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Abstract 
 
We describe here a comprehensive framework for intelligent information management (IIM) of data collec-
tion and decision-making actions for reliable and robust event processing and recognition. This is driven by 
algorithmic information theory (AIT), in general, and algorithmic randomness and Kolmogorov complexity 
(KC), in particular. The processing and recognition tasks addressed include data discrimination and multi-la- 
yer open set data categorization, change detection, data aggregation, clustering and data segmentation, data 
selection and link analysis, data cleaning and data revision, and prediction and identification of critical states.  
The unifying theme throughout the paper is that of “compression entails comprehension”, which is realized 
using the interrelated concepts of randomness vs. regularity and Kolmogorov complexity. The constructive 
and all encompassing active learning (AL) methodology, which mediates and supports the above theme, is 
context-driven and takes advantage of statistical learning, in general, and semi-supervised learning and 
transduction, in particular. Active learning employs explore and exploit actions characteristic of closed-loop 
control for evidence accumulation in order to revise its prediction models and to reduce uncertainty. The 
set-based similarity scores, driven by algorithmic randomness and Kolmogorov complexity, employ 
strangeness/typicality and p-values. We propose the application of the IIM framework to critical states pre-
diction for complex physical systems; in particular, the prediction of cyclone genesis and intensification. 
 
Keywords: Active Learning, Algorithmic Information Theory, Algorithmic Randomness, Evidence-Based 
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1. Introduction 
 
Information loaded with meaning and in context is an 
asset and is referred throughout this paper as evidence. 
Intelligent evidence-based management (EBM) of data 
concerns the value-added to raw data in order to trans-
form it into (referential) information and (meaningful) 
knowledge using purposeful action (DKA). The motiva-
tion for EBM comes from Microsoft (MS) Cambridge 
(UK) Research manifesto Towards 2020 Science [1]. 
First and foremost the manifesto notes that what will 
most likely have a profound impact is “the leap from 
support to ‘do’ science, i.e., computational science, to the 
integration of computing into the very fabric of science” 
leading to science-based innovation. The MS report 
highlights that an immediate and important challenge is 

that of end-to-end scientific data management, from data 
acquisition and data integration, to data treatment, prove- 
nance, and persistence” and including “the acquisition of 
a set of widely applicable complex problem solving ca-
pabilities, based on the use of a generic computational 
environment.” This has been also advocated by the 
Computing Community Consortium http://cra.org/ccc/do 
cs/init/From_Data_to_Knowledge_to_Action.pdf to en-
able 21st century discovery in science and engineering. 
The forthcoming revolution will be driven by “computa-
tional knowledge extraction. It can be best accomplished 
when one models and transforms data into evidence and 
knowledge [suitable to make predictions] and makes then 
use of existing [domain/meta] knowledge to engage in 
future actions/behaviors geared for further exploration 
and exploitation “actions”. EBM using DKA can be fur-
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ther traced to the “schemata” (kind of  meaningful 
knowledge) proposed by Neisser [2] to account for the 
perceptual cycle where available information modifies 
the schema, the schema then directing then exploration, 
and exploration then sampling information. The outcome 
of the explorations—the information picked up-modifies 
the original schema. The Perception-Control-Action-Lea- 
rning (PCAL) proposed by Wechsler [3] has expanded 
on the schema framework to include anticipation and 
learning driven by exploration and exploitation, which 
are mediated by control and action/manipulation. 

This paper advances a comprehensive framework for 
EBM using DKA, which is concerned with data collec-
tion and decision-making related actions for reliable and 
robust event prediction and recognition. Data collection 
includes among others data aggregation, data cleaning, 
data collection, data selection, and data segmentation. 
Reliability concerns consistency and stability of the pre-
dictions made, while robustness is about coping with 
adversarial information, e.g., incomplete and corrupt 
information. The motivation for this paper comes from 
apparent synergies between information theory (IT) [4], 
algorithmic information theory [5,6], Kolmogorov Com-
plexity [6,7] (see Section 6 and 7), statistical learning 
theory (SLT) [8], and algorithmic learning [9]. (Algo-
rithmic information theory is a subfield of HHHHHinformation 
theoryHHHHH and HHHHHcomputer scienceHHHHH that concerns itself with the 
relationship between HHHHHcomputationHHHHH and HHHHHinformation HHHHH.) The 
unifying theme throughout is that of “compression en-
tails comprehension”, which is realized using the inter-
related concepts of randomness opposite regularity, 
Kolmogorov complexity, and minimum description 
length (MDL). The constructive active learning interface, 
which mediates and supports the above theme, is con-
text-driven and takes advantage of semi-supervised 
learning [10] and transduction [8]. Active learning [11] is 
first and foremost about the choices made during data 
collection. It employs explore and exploit actions char-
acteristic of closed-loop control for evidence accumula-
tion in order to reduce uncertainty and to revise the pre-
diction models. The event-recognition tasks addressed 
i n c l u d e  m u l t i - 
layer data categorization, change detection, data cleaning 
and data revision, data fusion, data segmentation, data 
selection and link analysis, and prediction and identifica-
tion of critical states.  

The basic functionalities active learning supports in-
clude decisions on where to explore and what (labeled 
and unlabeled) data to gainfully employ for further ad-
aptation and modeling purposes; on how to process and 
fuse the information and knowledge acquired; on han-
dling time-varying data streams, detecting change, and 
choosing when to revise the prediction models. Towards 
that end, set-based similarity scores are proposed. They 

are motivated by KC and driven by strangeness/typicality 
and p-values. The scores take advantage of associations, 
context and relationships; cohorts and rankings; trans-
formations, e.g., hints and perturbations, censoring and 
imputation (to account for missing information), and data 
cleaning and revision (for consistency, error correction, 
and stability). Note that the terminology used in this pa-
per employs similarity scores to estimate proximity. The 
use of “metrics” and “distances” is avoided, and the con-
text makes clear when strict definitions are used. 

The outline for the paper is as follows. EBM and DKA 
are discussed in Section 2 Active Learning; Algorithmic 
Information Theory and Closed-Loop Control; discrimi-
native methods and practical intelligence; Kolmogorov 
complexity; and algorithmic randomness are discussed in 
Sections 3 -7, respectively. Strangeness/typicality and 
p-values; transduction and semi-supervised learning; and 
multi-layer and multi-set open set categorization are dis-
cussed in Sections 8 - 10 Active learning (see Section 3) 
using the explore and exploit paradigm motivates and 
supports functionalities related to data collection and 
evidence accumulation. The specific functionalities, 
concerning change detection; data aggregation/data fu-
sion; data selection and link analysis; data cleaning and 
data revision; and prediction and identification of critical 
states, are described in Sections 11 - 16, respectively. 
New dimensions and requirements on EBM and DKA, 
e.g., for life sciences, are discussed in Section 17 The 
paper concludes in Section 18 with a brief summary and 
venues for future research. 
 
2. Evidence-Based Management: From Data 

to Knowledge to Action 
 
Evidence is any data or information so given, whether 
collected or derived from any source. Management is 
meant here to denote (organizational) activities pursued 
to accomplish desired goals and objectives related to data 
collection and assimilation in an efficient and effective 
fashion. For all purpose, management comprises HHHHHplanningHHHHH, 
HHHHHorganizingHHHHH, directing, and HHHHHcontrollingHHHHH the activities asso-
ciated with data collection for the purpose of knowledge 
discovery and management thereafter. EBM is about the 
value-added to raw data in order to transform it into in-
formation and knowledge using purposeful action. EBM 
is chartered with the explicit mission to extract, manage, 
and revise current knowledge. It is data-centric and 
data-driven, and it is above all about actions directed at 
decision-making. DKA involves the effective and effi-
cient exploration and exploitation of the data landscape 
in order to assimilate massive and complex amounts of 
data and to optimally complete specific tasks. The range 
of tasks considered throughout this paper, for illustrative 
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purposes, surrounds recognition, where the primary task 
is that of multi-layered open set categorization to per-
form (unlabelled) data annotation and revision. Knowl-
edge amounts to the models learned and relearned (“re-
vised”) in order to make consistent and stable predictions 
mostly on detection, classification, and discrimination.  

Knowledge discovery is about modeling the environ-
ment for the purpose of reliable and robust prediction. 
Reliability in terms of consistency (in the limit) and sta-
bility of the predictions made, and robustness for dealing 
with incomplete and corrupt (adversarial) data sources 
and actions. The knowledge discovered is tasked to fa-
cilitate, guide, and support decision-making. EBM and 
DKA expand first on intelligent information manage-
ment (IIM) [12], with the latter limited to a life—cycle of 
data creation, acquisition, organization, storage, retrieval, 
dissemination and sharing, and use, but devoid of adap-
tation and knowledge discovery. EBM and DKA expand 
also on knowledge management (KM) [13,14], with the 
latter assuming that much of knowledge already exists 
but devoid of the critical adaptive exploration and ex-
ploitation cycles, which are geared to further knowledge 
discovery and knowledge betterment. KM merely com-
prises a range of strategies and practices used (in an or-
ganization) to identify, create, represent, distribute, and 
enable adoption of HHHHHinsightsHHHHH and HHHHHbestHHHHH practices. Such 
knowledge is already available and needs only to be em-
bedded for practical uses. 

