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ABSTRACT 

In this paper, a class of fire-new general integral control, named general concave integral control, is proposed. It is de- 
rived by normalizing the bounded integral control action and concave function gain integrator, introducing the partial 
derivative of Lyapunov function into the integrator and originating a class of new strategy to transform ordinary control 
into general integral control. By using Lyapunov method along with LaSalle’s invariance principle, the theorem to en- 
sure regionally as well as semi-globally asymptotic stability is established only by some bounded information. More- 
over, the highlight point of this integral control strategy is that the integrator output could tend to infinity but the inte- 
gral control action is finite. Therefore, a simple and ingenious method to design general integral control is founded. 
Simulation results showed that under the normal and perturbed cases, the optimum response in the whole domain of 
interest can all be achieved by a set of the same control gains, even under the case that the payload is changed abruptly. 
 
Keywords: General Integral Control; Nonlinear Control; Nonlinear integrator; Concave Function Gain Integrator; 

Bounded Integral Control Action; Output Regulation 

1. Introduction 

Integral control [1] plays an important role in control sys- 
tem design because it ensures asymptotic tracking and 
disturbance rejection. In the presence of the parametric 
uncertainties and unknown constant disturbances, inte- 
gral control can still preserve the stability of the closed- 
loop system and create an equilibrium point at which the 
tracking error is zero. The main task of the integral con- 
troller is to stabilize this point, which is challenging be- 
cause it depends on uncertain parameters and unknown 
disturbances. 

1.1. Classical Integral Control 

The simplest controllers that achieve integral action are 
of the proportional integral derivative (PID) form that 
introduces integral action by integrating the error. It is 
well known that integral-action controllers with this class 
of integrator often suffer a serious loss of performance 
due to integrator windup, which occurs when the actua- 
tors in the control loop saturate. Actuator saturation not 
only deteriorates the control performance, causing large 
overshoot and large settling time, but can also lead to 
instability, since the feedback loop is broken for such 
saturation. To disguise this drawback, various anti- 

windup schemes have been proposed to deal with inte- 
grator windup or to improve transient performance. 
These are classified into three different approaches: 1) 
conditional integration and/or integrator limiting [2-7], in 
which the integrator value is frozen or restricted when 
certain conditions are verified; 2) back-calculation [8-11], 
in which the difference between the controller output and 
the actual plant input is fed back to the integrator; and 3) 
a nonlinear integrator [12-16], whose output is shaped by 
a nonlinear error function before it enters the controller. 
Some conditional integration and/or integrator limiting 
may not guarantee a zero steady error and could result in 
an oscillatory system for the step-referent input when an 
estimated limitation is embedded in the controller. In the 
back-calculation approach, the compensation for inte- 
grators is active whenever actuators are saturated; inte- 
grator windup cannot be completely avoided. For non- 
linear integrators, the output still goes to infinity and 
integrator windup may occur. In addition, the universal 
integral continuous sliding mode control (CISMC) first 
reported by [1] has the same problem as a PID controller 
because it applies the same integrator. An improved ver- 
sion was proposed by [7], in which the integrator is 
modified to provide integral action only inside the 
boundary layer and the derivative of the error introduced 
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into the integrator. All these integrators, except for the 
one proposed by [7], were designed by using the error as 
the indispensable element. So, all of them is called clas- 
sical integral control. 

1.2. General Integral Control 

In 2009, general integral control, which uses all available 
state variables to design the integrator, is originated in 
[17], where presents a unified framework for general 
integral control, some general integrator and controller, 
the necessary conditions and basic principles for design- 
ing a general integrator, however, their justification was 
not verified by strictly mathematical analysis. In 2012, 
based on linear system theory, we present a systematic 
design method for general integral control [18] with a 
linear integrator on all the state of dynamics. The results, 
however, were local. The regionally as well as semiglob- 
ally results were proposed in [19], where presents a 
nonlinear integrator shaped by sliding mode manifold, 
and then general integral control design is achieved by 
sliding mode technique and linear system theory. Therein, 
the sprout of concave function gain integrator appeared. 
In 2013, based on feedback linearization technique, a 
class of nonlinear integrator which is shaped by diffeo- 
morphism, and a systematic design method for general 
integral control are presented by [20] and the conditions 
to ensure regionally as well as semiglobally asymptotic 
stability are provided. 

