Lowe, Upper] Length C.P [Lower, Upper] Length CP
Y [0.3850,1.8439] 1.4589 0.896 [0.3018,2.0242] 1.7224 0.949
Y, [0.2104,1.2501] 1.0397 0913 [0.1593,1.3820] 1.2227 0.960
Y; [0.1250,0.9341] 0.8091 0.908 [0.0918,1.0444] 0.9526 0.955
Y4 [0.0770,0.7204] 0.6434 0.899 [0.0550,0.8160] 0.7610 0.945
Ys [0.0484,0.5628] 0.5144 0.910 [0.0338,0.6464] 0.6126 0.953

Table 7. Two sample prediction for the future order statistics.-90% and 95% BPI for Y, S=1,2,---,5 and their actual pre-

diction with =2, =3, 0=1.6374,p=04,n=12, m=8m, =5.

90% BPI for Ys 95% BPI for Ys
Y, [Lower, Upper] Length CP [Lowe, Upper] Length CP
Y [0.1201,0.8999] 0.7796 0.912 [0.0801,0.9867] 0.9065 0.952
Y, [0.3104,1.1472] 0.8368 0.897 [0.2470,1.2344] 0.9874 0.943
Y; [0.4938,1.3862] 0.8924 0.916 [0.4191,1.4797] 1.0606 0.963
Y [0.6910,1.6811] 0.9901 0.924 [0.6075,1.7900] 1.1825 0.963
Ys [0.9442,2.1960] 1.2518 0.920 [0.8483,2.3511] 1.5028 0.971

Table 8. Two sample prediction for the future order statistics-90% and 95% MLPI for Yg, S=1,2,--,5 and their actual
prediction with =2, =3, 0=1.6374,p=04,n=12, m=8m, =5.

90% MLPI for Ys 95% MLPI for Ys
Y, [Lowe, Upper] Length [Lower, Upper] Length C.p
Yi [0.2221,0.9442] 0.7224 0.906 [0.1752,1.0249] 0.8498 0.952
Y, [0.4488,1.1905] 0.7417 0.897 [0.3924,1.2725] 0.8801 0.950
Y; [0.6356,1.4294] 0.7938 0.914 [0.5740,1.5187] 0.9447 0.961
Ys [0.8232,1.7236] 0.9004 0914 [0.7548,1.8292] 1.0744 0.955
Ys [1.0568,2.2351] 1.1784 0.901 [0.9753,2.3875] 1.4122 0.955

3) In general, the simulation results show that the

“plug-in” procedure (MLPI) performs better than the
Bayes method (BPI), in the sense of shorted interval
lengths.
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