EBM and DKA involve for all practical purposes suc-
cessive hypothetical-deductive cycles of discovery, whe- 
re an initial predictive model learned from data guides 
the iterative collection of new data, model revision with 
new hypotheses/inferences (“labeling”) made on unla-
beled data, and so on. Examples of such revisions for 
signal tracking and interpretation include Sequential 
Monte Carlo (SMC) methods/Sequential Importance 
Sampling (SIS) also known as particle filtering [15]. The 
more complex active learning process described later 
also includes (a) change and anomaly (outlier, surprise, 
large and extreme values) detection; (b) data perturba-
tions, synthesis, and class membership revisions (caused 
by possible errors in annotation), with the latter including 
filling in for missing data using anticipation, censoring 
and imputation, and/or proactive learning; and (c) mixed 
modes of adaptation using co-training, transfer learning, 
and/or multi-task learning for optimal resource-bounded 
data collection. Towards that end, EBM and DKA have 
access to multi-set (of instances) similarity scores, which 
take further advantage of associations, context, and rela-
tions. 
 
3. Active Learning 

One can approach EBM and DKA in terms of (progres-

sive) evidence accumulation from time-varying data 
streams for the purpose of data collection, reasoning 
(“prediction”), and adaptation. This view related to ac-
tive learning is engaged in data compression while it 
filters, fills in, and summarizes data contents. Active 
learning seeks for the patterns most responsible to gener-
ate and model the data, while always on look to detect 
when the data generation models change and to choose 
the means and ways to best process the data. Active 
learning is all encompassing, including autonomic com-
puting [16] and W5+. Autonomic computing, also re-
ferred to as self-management, is about closed-loop control. 
It provides basic functionalities, e.g., self-configureura- 
tion (for planning and organization), self-optimization (for 
efficacy), self-protection (for security purposes), and 
self-healing (to repair malfunctions).  

W5+ answers questions related to What data to con-
sider, When to get/capture the data and from Where, and 
How to best process the data. An additional Who (is) 
question about identity becomes relevant to biometrics 
and identity management. Consider now intelligence an- 
alysis where directed evidence accumulation should also 
consider and document the explanation Why dimension. 
The Why dimension interrelates observations and hy-
potheses (models) duly ascribed (abducted possibly us-
ing analogy reasoning, Bayesian (belief) networks [17], 
and/or causality [18]) and expectations to be met. The 
Bayesian networks (for inference and validation pur-
poses) assist with optimal and incremental/progressive 
intelligence data collection. In a fashion similar to signal 
processing and transmission, the “progressive” aspect 
signifies incremental access and/or display of crucial 
evidence, which at some point is enough to solve the 
puzzle and/or make recognition apparent. 

The dimensions and taxonomy for the resources and 
processes addressed by active learning are as follows. 
Data, information, knowledge, and meta-knowledge form 
one dimension. Searching, categorization, modeling, and 
prediction define another dimension. Hedging/punting, 
risk, and decision-making make up yet another dimen-
sion. The interplay between active learning and data col-
lection is all encompassing and includes data aggregation, 
data categorization (detection, discrimination, and classi-
fication), data cleaning, data imputation, data revision, 
data segmentation, and data selection. The same inter-
play mediates exploration and exploitation, while it ad-
dresses specific W5+ questions. Exploration and exploi-
tation entail explanation using domain knowledge en-
coded using Bayesian Networks an/or Hidden Markov 
Models (HMM), on one side, and accuracy and confi-
dence in the predictions made, on the other side, for bet-
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ter attention and selectivity, focus, anticipation, and im-
proved forecasts.  

Everything about active learning is data centric. It is 
also about on-line learning and prediction with the pur-
pose of data analytics for streaming data. Active learning 
is further sensitive to change and drift, which suggests 
that a time-varying D(t)K(t)A(t) model, indexed by time 
t, needs to supplant DKA in support of EBM. Towards 
that end, active learning considers associations, context, 
granularity, relationship, and space x time domains; lev-
erages local and global context, on one side, and central 
and distributed processing, on the other side; and last but 
not least it involves multi—strategy learning. 

 
4. Algorithmic Information Theory and 

Closed-Loop Control 
 
The medium that facilitates EBM using DKA takes ad-
vantage of Algorithmic Information Theory and Closed- 
Loop Control (CLC). The starting point for this medium is 
Information Theory, which is about storage and commu-
nication, in general, and capacity, compression, accuracy, 
rate-distortion, and error correction, in particular. Algo-
rithmic Information Theory provides for information 
processing, in general, and algorithmic issues related to 
the interrelated aspects of compression and prediction, in 
particular. Algorithmic Information Theory, throughout 
this paper, is about compressibility and generalization for 
the purpose of learning. The better some model or theory 
can compress training (“learning”) data, the better the 
generalization achieved is, and the more effective, reliable, 
and robust the prediction ability becomes. This conforms 
with the dictum enunciated by Leibniz that “comprehen-
sion entails compression,” and is conceptually similar to 
the MDL inductive principle, which gives support to dis-
criminative methods for recognition (see Section 5). AIT, 
in general, and KC, in particular (see Sections 6 and 7) are 
related to CLC in terms of “universal prediction” [5] using 
statistical learning and similarity scores. Solid relations, 
related to accuracy performance, can be further established 
between information theory and statistical learning theory 
[19] to enhance modeling and prediction. 

Prediction requires adaptation and learning, with the 
latter denoting “changes in the system that are adaptive 
in the sense that they enable the system to do the same 
tasks drawn from the “same” population more efficiently 
the next time” [20]. Learning is by default incremental 
and on-line learning should be preferred to batch learn-
ing (see Section 15). Note that learning plays a funda-
mental role in facilitating “the balance between internal 
representations and external regularities” [21], with CLC 
responsible for purposeful and successful action and be-

havior. One can thus connect IT, AIT, and CLC in terms 
of technical performance (“efficacy”), meaning and se-
mantics, and action and behavior (“effectiveness”). 

CLC is also about causation, feedback, and change. 
Similar to cybernetics, which has been characterized by 
HHHHHLouis CoufFigurenalHHHHH as “the art of ensuring the efficacy 
of action”, CLC can be approached as the interdiscipli-
nary study of autonomous HHHHHregulatory systemsHHHHH (see Section 
3 for the self-management aspect of active learning). It 
comes to the fore when an action causes some change in 
the environment and that change becomes manifest to the 
system via information, or feedback, which then causes 
the system to adapt to new conditions. CLC participates 
in circular and HHHHHcausal chainsHHHHH, which transition from action 
to exploratory sensing (“data collection”); modeling (for 
exploitation), prediction and evaluation, and again to 
(sensory) action. This is the very epitome for DKA. Sen-
sory action is much more than merely data collection. It 
also involves (internal) perturbations of the data available 
(both labels and representation) and subsequent revision 
of current models (see Section 15). The challenges CLC 
faces are twofold, behavior effectiveness subject to effi-
ciency in terms of the resources used, and proper structure 
and organization for the control system responsible for 
the displayed behavior. This requires among others con-
text and self-organization using clustering.   

Action and adaptation are primordial and most impor-
tant for CLC. They are interrelated using the observer, 
structural couplings, and “breaking down” and “throw-
ness” aspects of behavior-based and grounded intelligence. 
These are mere reflections of feedback, context, and 
proper generalization, with practical understanding being 
more fundamental than detached theoretical understanding 
(see Section 5). Context includes intricate relationships 
between understanding and existing ontologies [22]. 
  Along the same lines, Heidegger [22] “insists that it is 
meaningless to talk about the existence of objects [knowl-
edge] and their properties in the absence of concernful 
activity, with its potential for breaking down” [wrong pre-
dictions]. Closed-loop control supports both meaningful 
action and adaptation, and involves iterative explore and 
exploit cycles across the data landscape. Furthermore, the 
goal for predictive learning is behavior-based imitation (of 
the unknown data model) rather than its identification. The 
inductive principle, e.g., transduction (see Section 9), is 
responsible for the particular model selected and it directly 
affects the generalization ability in terms of prediction risk, 
i.e., the performance on unseen/future (unlabeled test) data. 
This is the main reason to prefer discriminative rather than 
(normative) generative (prescriptive) methods. Discrimi-
native methods are discussed next. 
 