This paper is not a simple extension of the work [19], 
but it is developed as a class of fire-new general integral 
control, named general concave integral control in such a 
way of normalization. The main contributions are as fol- 
lows: 1) the partial derivative of a class of general 
Lyapunov function is firstly introduced into the integra- 
tor design; 2) the bounded integral control action and 
concave function gain integrator are normalized; 3) a 
general strategy to transform ordinary control into gen- 
eral integral control is proposed; iv) by using Lyapunov 
method and LaSalle’s invariance principle, the theorem 
to ensure regionally as well as semi-globally asymptotic 
stability is established only by some bounded informa- 
tion. Moreover, the highlight point of this integral control 
strategy is that the integrator output could tend to infinity 
but the integral control action is finite. Therefore, a sim- 
ple and ingenious method to design general integral con- 
trol is founded. 

Throughout this paper, we use the notation  m A  
and  M A  to indicate the smallest and largest eigen- 
values, respectively, of a symmetric positive define 
bounded matrix  A x , for any nx R . The norm of  

vector x  is defined as Tx x x , and that of matrix 

A  is defined as the corresponding induced norm 

 T
M

The remainder of the paper is organized as follows: 
Section 2 describes the system under consideration, as- 
sumption, and definition. Section 3 addresses the con- 
trol design. Simulation is provided in Section 4. Con- 
clusions are presented in Section 5. 

2. Problem Formulation 

Consider the following nonlinear system, 

   
 

, ,

,

x f x w g x w u

y h x w

  
 


           (1) 

where nx R
m

 is the state,  is the control input, mu R
y R  is the controlled output,  is a vector of 

unknown constant parameter and disturbance. The func- 
tions 

lw R

 ,f x w ,  ,g x w  and  are continuous 
in 

h x , w
 , ,x w u

x u wD
 on the domain  

n mR R lRD D     . In this study, the function 
 ,f x w  does not necessarily vanish at the origin; i.e., 
  00,f w  . Let  be a vector of constant 

reference. Set 

mRrr D 
 , w vv r  and v r w . We 

want to design a feedback control law  such that 
D D D D 

u
 y t r  as . t 
Assumption 1: For each v , there is a unique 

pair 
v D

 0 0,x u  that depends continuously on  and sat- 
isfies the equations, 

v

   
 

0 0

0

0 , ,

,

f x w g x w u

y r h x w

  
  

0            (2) 

so that 0x  is the desired equilibrium point and 0  is 
the steady-state control that is needed to maintain equi- 
librium at 

u

0x , where y r .  
For convenience, we state all definitions, assumptions 

and theorems for the case when the equilibrium point is 
at the origin of , that is, 0 . There is no loss of 
generality in doing so because any equilibrium point can 
be shifted to the origin via a change of variables. 

nR 0x 

Assumption 2: No loss of generality, suppose that the 
function  ,g x w  satisfies, 

  0, 0,   ,w xg x w g w D x D             (3) 

   , 0, ,   ,x
g w xg x w g w l x w D x D      .   (4) 

where x
gl  is a positive constant. 

Assumption 3: Suppose that there exists a control law 
 xu x  such that 0x   is an exponentially stable equi- 

librium point of the system, 

      , 0, , x x f x w f w g x w u x          (5) 

and there exists a Lyapunov function  that satis- 
fies, 

 xV x

 2

1 xc x V x c x  2

2              (6) A A A  . 
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           2

3, 0, ,x
x

V x
f x w f w g x w u x c x

x


   


 

(7) 

 
4

xV x
c x

x





               (8) 

for all xx D , r  and w . Where , , 
 and c  are all positive constants.  

r D w D 1c 2c

3c 4

For the purpose of this note, we introduce the follow-
ing definition and property, which is proposed by [13]. 

Definition 1:  , , F x   with 1 0  , 0   
and nx R  denotes the set of all continuous differential 
increasing bounded functions, 

        T

1 1 2 2 n nx x x x        such that 

 x x x      :x R x     

 x        :x R x     

 1 d d 0x x      x R   

where   stands for the absolute value. 
Figure 1 depicts the region allowed for all the func- 

tions belonging to function set  , , F x  . For instance, 
the hyperbolic tangent, arc tangent functions and so on. 

An important property of function  x elonging to 
function set 

 b
 , ,F x   is that the Euclidean norm of 

 x  satisfies for all nx R , 

 x n                   (9) 

3. Control Design 

For achieving asymptotic regulation and disturbance re- 
jection, we need to include “integral action” in the con- 
trol law u . Thus, general integral controller are pro- 
posed as follows, 

   
    1

d d

x

T
x

u u x K

V x x

 

   


  


   
        (10) 

where     1
d di i i i x i 1,2, ,i m V x x   


  , 

 

; 

 

Figure 1.  , ,F α β x

    

 functions. 

belong ion set s to funct  , ,F x  . K  is a po- 
sitive define diagonal m m  m

Thus, substituting (10) into (1) to  
m

atrix.  
obtain the aug-

ented system, 

         
   

,x f x w , ,x
T

x

g x w u x g x w K

V x x
 

 


    
  (11) 

By Assumption 1 and choosing

   

 K  
x 

to be nonsingu- 
lar and large enough, and then set 0  and 0x   of 
the Equation (11), we obtain, 

   00,  0,g w K  f w           (12) 

Therefore, we ensure that there is a unique solution 

0 , and then  00,  is a unique equilibrium point of 
 closed-loop  (11) in the control domain of in- 

terest. At the equilibrium point, y r , irrespective of 
the value of w . 

