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Abstract 
A mathematical model for the analysis of a gas-solid reacting system is presented. This model is an 
alternative to the classical shrinking-core model. The model has a structure that can be easily 
transformed into a canonical control form, which is proper for controller synthesis. Analytical so-
lution of the model to describe the open-loop behavior is expressed in terms of the Lambert func-
tion. The Lambert function is evaluated from a Taylor expansion series. Besides, a controller is 
proposed to regulate the reacted layer thickness using initially the diffusion coefficient as control 
input. The control law is synthesized employing the feedback linearization technique. Main con-
tributions of this work are the synthesis of the layer thickness controller, and the employment of 
the process temperature as substitute of the diffusion coefficient as the control input. 
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1. Introduction 
In the extractive metallurgy industry, gas-solid reactions are very common, for example the reduction of iron ore 
with carbon monoxide, the roasting of copper ores, or the combustion of coke. The shrinking core model (SCM) 
[1] has been employed long time ago to analyze the occurring reactions and to design the equipment where these 
reactions take place. Unfortunately, mathematical solution of the SCM is very complex, particularly for the case 
in which the thickness of the involved layers is moving and variable [2]. A less complex alternative to the SCM 
is found in [3] [4], where a relatively simple mathematical model is proposed for the analysis of gas-solid react-
ing systems with moving boundaries. The mathematical model reported in [4] is described in this work, and an 
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open-loop solution obtained using the Taylor expansion series of the Lambert function is presented and dis-
cussed. 

On the other hand, from operative and economical points of view it is imperative to have a tight control of the 
gas-solid reacting systems in order to guarantee the product quality, reduce the residence time and costs, and op-
timize the design and operation of the industrial equipment. Therefore, an automatic control strategy to regulate 
the thickness of the reacted layer in a gas-solid reacting system is required. In this work a controller is synthe-
sized using the mathematical model reported in [4]. The feedback linearization technique is employed for the 
controller synthesis and the diffusion coefficient is initially chosen as the control input. Temperatures corres-
ponding to the diffusion coefficients are obtained from an empirical expression, allowing the usage of a more 
easily manipulable variable in the control algorithm. Dynamic performance of the closed-loop system is illu-
strated by means of numerical simulations. This work is organized as follows: in Section 2 the mathematical 
model is presented; in Section 3 the open-loop results are described; in Section 4 the controller synthesis is ex-
plained; in Section 5 the closed-loop results are discussed; and finally, the conclusions are presented in Section 
6. 

2. Mathematical Model 
Consider a flat solid surface immersed in a gaseous environment. The gas chemically reacts with the solid and 
enters into the solid by diffusion through the reacted layer. In [3] [4] is assumed that the total thickness X of the 
surface is moving and variable and depends linearly on time t as follows 

( ) 0X t L Rt= −                        (1) 

where L0 is the initial thickness and R is a parameter which defines the chemical reaction rate. X is increased or 
decreased depending on the value of R: if R < 0 swelling occurs, and if R > 0 shrinking occurs. Besides, a mass 
balance yields 

( ) ( ) ( )Z t X t Y t= −                     (2) 

where Y is the thickness of the unreacted layer and Z is the thickness of the reacted layer. 
The rate of change of Y is directly proportional to the rate of diffusion of the gas through the reacted layer, 

and inversely proportional to Z: 

( )
( )

d
d

D TY
t Z t
= −                                (3) 

In the above equation D is the diffusion coefficient of the gas through the solid, and T is the process tempera-
ture. Equation (3) and the time derivatives of Equations (1) and (2) yield the rate of change of the reacted layer: 

( )
( )

d
d

D TZ R
t Z t
= − +                     (4) 

At steady state dZ/dt = 0, and from Equation (4) the equilibrium value of the reacted layer thickness Ze is 
given by 

( ) ( )
e

D T
Z T

R
=                     (5) 

3. Model Solution and Open-Loop Results 
Using the variables separation method, the analytical solution of Equation (4) is [4] 

( )
2

1 exp 1D RZ t W t
R D
   

= + − − −        
                  (6) 

where W is the Lambert function. W has curious mathematical properties and interesting applications; it is highly 
nonlinear, and some of its properties are as follows: W(0) = 0, ( )1e 1W −− = −  [5]. An additional property of W 
is [6] 
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( ) ( )eW xW x x=                     (7) 

The open-loop time evolution of Z, i.e. the reacted layer thickness, is obtained through Equation (6). The re-
quired Lambert function is evaluated from Equation (7), which is solved using the first ten terms of the Taylor 
series expansion [7]  

( ) ( )
( )

1 2

1

1
1 !

n n
n

n

n
W x x

n

− −
∞

=

−
=

−∑                      (8) 

or applying the iterative first order Newton-Raphson method [8]. Both procedures yielded identical results. 
Once obtained Z(t) from Equation (6), X(t) is determined from Equation (1), and Y(t) is calculated from Equa-

tion (2). Results are shown in Figure 1 for the following values of parameters reported in [4]: L0 = 300 μm, R = 
0.001 μm/s, D = 0.1 μm2/s. 

Using the above parameter values in Equation (5) yields Ze = 100 μm. Figure 1 shows that the reacted layer 
progressively increases from an initial value of 0 to a final value of Ze. The unreacted layer decreases from its 
initial value of L0 to a final value of 0. On the other hand, the total layer thickness decreases from an initial value 
of L0 to a final value Xe = Ze. These results are consistent with the expected behavior of gas-solid shrinking 
reacting systems with R > 0. The equilibrium time te required for reaching the equilibrium state is obtained from 
Equation (1) considering that in this condition Xe = Ze: 

0 e
e

L Z
t

R
−

=                     (9) 

With the above values of L0, Ze and R, Equation (9) yields te = 200,000 s. This time coincides with that re-
quired for thickness stabilization of the reacted, unreacted and total layers in the open-loop results of Figure 1 
obtained through the Lambert function. 