5. Discriminative Methods and Practical  
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Intelligence 

Discriminative methods support practical intelligence, in 
general, and inference and prediction, in particular, for the 
purpose of discrimination. Progressive processing, (trans-
formational and integrative) evidence accumulation, like-
lihood ratios (LR) and odds, and fast decision-making are 
the hallmark of practical intelligence. There is no time for 
expensive density estimation and marginalization, which 
are characteristic of generative methods (see below). This 
together with apparent relationships between discrimina-
tive methods and Kolmogorov complexity (see Section 6 
and 7) are the motivation behind the similarity scores 
proposed throughout this paper for the purpose of catego-
rization and recognition. Discriminative methods seek for 
non-accidental coincidences and take advantage of in-
fomax and sparse codes for association [23].   

Formally, “the goal of pattern classification can be 
approached from two points of view: informative [gen-
erative]—where one learns the class densities, e.g., 
HMM, or discriminative—where the focus is on learning 
the class boundaries without regard to the underlying 
class densities, e.g., logistic regression and neural net-
works” [24]. The generative methods, normative and 
prescriptive in nature, synthesize the classifier by learn-
ing what appear to be the specific class distributions, and 
make their decisions using maximum a-posteriori prob-
ability (MAP). The discriminative methods imitate and 
model only what it takes to make the classification effec-
tive. The discriminative methods are in tune with both 
structural risk minimization [8] and transduction (see 
Section 9). They are aligned with structural risk minimi-
zation (SRM) because they lock on what is essential for 
discrimination, and they are aligned with transduction 
because discrimination implements local (cohort) esti-
mation. Jebara [25] has actually suggested that imitation 
should be added to the generative and discriminative 
methods as another model for learning and reasoning. 
Jebara recalls from Edmund Burke that “it is by imitation, 
far more than by percept, that we learn everything.” Dis-
criminative methods make fewer assumptions and fewer 
assumptions mean less chance to make mistakes.  

Discriminative methods avoid estimating how the data 
has been generated and instead focus on estimating the 
posteriors (for recognition) in a fashion similar to the use 
of likelihood ratios (LR) and odds. The informative ap-
proach for 0/1 loss assigns some input x to the class k ε K 
for which the class posterior probability P (y = k | x) 
yields the maximum. The MAP decision used by genera-
tive methods requires instead access to the log-likelihood 
Pθ (x, y). The optimal (hyper) parameters θ are learned 
using maximum likelihood (ML) and a decision bound-
ary is then derived, which corresponds to a minimum 

distance classifier. The discriminative approach models 
directly the conditional log-likelihood or posteriors Pθ (y | 
x). The optimal parameters are estimated using ML 
leading to the discriminative function,  

   
 

logk

P y k x
x

P y K x


 
  

  
 

which is similar in use to the Universal Background 
Model (UBM) for similarity score normalization and/or 
LR definition. The comparison takes place between some 
specific class membership k and a generic distribution 
(over K) that describes everything known about the 
population at large. The discriminative approach has 
been found [24] to be more flexible and robust compared 
to informative/generative methods because fewer as-
sumptions need to be made.  
 
6. Kolmogorov Complexity 
 
The Kolmogorov complexity K (x) of a finite string x is 
the information in x defined by the length of the shortest 
program for a reference Universal Turing Machine (en-
coded in binary bits) that outputs the string x [6]. Infor-
mation distance d (x, y) is the length of the shortest pro-
gram on the reference Universal Turing Machine com-
puting y from x and x from y. It has been proven that up 
to an additive logarithmic term, d (x, y) = max {K (x | y), 
K (y | x)} [26] where K (x | y) is the conditional complex-
ity of x given y. The normalized information distance 
(NID) between two strings x and y is formally defined as  

 
    
    

max , ,
,

max ,

K x y K y x
NID x y

K x K y
  

with K (x) (and K (y)) approximated by a real-life com-
pressor C such that C (x) is the length of the compressed 
version of x [6]. 

The normalized information distances one may con-
sider can be obtained from naturally observed perturba-
tions, e.g., affine, and (error induced) revisions, e.g., 
class membership. Additional metrics used to approxi-
mate the information distances are derived using statis-
tical learning, in general, and transduction and semi- 
supervised learning, in particular. Towards that end, 
strangeness/typicality and p-values (see Section 8), 
driven by cohort similarity and relative rankings, re-
spectively, quantify either randomness or regularity for 
the purpose of compression and thus comprehension 
and recognition. Additional indirect similarity scores 
suitable for EBM and DKA, which are driven by Kol-
mogorov complexity, are introduced throughout the 
paper based on the specific functionalities addressed.  
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7. Algorithmic Randomness 

Let x be a binary string belonging to set S. K (x | S) is the 
Kolmogorov complexity of x given S. The randomness 
deficiency D (x | S) for x given S is D (x | S) = log |S| – K 
(x | S) [6]. The larger the randomness deficiency is the 
more regular and more probable the string x is. Kolmo-
gorov complexity and randomness are conceptually re-
lated through the minimum description length. As an 
example, transduction (see Section 9), for the purpose of 
categorization (see Section 10), would choose from all 
possible labeling (“identities”) for (unlabeled) test data 
the one that yields the largest randomness deficiency, i.e., 
the most probable labeling. Randomness deficiency is, 
however, not computable [6]. One has to approximate it 
instead, using a slightly modified Martin—Löf test for 
randomness, and the values taken by such randomness 
tests are called p-values. The p-value construction used 
(see Section 8) has been proposed by Vovk et al. [9] and 
Predrou et al. [27]. This is discussed next. 
 
8. Strangeness and P-Values 
 
Strangeness and typicality [28] [29] are interchangeable. 
Given a sequence of similarity distances from sample 
(instance) j to other samples l, the strangeness αj (or al-
ternatively the typicality) of j with putative label y is 
defined as:   

1

1

k y
jll

j k y
jll

d

d
 




 


 

The strangeness measures the lack of typicality with 
respect to its true or putative (assumed) identity label y 
UandU the labels for all the other exemplar patterns. For-
mally, the strangeness αj is the (likelihood) ratio (LR) of 
the sum of the k nearest neighbor (k-NN) similarity 
(Euclidean) distances d for sample j from the same class 
y divided by the sum of the k nearest neighbor similarity 
distances for sample j from UallU the other classes (¬y). 
Note that other similarity distances, e.g., Mahalanobis, 
could readily and effectively substitute for the Euclidean 
distance. The smaller the strangeness, the larger its typi-
cality and the more probable its (putative) label y is. The 
strangeness facilitates both feature selection (similar to 
Markov blankets) and variable selection (dimensionality 
reduction) for recognition purposes. An alternative (co-
hort) definition for strangeness would tabulate distances 
only for the most prevalent class surrounding y given the 
putative assignment ¬y. One finds empirically that the 
strangeness, classification margin, sample and hypothesis 
margin, posteriors, and odds are all related via a mono-
tonically non-decreasing function with a small strange-
ness amounting to a large margin. The margin of a hy-

pothesis with respect to an instance is the distance be-
tween the hypothesis and the closest hypothesis that as-
signs an alternative label to that instance. An alternative 
definition [30] for the hypothesis margin, similar to the 
strangeness definition proposed above, is  

      x x nearmiss x x nearhit x      

with nearhit (x) and nearmiss (x) being the nearest sam-
ples of x that carry the same and a different label, respec-
tively. The strangeness can also be defined using the 
Lagrange multipliers associated with (kernel) SVM clas-
sifiers but this requires a significant increase in computa-
tion. 

The use of the strangeness gets further support from 
the Cover-Hart theorem [31], which proves that asymp-
totically the generalization error for the nearest neighbor 
classifier exceeds by at most twice the generalization 
error of the Bayes optimal classification rule. The same 
theorem also shows that the k-NN error approaches the 
Bayes error (with factor 1) if k = O (log n). The optimal 
piecewise linear discrimination boundary includes those 
samples for whom the strangeness α is constant, i.e., α = 
1 for the case of two class (“binary”) discrimination. The 
advantage for the strangeness k-NN against standard lazy 
k-NN classification is most apparent for overlapping dis-
tributions. One can empirically find that the boundaries 
induced by the strangeness k-NN are smoother and closer 
to the optimal boundary compared to the boundary in-
duced by k-NN, while the corresponding errors and their 
standard deviations are also lower.   

Additional relations that link the strangeness and the 
Bayesian approach using the likelihood ratio can be ob-
served, e.g., the logit of the probability is the logarithm 
of the odds, logit (p) = log (p/(1 – p)), the difference be-
tween the logits of two probabilities is the logarithm of 
the odds ratio, i.e.,  

(1 )
log

(1 )

p p

q q




= logit (p) – logit (q) 

(see also logistic regression and the Kullback-Leibler 
(KL) divergence). Note that the logit function is the in-
verse of the “sigmoid” or “logistic” function. Another 
relevant observation that buttresses the use of the 
strangeness comes from the fact that unbiased learning of 
Bayes classifiers is impractical due to the large number 
of parameters that have to be estimated. The alternative 
to the unbiased Bayes classifier is logistic regression, 
which implements the equivalent of a discriminative 
classifier.  

The p-values described next estimate the randomness 
deficiency (see Section 7), and compare (“rank”) the 
stran-geness values to determine the credibility and con-
fidence in the putative classifications (“labeling”) y made. 
The p-values bear resemblance to their counterparts from 
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statistics but are not the same [32]. The p-values are de-
termined according to the relative rankings of putative 
authentications made against each one of the identity 
classes known. The standard p-value construction shown 
below, where l is the cardinality of the training set T, 
constitutes a valid randomness (deficiency) test ap-
proximation [33] for some putative label y hypothesis 
assigned to an unlabeled new sample 

 
 

 
# :

1

y
j new

y

j
p e

l

 



 

The p-values are used to assess the extent to which 
data supports or discredits the null hypothesis H0 (for 
some specific classification attempt). When the null hy-
pothesis is rejected for each of the classes known, one 
declares that the test (“query”) pattern is “unfamiliar” as 
it fails to “mate” against all the known classes. The query 
is thus answered with “none of the above.” This corre-
sponds in the case of biometrics to forensic exclusion 
with rejection, and it is characteristic of open set recog-
nition. This is different from closed set recognition 
where the top choice is the default answer. 
 
9. Transduction 
 
Transduction is different from inductive inference. It is 
local inference (“estimation”) that moves from particu-
lar(s) to particular(s). In contrast to inductive inference, 
where one uses empirical data to approximate a func-
tional dependency (the inductive step [that moves from 
particular to general] and then uses the dependency 
learned to evaluate the values of the function at points of 
interest (the deductive step [that moves from general to 
particular]), one now infers directly (using transduction) 
the values of the function only at points of interest [8]. 
Inference now takes place using both labeled and unla-
beled data, which play complementary roles to each 
other. Transduction incorporates unlabeled data, charac-
teristic of test (“unlabeled”) samples, in the decision-ma- 
king process responsible for their labeling (“prediction”), 
while seeking for a consistent and stable labeling across 
both (near-by) training (“labeled data”) and test (“unla-
beled”) data [34]. Transduction “works because the test 
set provides a nontrivial factorization of the [discrimina-
tion] function class” [10].  

One key concept behind transduction (and consistency) 
is the symmetrization lemma [8], which replaces the true 
(inference) risk by an estimate computed on an inde-
pendent set of data, e.g., unlabeled/test data, referred to 
as ‘virtual’ or ‘ghost samples’. We expand on the con-
cept of ghost samples to include guided perturbations 
and hints in order to broaden the pool of data available 
for learning and improve on generalization (see Section 

15). Revision of the putative class (“label”) assignments 
drives the process responsible with determining (“infer-
ring”) the appropriate rejection threshold for multi-layer 
categorization, in general, and open set recognition, in 
particular (see Section 10).Transduction seeks consistent 
labels for both training and test data. It iterates to relabel 
the test data using local perturbations on the labels al-
ready assigned. Poggio et al. [35], using similar reason-
ing, suggest it is the stability of the learning process that 
leads to good predictions. In particular, the stability 
property says that “when the training set is perturbed by 
deleting one example, the learned hypothesis does not 
change much. This stability property stipulates condi-
tions on the learning map rather than on the hypothesis 
space.” Integral to revision, the concept of stability is 
expanded to allow for both label changes and training 
samples deletion (see Section 15). This learning ap-
proach can be further analyzed using regularization [36]. 

The goal for inductive learning is to generalize for any 
future test set, while the goal for transductive inference is 
to make predictions for some specific/given working set 
W. Test data is not merely a passive collection of data 
waiting for labeling but rather an active player ready to 
add its own contribution to that provided by the labeled 
training data. The working or test samples provide addi-
tional information about the underlying data distribution 
and their explicit inclusion in the problem formulation 
yields better generalization on problems with insufficient 
labeled points [9]. Transductive inference therefore seeks 
to find, from all possible labeling L (classifications) L (W) 
for working (unlabeled) test data set W, the one that 
yields the largest randomness deficiency, i.e., the most 
probable labeling. This choice models the working 
(“test”) sample set W in a fashion similar to that used for 
the training set T. Towards that end, transduction has to 
minimally change the original model learned for T. “The 
difference between the classifications that induction and 
transduction yield for some working sample approxi-
mates its randomness deficiency. As one disturbs a clas-
sifier (driven by T) using working but putatively labeled 
samples to augment the training set, the magnitude of the 
disturbance estimates the classifier’s instability (unreli-
ability) in a given region of its problem space. Similar 
and complementary to transduction is semi-supervised 
learning (SSL) [10] (see Section 14). 
 
10. Multi-Layer and Multi-Set Open Set 

Data Categorization 
 
Multi-layer open-set categorization starts with deter-
mining the context (“frame problem”), continues with 
detection (“familiarity”), proceeds with open set recog-
nition (“classification”), and ends up with stratification 
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(“bin-inng”). Open set recognition operates under the 
assumption that some of the unlabeled patterns asking 
for recognition are unknown (unfamiliar) and can’t be 
recognized. This is addressed by making available a 
reject (“unknown”) answer. Given an unlabeled (pattern) 
exemplar e, the corresponding p-values, for each puta-
tive label (class) drawn from training data, record the 
likelihood that the new pattern belongs to that putative 
class. If some p-value p is high enough and it signifi-
cantly outscores the others, the new pattern can be 
mated to the corresponding class with credibility p. If 
the top ranked (highest p-values) choices are very close 
to each other but outscore the other choices, the top 
ranked label choice is credible but ambiguous in its 
classification, and should thus carry a low confidence 
during further processing. The confidence measures the 
difference between the first and second largest (or con-
secutive) p-values. If all p-values are randomly distrib-
uted and no p-value significantly outscores the other 
p-values, any choice of labels is questionable and the 
new exemplar can’t be recognized and should be thus 
rejected. The credibility and confidence indexes/simil- 
arity scores are useful for data fusion purposes (see Sec-
tion 13).  

The implementation details regarding open set deci-
sion-making are generic as they apply to each categori-
zation layer. One re-labels the training patterns, one at a 
time, with all possible putative labels except the ground 
truth originally assigned to it. As an example, detection 
involves just two labels. The peak-to-side (PSR) ratio, 
PSR = (pmax – pmin)/pstdev, traces the characteristics of the 
resulting p-value distribution and determines, using 
cross validation, the [a priori] threshold needed for 
open-set recognition. The PSR values found for un-
known patterns are low because they do not mate; their 
relative strangeness is high, and their p-values low. As 
an example, imagine unknown (unlabeled) exemplars as 
impostors when recognition concerns biometrics. Im-
postors should be deemed as outliers and be thus re-
jected as unknown (“none of the above”) vis-à-vis the 
labels (identities) known (enrolled) [37]. The open set 
recognition approach just described provides for both 
reliability and robustness. Reliability in terns of consis-
tency and stability of learning, while robustness vis-à- 
vis incomplete and corrupt information. The same ap-
proach renders itself suitable for both anomaly and/or 
outlier detection. 

Training data consists of (x, y) patterns, where x stands 
for representation, and y stands for the pattern label 
(class). The similarity scores discussed so far assumed 
that each class (“set”) consists of only one pattern. This 
assumption does not hold in the general case when mul-
tiple instances can account for variability, increase the 

signal-to-noise ratio, and provide for better generaliza-
tion. Towards that end, the Hausdorff distance substitutes 
for the Euclidean distance d used to define the strange-
ness (see Section 8) leading to the multi-set distance dH 
for sets A and B 

      , max sup inf , ,sup inf ,u
b B a Aa A b B

d A B d a b d a b
  

  

There are other ways to define multi-set similarity 
scores. As an example, similarity can be defined by the 
angle between the subspace SB of unlabeled patterns (set 
B) and the subspace SA of reference (labeled) training 
pattern (set A). The subspaces SA and SB are estimated 
(learned) possibly as eigenspaces. Alternatively, one can 
learn the subspaces on Grassman manifolds and employ 
principal angles, Binet-Cauchy and Procrustes metrics 
for similarity distances [38]. The assumption still holds 
that both sets A and B are multi-sets consisting of in-
stances coming from only one class. We relax this as-
sumption (see Section 14) when we allow multi-sets A 
and B whose instances can come from more than one 
class. The scope for categorization expands using boost-
ing and transduction for data aggregation (see Section 13) 
and both qualitative and quantitative similarity scores 
(see Section 18).  

Active learning (see Section 3) is context-driven and 
takes advantage of statistical learning, in general, and 
transduction and semi-supervised learning, in particular, 
to provide for additional event-recognition functionalities. 
Active learning employs explore and exploit actions 
characteristic of closed-loop control for evidence accu-
mulation in order to revise its prediction models and to 
reduce uncertainty. Continuous interactions with the en-
vironment provide the feedback necessary to iterate on 
EBM and DKA. Towards that end, algorithmic informa-
tion theory, algorithmic randomness, and closed-loop 
control collaborate to advance intelligent data collection, 
knowledge (“model”) discovery (“extraction”), and pur-
poseful behavior (“action”). This is discussed over the 
next sections (see Sections 11 - 16). It is helpful to note 
that, according to Maturana, “learning is not [merely] a 
process of accumulation of representations of the envi-
ronment; it is a continuous process of transformation of 
behavior through continuous change in the capacity of 
the nervous system to synthesize [and incorporate] it’ 
[22].  