4. Controller Synthesis 
For the controller synthesis, feedback linearization technique is employed [9] [10]. Given that the control objec-
tive is the regulation of the reacted layer thickness, Z becomes the control output. The chosen manipulated vari-
able is the diffusion coefficient, which depends on the temperature; then D is selected as the control input. The 
output error is defined as  

( ) ( ) ee t Z t Z= −  

where Ze is selected as the control set point. An asymptotically stable behavior is imposed to the error: 

0e ke+ =                      (10) 
 

 

 
Figure 1. Open-loop time evolution of the layers thickness. Reacted 
(solid), unreacted (dotted), total (dashed).                         
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where k is the control gain. This behavior assures that 

( )lim 0
t

e t
→∞

=                   (11) 

Therefore 

( )lim et
Z t Z

→∞
=                (12) 

Considering the output error definition, and substituting it into Equation (4), the following control law arises 

( ) ( )eD Z Z R k Z Z = − −             (13) 

From Equation (13) the steady state value of the control input is given by De = ZeR = 0.1 μm2/s. The characte-
ristic time τ of the gas-solid system is given by [4] 

2
eD

R
τ =                    (14) 

Then, τ = 1 × 105 s. A proper value of the control gain is k = 1/τ = 1 × 10−5 s−1. To speed up the closed-loop 
dynamics, in the numerical simulations described later a value of k = 5 × 10−5 s−1 is selected. 

5. Closed-Loop Results 
Closed-loop dynamics is obtained by numerical integration of Equation (4) employing the fourth order Runge- 
Kutta method [8] with time step of 1 × 10−4 s, and considering the control law defined by Equation (13). 

Figure 2 shows the dynamics behavior of the reacted layer thickness, i.e. the control output. As expected, the 
behavior is asymptotic. The control output reaches the set point in around 130,000 s, whereas for the closed-loop 
case it takes a time of 200,000 s, as is seen in Figure 1. 

The dynamics of the control input, i.e. the diffusion coefficient, is observed in Figure 3. The control input 
presents a peak of 0.18 μm2/s in around 18,000 s, and reaches its equilibrium value in 130,000 s, i.e. the same 
time at which the control input arrives to its set point. 

Direct utilization of the diffusion coefficient as control input is unrealistic. In current industrial practice, tem-
perature is by far a more easily manipulable variable. Unfortunately, in [4] is not reported the dependence of the 
diffusion coefficient on the temperature. In [11] the mechanisms of carburization and melting of solid iron by 
gaseous carbon monoxide is studied. There, the following empirical expression which relates temperature and 
diffusion coefficient is reported: 

( ) 1e
a

g

E
R TD T C

 
 − 
 =                     (15) 

 

 
Figure 2. Closed-loop dynamics of the reacted layer thickness.         
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Figure 3. Closed-loop dynamics of the diffusion coefficient.          

 
where D is expressed in m2/s, C1 = 2 × 10−6 is a constant, Ea = 1.12 × 10−5 is the activation energy of the reaction, 
and Rg = 8.314 is the universal gas constant. T (K) is the absolute temperature of the process. Solving the above 
expression for T yields: 

1ln

a

g

E
T

CR
D

=
 
 
 

                  (16) 

The new control law in terms of the process temperature is obtained by substitution of Equation (13) into Eq-
uation (16): 

( )

( )
2ln

a

g
e

E
T Z

CR
Z R Z Z

=
 
 
  − −  

                    (17) 

where C2 = 2 × 106 comes from the unit conversion of the diffusion coefficient from m2/s to μm2/s. 
Closed-loop steady state temperature Te is obtained from Equation (17) considering that at steady state Z = Ze: 

2ln

a
e

g
e

E
T

CR
Z R

=
 
 
 

                (18) 

The process temperatures corresponding to the diffusion coefficients of Figure 3 are determined from Equa-
tion (17). Figure 4 shows the obtained temperatures and their closed-loop dynamic behavior. A peak of 830.4 K 
at around 18,000 s is reached by temperature. A value of 801.3 K for Te is obtained from Equation (18) consi-
dering that Ze = 100 μm and R = 0.001 μm/s. This value of Te is corroborated in the results of Figure 4. 

6. Conclusions 
A mathematical model from literature which describes the dynamics of a gas-solid reacting system was pre-
sented. This model is a less complex alternative to the classical shrinking core model. 

1) Solution to the above model, based on the Taylor series expansion of the Lambert function, was obtained 
and discussed. Closed-loop time evolution of the layers thickness is in agreement with the expected behavior of 
gas-solid shrinking reacting systems with moving boundaries. 

2) A theoretical time of 200,000 s for achieving the open-loop steady-state was determined for the considered 
values of parameters. This time is in agreement with that obtained in the open-loop results using the Lambert 
function. 

3) A controller to regulate the thickness of the reacted layer was synthesized using the feedback linearization 
technique. This controller uses as control input the diffusion coefficient of the gas into the solid. As expected, 
dynamic closed-loop performance is asymptotically stable under the considered conditions.  
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Figure 4. Closed-loop dynamics of the process temperature.          

 
4) Temperature corresponding to the above diffusion coefficients was determined from a previous reported 

empirical expression. This allows the utilization of a more realistic, easily manipulable variable at industry as 
temperature in the control algorithm. 
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