The basic functionalities active learning supports in-
clude decisions on where to explore and what (labeled 
and unlabeled) data to gainfully employ for further ad-
aptation and modeling purposes (see Section 11); on 
handling time-varying data streams and detecting change 
(using martingale) (see Section 12) for choosing when to 
revise existing recognition models; on how to process 
and fuse information and knowledge (see Section 13). 
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The multi-set based similarity scores proposed are all 
driven by algorithmic randomness and Kolmogorov 
complexity. Additional similarity scores are described in 
order to expand on strangeness/typicality and p-values, 
while taking advantage of associations, context and rela-
tionships for the purpose of link analysis and selection 
(see Section 14). Metrics are also made available for data 
cleaning and data revision, e.g., label editing (to account 
for annotation errors) and censoring and imputation (to 
fill in for missing data), on one side, and appearance 
perturbations and synthesis (for consistency and stability) 
(see Section 15). Finally, we address yet another func-
tionality, that of criticality identification and prediction, 
which belongs to complex system identification and pre-
diction (see Section 16). The latter functionality is an 
example where the interplay between similarity scores 
(see Section 8) and change detection (see Section 12) 
shows how more complex behavior can emerge. 
 
11. Data Collection and Evidence  

Accumulation 
 
Active learning is concerned with evidence accumulation 
(“data sampling and collection”) towards choosing the 
most (functionally) relevant examples to improve the 
classification (“margin”) for both effectiveness (“accu-
racy”) and efficiency (“number of examples needed”). 
The active learning solution proposed here is driven by 
transduction and it is realized using strangeness and 
p-values [32]. The p-values provide a measure of diver-
sity and disagreement in opinion regarding the true label 
of an unlabeled example when it is assigned all possible 
putative labels. Let pi be the p-values obtained for a par-
ticular example xn+1 using all possible labels i = 1,  , 
M. Sort the sequence of p-values in descending order 
such that the first two p-values, say, pj and pk are the two 
highest p-values found with corresponding labels j and k, 
respectively. The label assigned to the unknown example 
is therefore j while its p-value is pj. This value defines 
the credibility of the classification. If the credibility for pj 
is not high enough (using a priori thresholds found using 
cross-validation) the prediction is rejected. The differ-
ence between the two p-values can be further used as a 
confidence value, if any, of the prediction. Note that, the 
smaller the confidence, the larger the ambiguity regard-
ing the proposed label.   

One considers now three possible cases of p-values, pj 
and pk, assuming pj > pk: Case 1: pj is “high” and pk is 
“low.” Prediction “j” has high credibility and high-confi- 
dence value; Case 2: Both pj and pk are “high.” Prediction 
“j” has high credibility but low-confidence value; and 
Case 3: both pj and pk are “low.” Prediction “j” has low 
credibility and low-confidence. High uncertainty in pre-

diction occurs for both Case 2 and Case 3. Note that un-
certainty of prediction occurs when pj ≈ pk. Define as 
information “closeness” the quantity I (xn+1) = pj – pk to 
indicate the quality/relevance of the information contents 
possessed by the example xn+1. As I (xn+1) approaches 0, 
the more uncertain we are about classifying the example 
xn+1, and the larger the information gain when one is told 
about its label. Active learning will add this example, 
with its (true) label, to the training set because it provides 
new information about the learning map for classification. 
Evidence accumulation corresponds to on-line learning. 
It allows for unlabeled samples to progressively augment 
the training set T using for their assigned labels the clas-
sifications made by some classifier C trained on T. One 
should be aware that the annotations made on each itera-
tion can be in error and that their propagation could con-
tribute to future annotation errors. The explanation comes 
from the obvious fact that the classifiers C are updated 
using the annotations made with some of them being in 
error. Performance evaluation now includes the temporal 
dimension; rather than using one-shot cross validation, 
learning curves need to be graphed over time. Learning 
consistency/stability implies that after some initialization 
time the error rate for the learning curve, error(t), is rela-
tively small, its slope is also relatively small, and the 
overall appearance is that of a smooth curve [9]. The 
annotations made can be edited as part of some revision 
process to ensure better consistency and stability for 
learning (see Section 15). 
 
12. Change Detection Using Martingale 
 
Change detection addresses yet another basic functional-
ity for active learning, that of identifying those time in-
stances when the underlying distribution for time-varying 
data streams undergoes change or drift. The approach 
sketched below employs similarity scores driven by 
strangeness and p-value, and it makes use of martingale 
[39]. Assume time-varying multi-dimensional data 
(stream) matrix R = { R (j) = xj} where R (j) are “col-
umns” and stand for time-varying (data stream) pattern 
vectors. Assume that seeding provides some initial R (j) 
with j = 1,   , 10. K-means clustering finds (in an it-
erative fashion) center “prototypes” Q (k) for the data 
stream (seen so far). Define the strangeness α corre-
sponding to R (j) using the cluster model (with R = {xj} 
as summary for the data stream and c standing for cluster 
center) and the Euclidean distance d (j) between R (j) and 
Q (k) for j > = 10 and k = j – 9 as 

 , j js R x x c   

Define then p-values as 
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where α j is the strangeness measure for (xj, yj), j = 1, 2, 
 , I and θi is randomly chosen from [0, 1] at instance i. 
Define a family of martingale starting with Mε(0) = 1 and 
continuing with Mε(j) indexed by ε  in [0, 1] 
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1
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Similar to the Neyman-Pearson test, the martingale 
test  

 M j 0＜ ＜  

rejects the null hypothesis H0 “no change in the data 
stream” for H1 (“change detected in data stream”) when  
Mε(j) > = λ with the value for λ (empirically chosen to be 
greater than 2) determined by the false accept rate (FA) 
one is ready to accept, i.e., 1/λ = FAR. An alternative 
(parametric) test, e.g., SPRT, will employ the likelihood 
ratio (LR) with B < LR < A and decide for H0 as soon as 
LR(j) < B, decide for the alternative H1 (“change”) when 
LR(j) > A, with B ≈ β (1 – α) and A ≈ (1 – β)/α using α 
for the test significance (“size”) and (1 – β) for the test 
power. The changes (“spikes”) found correspond to tran-
sition states.  

The martingale method is incremental and single - 
pass, does not require a sliding window on the data 
stream, does not require monitoring the explicit per-
formance of the classification or clustering model as data 
points are streaming, and it works well for high-dimen- 
sional data streams. Furthermore, the change detection 
method is non-parametric and it works on both labeled 
and unlabeled data. The proposed method has a theoreti-
cal false positive error bound given a specific threshold, 
and the delay time between the true change point and the 
detected change point can be approximated. 
 
13. Data Aggregation 
 
DKA goes beyond data collection to include data aggre-
gation. The knowledge component and the actions pur-
sued come from building up the knowledge blocks using 
data aggregation. The Gestalt whole, i.e., the knowledge, 
is more than the sum of its parts, which aggregates as a 
result of data collection. Data aggregation is widely re-
ferred to as data fusion. It covers for multi-level and 
multi-layer fusion (in terms of functionality and granu-
larity), voting methods, mixture of experts, ensemble 
methods, and/or gating networks. As an example, the 
visual cortex in charge of human vision, is nothing more 
than a feed-forward architecture (supplemented by ap-
propriate feedback) where data aggregation takes for its 

raw input fine retinal representations and sequentially 
fuses them into more elaborate but coarse representations 
suitable for recognition and action. Successive field of 
views (FOV) get larger with categorical Gestalts emerg-
ing to trigger recognition and action. Data aggregation 
employs the same similarity scores we have used so far, 
i.e., the strangeness and p-values. 

One method for data aggregation is based on (spa-
tial-temporal) data segmentation using similarity and 
clustering. Strangeness-based (unsupervised K-Means) 
clustering has two intuitive assumptions. First, well-sep- 
arated groups of data should aggregate as different clus-
ters. The “well-separated” or “purity” assumption says 
that the samples (from those groups) have strangeness 
value less than some threshold γ with γ < 1. This defines 
the minimal margin for groups that can be characterized 
by different labels. The second assumption says that 
when different groups of samples are not (well) sepa-
rated but instead represent different clusters, there should 
be a minimal number of samples whose strangeness is 
greater than γ. Those samples are close to the separating 
boundary.  

Data aggregation can also employ boosting and trans-
duction for decision-making, in a fashion similar to cas-
cade recognition [40]. Boosting amounts to multi-level 
fusion when it involves feature/parts, score (“match”), 
and detection (“decision”), or alternatively amounts to 
multi-layer fusion when it involves modality, informa-
tion quality, and method (algorithm) used. The compo-
nents are iteratively realized as weak learners (see below) 
whose relative performance are driven by strangeness 
and p-value (see Section 8), transduction (see Section 9) 
and open set recognition using transduction (see Section 
10). Strong inference, characteristic of boosting, takes 
advantage of both localization and specialization to 
combine expertise. The substance of boosting is sketched 
next. 

Logistic regression amounts to a sigmoid function that 
directly estimates the parameters of P (y ׀ x), e.g., P {y = 
 x} for the case when y is Boolean. Logistic regression ׀ 1
supports discriminative methods and likelihood ratios, 
e.g., find y as y = 1 if P {y = 1 ׀ x}/P {y = 0 ׀ x} > 1 (see 
Section 5). Logistic regression is approximated by Sup-
port Vector Machines (SVM). Note that AdaBoost [41] 
minimizes (using greedy optimization) some functional 
whose minimum yields the equivalent of logistic regres-
sion [42], while an ensemble of SVM is functionally 
similar to AdaBoost [43]. The basic assumption behind 
boosting is that “weak” learners can be combined to 
learn any target concept with probability close to 1. 
Weak learners, usually built around features easy to 
compute, can classify at better than chance (with prob-
ability 1/2 + η for η > 0). AdaBoost works by adaptively 
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and iteratively re-sampling the data to focus its learning 
on samples that the previous weak (learner) classifier 
could not master, with the relative weights of misclassi-
fied samples increased (“refocused”) after each iteration. 
AdaBoost involves choosing v effective components hv to 
serve as weak (learners) classifiers and using them to 
construct separating hyper-planes. The mixture of ex-
perts or final boosted (stump) strong classifier H is 

   
1 1

1

2

v v

v v v
v v

H x h x 
 

  ＞  

with r denoting the reliability or strength of the weak 
learner. The constant 1/2 comes in because the boundary 
is located mid-point between labels 0 and 1. If the nega-
tive and positive examples are labeled as –1 and +1 the 
constant used is 0 rather than 1/2. The goal for AdaBoost 
is margin optimization with the margin viewed as a 
measure of confidence or predictive ability. The weights 
associated with data samples are related to their location 
relative to the margin and affect AdaBoost’s generaliza-
tion ability. AdaBoost minimizes (using greed- 
y optimization) a risk functional whose minimum defines 
logistic regression. AdaBoost converges to the posterior 
distribution of y conditioned on x, and the strong but 
greedy classifier H in the limit becomes the log-likelihood 
ratio test.  

The multi-class extensions for AdaBoost are AdaBoost. 
M1 and .M2, the latter one used to learn strong classifi-
ers with the focus now on both difficult samples to rec-
ognize and labels hard to discriminate. The possible use 
of appearance features for weak learners is justified by 
their apparent simplicity. One drawback for AdaBoost.  
M1 comes from the expectation that the performance for 
the weak learners selected is better than chance. When 
the number of classes is k > 2, the condition on error is, 
however, hard to be met in practice. The expected error 
for random guessing is 1 – 1/k; for k = 2 the weak learn-
ers need to be just slightly better than chance. 
AdaBoost.M2 addresses this problem by allowing the 
weak learner to generate instead a set of labels together 
with their plausibility (not probability), i.e., [0, 1]k. 
AdaBoost.M2 focuses on the incorrect labels that are 
hard to discriminate. Towards that end, AdaBoost.M2 
introduces a pseudo-loss ev for hypotheses  hv such that 
for a given distribution Dv one seeks hv : x × y [0, 1] that 
is better than chance. “The pseudo-loss is computed with 
respect to a distribution over the set of all pairs of exam-
ples and incorrect labels. By manipulating this distribu-
tion, the boosting algorithm can focus the weak learner 
not only on hard-to-classify examples, but more specifi-
cally, on the incorrect labels y that are hardest to dis-
criminate” [41]. 

The strangeness is the thread to implement both (1) 
representation and (2) decision-making, the latter using 
boosting (learning, inference, and prediction for the pur-
pose of classification). The strangeness, which imple-
ments the interface between the components describing 
the representation, e.g., attributes and/or components/pa- 
rts, and boosting, combines the merits of filter and 
wrapper classification methods. The coefficients and 
thresholds for the weak learners, including the thresholds 
needed for open set recognition and rejection are learned 
using validation patterns [44]. The best feature corre-
spondence for each component is sought between valida-
tion and training patterns over existing components. The 
strangeness of the best component found during training 
is computed for each validation pattern under all its puta-
tive class labels c (c = 1,  , C). Assuming M validation 
pattern from each class, one derives M positive strange-
ness values for each class c, and M (C - 1) negative 
strangeness values. The positive and negative strange-
ness values correspond to the case when the putative 
label of the validation and training pattern are the same 
or not, respectively. The strangeness values are ranked 
for all the components available, and the best weak 
learner hv is the one that maximizes the recognition rate 
over the whole set of validation patterns V for some 
component i and threshold θi. Boosting is similar to cas-
cade classification as on each iteration a weak learner 
component is chosen.  

The level of significance α (not to be confused with 
strangeness notation α) determines the scope for the null 
hypothesis H0. Different but specific alternatives can be 
used to minimize Type II error or equivalently to maxi-
mize the power (1 – β) of the weak learner. During cas-
cade learning each weak learner (“classifier”) is trained 
to achieve some (minimum acceptable) hit rate h = (1 – β) 
and (maximum acceptable) false alarm rate α. Upon 
completion, boosting yields the strong classifier H (x), 
which is a collection of discriminative components play-
ing the role of weak learners. The hit rate after V itera-
tions is hV, while the false alarm is α V. 
 
14. Data Selection and Link Analysis 
 
Link analysis concerns data fragmentation, e.g., time-va- 
rying surveillance of data streams. The goal is to aggre-
gate separate pieces of information back into one coher-
ent and possibly identifiable pattern. For illustration 
purposes consider screening biometrics for security pur-
poses where the goal is to select and track faces, and 
possibly identify them. Assume first that mug shots 
and/or multiple still image sets and/or video sequences 
for known subjects become available during biometric 
enrollment for mass screening. Data streams shaped as 
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time-varying video sequence(s) of crowds and consisting 
of both foreground faces and background structured 
noise are then captured during surveillance. The goal is 
to identify the subset of CCTV frames, if any, where 
wanted subjects show up or alternatively to locate sub-
jects (of unknown identity) across the video whose be-
havior is suspicious. Subjects can appear and disappear 
as time progresses and the presence of any face is not 
necessarily continuous across (video) frames. Faces be-
longing to different subjects appear in a sporadic fashion 
across the video sequence. Some of the CCTV frames 
could actually be void of any face, while other frames 
could include occluded or disguised faces from different 
subjects. Kernel K-means and/or spectral clustering [45] 
using biometric image patches, parts, and multi-sets 
similarity scores driven by strangeness and p-values for 
typicality and ranking, are suitable for link analysis, face 
selection, and tracking.  

Spectral clustering [46] is a recent methodology for 
data segmentation and data aggregation/clustering. The 
inspiration for spectral clustering comes from graph the-
ory (minimum spanning trees (MST) and normalized 
cuts) and the spectral (eigen decomposition) of the adja-
cency/proximity (“similarity”) matrix and its subsequent 
projection to a lower dimensional space, which describes 
in a succinct fashion the graph induced by the set of data 
samples (“patterns”). Minimizing the “cut” (over the set 
of edges connecting K clusters) yields “pure” (homoge-
neous) clusters. Similarity is again defined using strange- 
ness/typicality, p-values, and rankings. 

Similar to decision trees, where information gain is 
replaced by gain ratio to prevent spurious fragmentation, 
one substitutes the “normalized cut” (that minimizes the 
cut while keeping the size of the clusters large) for “cut.” 
To minimize the normal cut (for K = 2) is equivalent to 
minimize the Raleigh quotient of the normalized graph 
Laplace matrix L* where L* = D-1/2LD-1/2 with L = D – W; 
W is the proximity (“similarity”) matrix and the (diago-
nal) degree matrix D is the “index” matrix that measures 
the “significance” for each node. The Raleigh quotient 
(for K = 2) is minimized for the eigenvector z corre-
sponding to the second smallest eigenvalue of L*. Given 
n data samples and the number of clusters expected K, 
spectral clustering (for K > 2) employs the Raleigh-Ritz 
theorem and describes among others algorithms such as 
Ng, Jordan, and Weiss [47] where one (i) computes W, D, 
L, and L*; (ii) derives the largest K eigenvectors zi of L*; 
(iii) forms the matrix U ε R n x k by normalizing the row 
sums of zi to have norm 1; and (iv) cluster the samples xi 
corresponding to zi using K-means. 

An expanded framework that integrates graph-based 
semi-supervised learning [48] and spectral clustering for 
the purpose of iterative grouping and classification, i.e., 

label propagation, can be developed. One takes advan-
tage of both labeled and mostly unlabeled (biometric) 
patterns. The graphs reflect domain knowledge charac-
teristics over nodes (and sets of nodes) to define their 
proximity (“similarity”) across links (“edges”). The solu-
tion proposed is built around label propagation and re-
laxation. The graph and the corresponding Laplacian, 
weight, and diagonal matrices L, W, and D are defined 
over both labeled and unlabeled (biometric) patterns. The 
harmonic function solution [48] finds (and iterates) on 
the (cluster) assignment for the unlabeled biometric pat-
terns Yu as Y = –(Luu)

-1LulYl  with Luu the sub-matrix of L 
on unlabeled nodes and Yl the group indicator over the 
labeled nodes. Each row of Yu reports on the posteriors 
for the Cartesian product between K clusters and n bio-
metric samples. Class proportions for the labeled patterns 
can be estimated and used to scale the posteriors for the 
unlabeled biometric patterns. The harmonic solution is in 
sync with a random (gradient) walk on the graph that 
makes predictions on the unlabeled (biometric) patterns 
according to the weighted average of their labeled 
neighbors. 
 
15. Data Cleaning and Data Revision 
 
DKA is all encompassing. The derivation of knowledge 
from data amounts to searching for regularities, on one 
side, and model construction for prediction purposes, on 
the other side. This is usually referred to as data mining. 
Data is not only subject to collection (using active learn-
ing) but it is also subject to aggregation, on one side, and 
cleaning and revision, on the other side. Data cleaning 
also referred to as data cleansing and/or preparation, 
concerns itself with data quality. It plays a major role in 
supporting data mining, in general, and exploration and 
exploitation bound closed-loop control, in particular. 
Traditionally, “data cleaning has taken a backseat to the 
more alluring question of how best to extract meaningful 
knowledge.” Dorian Pyle is very convincing in dispelling 
such misconceptions and strongly supports data cleaning 
[49].   

Data cleaning addresses issues related to measurement 
and data collection. This includes errors, e.g., noise and 
artifacts; outliers; missing values; duplicate data; and 
precision, bias, and accuracy. Data cleaning can be ad-
dressed using statistical methods, e.g., robust statistics 
[50]. One can expand on data cleaning and entertain data 
revision, which is driven by considerations regarding 
learning consistency and stability. One can further ex-
pand on the revision process itself using the lawful syn-
thesis of additional patterns to enhance modeling, while 
alternating between data analysis and synthesis. This is 
discussed next. 
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Learning is first and foremost about generalization. 
Towards that end, one is interested to control to what 
extent learning behavior is consistent and stable. Consis-
tency is about the asymptotic analysis regarding the rate 
of convergence, while stability is about sensitivity to 
changes, e.g., the deviations in learning performance 
experienced when data collection is subject to perturba-
tions. For the specific case of transduction this takes 
place using the apparent complementary between train-
ing and test patterns. Both consistency and stability are 
measured over time, as it is the case for on-line learning. 
This allows for annotation errors to accrue and for ro-
bustness (vis-à-vis incomplete and corrupt information) 
to play out. Errors and/or perturbations can naturally 
occur or be artificially induced. Data revision is risk 
driven and includes editing, e.g., insertion, deletion, sub-
stitution, and transposition; perturbations and synthesis; 
and censoring and imputation to fill in for missing in-
formation. 

Perturbation and synthesis are data driven, take ad-
vantage of existing models, and serve as constraints and 
hints for better discrimination and generalization. The 
constraints are usually about distances, while the hints 
involve both appearance and class membership (“label”). 
This is characteristic of semi-supervised learning and is 
sometimes referred to as “hallucinations.” Hints and/or 
assumptions that underlie semi-supervised learning in-
clude (a) smoothness, i.e., if two sample patterns are 
close so should be their outputs; (b1) cluster, i.e., sam-
ples in same cluster are likely to share the same label; or 
alternatively (b2) low-density, i.e., the decision boundary 
should lie in a low-density region; and (c) manifold, i.e., 
the high dimensional data lie (roughly) on a low-dimen- 
sional manifold [10]. Yet another example for hints, i.e., 
prior semi-supervised learning knowledge, comes from 
binary inference using the Universum [51]. “Unlabeled 
examples known not to belong to either class but be-
longing to the same pattern domain implicitly specify a 
prior distribution. Supplying such examples, rather than 
defining explicitly the underlying distribution, can be a 
far easier task.” The disturbances created regarding the 
classifications made when adding new data, which takes 
the form of hints, virtual examples, noise injection, ex-
pands on data collection and facilitates sensitivity analy-
sis (see below). It leverages priors to provide an alterna-
tive capacity concept (using the VC dimension) to the 
large margin approach embedded in structural risk mini-
mization [52].  

Censoring often consists of conducting a test on an 
item (under specified conditions) to determine the time it 
takes for a “failure” to occur, i.e., time-to-event out-
comes. Censored data occurs (a) when the value of an 
observation is only partially known; and/or (b) when a 

value of interest occurs outside the range of a measuring 
instrument. Examples for censoring include clinical trials 
related to survival rates, disease progression, and times 
to recovery. “Systematic reviews of published time-to- 
event outcomes commonly relay on calculating odds-rat- 
ios (OR) at fixed points in time and where actual num-
bers at risk are not present” [53]. Meta-analysis using 
strangeness driven likelihood ratios can estimate OR and, 
similar to risk analysis, can estimate proposed hazard 
ratio (HR) as well. The problem of censored data, in 
which the observed value of some variable is partially 
known, is closely related to the problem of missing data, 
where the value of some variable is unknown (see below 
the case for imputation).  

Imputation is the substitution of some value for miss-
ing pattern and/or missing component (“feature”). This 
becomes relevant for clinical / longitudinal studies due to 
random drops-out and withdrawals caused by lack of 
efficacy, with the latter responsible for bias. The SSL 
smoothness and cluster assumptions suggest using clus-
ter membership and cluster prototypes for making suit-
able substitutions. Preeminent among clustering methods 
are self-organizing map (SOM [54]) and hybrid (unsu-
pervised-supervised) label-vector-quantization (LVQ) 
[54]. Alternatively, one can use multiple imputations 
(possibly augmented by jackknife stratification including 
variance estimation) and combine their outcomes to 
produce unbiased estimates. Throughout the strangeness 
and p-values estimate similarity and ranking among al-
ternative substitutions. 
 
16. Criticality Identification and Prediction 
 
We consider here criticality identification and prediction, 
which belongs to complex system identification and pre-
diction. This functionality is an example where the inter-
play between similarity scores (see Section 8) and change 
detection (see Section 12) shows how complex behavior 
driven by algorithmic randomness can emerge. Towards 
that end, we detail a novel application for identifying 
critical states characteristic of a complex physical system 
that is nonlinear and heterogeneous and involves a high 
degree of freedom [55]. This is an important subject of 
study in many areas of natural and social sciences. The 
prediction of critical states of a complex system is a use-
ful but challenging issue, in particular the occurrence of 
a catastrophic event such as tropical cyclones in the 
Earth atmosphere. In principle, a physical system should 
strictly follow physical laws that have been proven to be 
correct and universal. Indeed, many physical systems can 
be modeled by these laws, e.g., planetary motions around 
the Sun, the precise working of mechanic engines, etc. 
However, many other systems are not. Examples of 
complex physical systems and their critical states include 
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solar flares in the solar atmosphere, cyclones in the ter-
restrial atmosphere, and earthquakes in the geological 
system.  

A novel architecture and methodology for predicting 
critical states for complex physical systems is proposed 
here (see Figure 1). The conceptual architecture, main  

 

Figure 1. An IIM Framework for Predicting Critical States 
in Complex Physical Systems. 
 
processing stages, and flow of control are built around 
novel methods for modeling and prediction using statis-
tical learning, in general, and semi-supervised learning 
and transduction, in particular. The architecture proposed 
approaches complex physical systems as a time evolving 
system; it parses and translates data streams into knowl-
edge regarding the emergence of critical states. Towards 
that end, the specific methodology proposed here takes 
advantage of better sensor technology to employ ad-
vanced computational methods for both data representa-
tion and prediction of critical states. While the method-
ology proposed to map data into knowledge is generic, 
we apply the methods for predicting the genesis and in-
tensification of cyclones. 

The main processing stages are as follows:   
1) Data capture: Archived Data and Near Real-Time 

(NRT) data are available for weather forecasting and 
modeling. Archived data are used for system training and 
validation, while NRT data are used for testing and op-
erational purpose. These data are the inputs to the proc-
essing pipeline outlined in Figure. 1. To ensure rapid 
data availability, the technique for NRT satellite data 
processing is different from science data product proc-
essing. While NRT satellite data and related science 
products are not identical, the NRT data should be accu-
rate enough for operational use. The data needed for pre-
dicting cyclones are available from various NASA data 
archives. 

2) Feature extraction and tracking: It produces the 
necessary high-dimensional feature vector and its time 
variation in order to find the change in the state of the 
physical system of interest. The feature extraction ap-
proach is either an image data processing approach or a 
dimensionality reduction approach, or a combination of 
both. Based on domain knowledge and predictive power, 
one decides on the features to use. Tracking and moni-
toring of physical systems can be achieved using a Kal-
man Filter approach or a particle filter approach. These 

approaches have been shown to work robustly for tropi-
cal cyclone tracking using multiple satellite observations 
[56,60].  

3) Change detection using martingale: See Section 12.  
4) Precursor estimation: The input from the change 

detection stage provides the temporal extent of signifi-
cant events with only some of them preceding critical 
states. The events referred to as precursors are subject to 
classification using time-series flexible matching. The 
two step process is discussed next. 

a) Window size estimation: The online martingale 
change detection approach is used to identify a data sub-
sequence (time series) that behaves anomalously. First, 
two threshold values, θL and θR, are selected such that θL 

< θR. As the system is monitoring the data (vector) 
time-series sequence t (k), k = 1, 2,  , martingale val-
ues M(i) at time instance i = 1, 2,  , are computed. 
When the first M (i) > θL is detected, one seeks for the 
next time instance j when M (j) > θR. The window size 
for this time series is j – i + 1, and the time series “win-
dow” t = [t (i), t (i + 1),  , t (j)] is extracted and re-
corded as [T1, T2]. Note that the window is merely a can-
didate to serve as a PRECURSOR for a future critical 
state. Hence, the θL and θR  values are empirically se-
lected using Doob’s inequality [39] at a lower value, 
maybe less than 10, e.g. θL = 3 and θR = 4, which yields a 
FAR of 25% to 33 1/3% (considered high). θL < θR en-
sures that a change is more likely to take place at the 
more recent time instance T2. This leads to a collection of 
training sets where the sets differ by how far in time T2 is 
away from the true critical state. As long as the martin-
gale at (T2 + n) is greater than θL, the window [T1, T2] is 
widen to [T1, T2 + n] to augment the set of potential pre-
cursors. The same process iterates until the martingale M 
(T2 + n) becomes less than θL. The next candidate win-
dow starts when the martingale M is again greater than θL. 
The candidate precursors are subject to time-series flexi-
ble matching to yield the similarity scores required for 
predicting critical states. 

b) Time-series flexible matching and classification: In 
the time series classification problem, one assigns a label 
to an unlabeled time series based on training examples. 
The main research task for this problem involves similar-
ity measures. Many similarity measures for data se-
quences have been proposed [57]. The two main catego-
ries of similarity measures are the Lp-norm based simi-
larity measures and the elastic similarity measures. The 
Lp similarity measures are metric, but they assume fixed 
length data sequences and do not support local time 
shifting; the elastic similarity can be used to compare 
arbitrary length data sequences and support local time 
shifting but they are not metric. The classical elastic 
measure to overcome the weakness of Lp norms is the 
Dynamic Time Warping (DTW) [58]. The Longest 
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Common Subsequence (LCSS) elastic measure was pro-
posed to handle two- and three-dimensional arbitrary 
length data sequences. The LCSS is robust to noise and 
gives more weight to the similar portion of the sequences 
[59]. Figure. 2 shows a comparison of two hurricane 
intensity time series using LCSS similarity measure. The 
top graph shows the minimum bounding envelope for the 
two time series and the bottom graph shows the corre-
sponding points between the two time series. We use 
LCSS as in [60].  

5) Online confident prediction and point estimation of 
critical states: The inputs are the time-series window [T1, 
T2] and its potential successors [T1, T2 + n] extracted in 
the preceding stage. We now classify/predict whether the 
precursor window predicts a critical state, if at all, and at 
what confidence, if it does. Prediction employs boosting 
and label propagation using spectral clustering [47], with 
spectral clustering revising the results of boosting, if 
needed, using the cluster assumption. The confidence for 
predictions is computed using p-value estimation driven 
by transductive inference. We then estimate the temporal 
lag, relative to the precursor state, and its characteristics. 
The lag indicates after how many time instances the 
critical state, if any, will occur, its intensity, and the level 
of confidence.   
 
17. Discussions  
 
Life sciences provide further insights on specific ways 
and means for expanding and/or revising the current 
EBM and DKA framework. The goals here are to under-
stand among others biological function and evolution. 
The metrics are set-based, have to discount both random 
and redundant information (see related “paradoxes” be-
low), while context, storage, and flow of information 
become relevant [61]. Gibberish doesn’t help with any 
biological process, to paraphrase Gell-Mann [62], and 
indeed the 1st paradox for life sciences states that a ran-
dom string adds zero information to the set. The 2nd 
paradox states that an exactly duplicated (“pre-existing”) 
string adds little or nothing to the overall information in 
the set. Note that any measure of information proposed 
should “include the information content of the strings 
individually as well as the information contained in the 
relationship with other members of the set.” Relation-
ships are about sharing information and possible interac-
tions, e.g., catalysts and enzymes, and determine “func-
tion.” Complexity, however it is encoded, and emergent 
behavior and functionality, are intertwined. 

The scope of image representations and their associa-
tion cods relevant to sensory data collection can be also 
expanded. The weak learners introduced earlier to build 
strong classifiers (see Section 13) are not limited to sim-
ple features. They can also stand for “parts” in the context 

of object recognition, e.g., face recognition [44], with 
parts represented as clusters of image patch instances. 
Such recognition-by-parts architectures employ boosting 
and transduction and are driven by algorithmic random-
ness. The architectures can further employ region-based 
strategies that compare noncontiguous image regions [63]. 
Towards that end “under certain circumstances, compari-
sons [using dissociated dipole operators] between spa-
tially disjoint image regions are, on average, more valu-
able for recognition than features that measure local con-
trast.” This leads to the obvious observation that the rec-
ognition-by-parts architecture should learn to sample “op-
timal” sets of regions’ comparisons for recognizing ob-
jects, e.g., faces, across varying pose and illumination. 
The choices made on such combinations (during the 
boosting feature selection stage) amount to “rewiring” 
operators. Rewiring corresponds to an additional proc-
essing and competitive stage for the feed-forward recog-
nition-by-parts architecture. As a result the repertoire of 
feature ranges over local, global, and non-local (disjoint) 
operators (“filters”). Ordinal rather than absolute codes 
become available in order to gain invariance to small 
changes in inter-region contrast. Similarity scores using 
strangeness and p-values can accommodate both ordinal 
and absolute codes. 
 
18. Conclusions 
 
This paper describes a general framework for evi-
dence-based management, which is geared for data col-
lection and decision making, on one side, and discovery, 
inference, and prediction, on the other side. It is driven by 
information theory and statistical learning, algorithmic 
probability and inference, algorithmic randomness and 
Kolmogorov complexity, and conformal prediction [9,64]. 
Reliable confidence is vital for many real world applica-
tions that involve anomaly and change detection, catego-
rization, diagnosis and discrimination, link analysis, and 
prediction and identification of critical states. This paper 
expands on basic concepts, proposes new theoretical de-
velopment, and sketches applications that show the feasi-
bility and utility of evidence-based management. The uni- 
fying theme throughout the paper is that of “compression 
entails comprehension”, which is realized using the inter-
related concepts of randomness as opposed to regularity, 
Kolmogorov complexity, minimum description length, 
and ranking scores using strangeness and p-values. Ven-
ues for future research are discussed below (see Section 
17 for a brief discussion on life sciences). 

Drug design and synthesis for successful therapy are 
challenging and very important problems [65]. They ex-
pand on data selection (see Section 14). An example for 
such a problem goes as follows. Assuming that one is 
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given triplets (xi, yi, gi) in terms of description x, action y, 
and score g, respectively, find for a new situation x* the 
action y* that “guarantees” that the corresponding evalu- 
ation score g* falls within some bounded confidence 
interval. Towards that end, selection (as action) seeks for 
some cocktail of drugs whose score (“prognosis”) would 
improve on current therapy [52]. Another application 
would involve exploration and exploitation driven by the 
interplay between mutagenesis and on-line transduction 
for the purpose of protein function prediction [66]. 

Another area ripe for significant development is that 
of social media analytics. Information from sources such 
as RSS, Facebook, and Twitter, gets disseminated and its 
fast growing reach is in the hundred of millions of people. 
The potential is for both enrichment and subversion.  
The ever changing information helps to alert to impend-
ing and developing critical states, e.g., natural disasters, 
emergencies, and pandemics. It can be, however, also 
subject to manipulation in order to bias sentiment and 
subject preference. It is up to evidence-based manage-
ment to use spatial context, temporal clustering, and 
source reputation, to sort out truth from fiction and to do 
that in real-time. 
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