Now, the design task is to provide the conditions on 
th

the  system

e positive constants 3c , 4c  and matrix K  such that 
 00,  is an asympto all stable equilibrium point of 
the closed-loop system (11) in the control domain of in- 
terest, which is not a trivial task because the closed-loop 
system depends on the unknown vector w . This is es- 
tablished in the following theorem. 

Theorem 1: Under Assumptions 1-3, if there exists a 
po

tic y 

sitive define diagonal matrix K  such that the the 
following inequalities, 

   0m 0,g K w            (13) f

3 4
x
gc c l m K     

hold, and then

        (14) 

  00,  
 clo

is an exponentially stable equi- 
librium point of the sed-loop system (11). Moreover, 
if all assumptions hold globally, and then it is globally 
exponentially stable. 

Proof: To carry out the stability analysis, we consider 
the following Lyapunov function candidate, 

      

           
0

0 0

, xV x V x    

0, 2
T

g w K         
  (15) 

Obviously, Lyapunov function candidate (15) is posi- 
tive define. Therefore, our task is to show that its time 
derivative along the trajectories of the closed-loop sys- 
tem (11) is negative define, which is given by, 

    
          
            
        

0

0

0

,V x    

0,

, , ,

0,

T
x

x
x

x

V x g w K

V x
f x w g x w u x g x w K

x
V x

g w K
x







     

 

   

  


  




 


 

 

(16) 


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Substituting (12) into (16), we obtain, 

    
         
 



      

        
        

0

00,

0

,

, 0, ,

, 0,

0,

x
x

x

x

x

V x

V x
f x w f w g x w u x

x
V x

g x w g w K
x

V x

V x
g w K

x





   

 

   

   




  




 



 


 





   (17) 

Using (4), (7), (8) and (9), we get, 

g w K
x 

    
          
        

 

0

2 2

3 4

,

, 0, ,

, 0,

x
x

x

x
g

V x

V x

2

3 4
x
g

f x w f w g x w u x
x
V x

g x w g w K
x

c x c l m K x





   

 






  




 


  



   (18) 

Using the fact that Lyapunov function candidate (15) 
is a positive define function and its time derivative is a 
negative define function if the inequalities (13) and (14) 
hold, we conclude that the closed-loop system (11) is 
stable. In fact,  means  and

c c l m K x  

0V  0x   0  . By 
invoking LaSa riance p   to 
know that the closed-loop system (11) is exponentially 
stable. 

Corollary 1: If the function 

lle’s inva rinciple [21], it is easy

 ,g x w  is equal to a 
constant, and then the integrator can be taken as 

    1
d dT

xV x x   


    or  T
xV x x    . 

Thus, under Assumptions 1 and 3, we only need to 
choose the gain matrix K  to be nonsingular and large 
enough such tha  inequality (13) holds, and then 
 00,

t the
  is an exponentially stable equilibrium point of 

the closed-loop system (11). Moreover, if all assumptions 
hold globally, and then it is globally exponentially stable. 
Th gumen

Discussion 1: compared with tegral control pro

tion be

e proof can follow the similar ar t and procedure. 
It is omitted because of the limited space. 

the in - 
posed by [19], the main differences are as follows:  

1) the integral control action is not confined to the hy- 
perbolic tangent function and can be taken as any func- 

longing to function set  , ,F x  , and then the 
normalization of integral control action is achieved; 

2) the indispensable element of integrator is not con- 
fined to sliding mode manifold and can be taken as the 
partial derivative of any Lyapunov function, which satis- 
fie

o 

th

is not co
atis- 

fie

s Assumption 3, and then not only the normalization 
of concave function gain integrator is achieved but als

e partial derivative of Lyapunov function firstly is in- 
troduced into the integrator design. 

3) the control element xu x nfined to slid- 
ing control and can be taken as any control, which s

  

s the conditions of Assumption 3.  
Remark 1: The proof of Theorem 1 seems to be very 

simple, in fact that is not the case because there are two 
tedious troubles to be concealed in the stability analysis, 
one is that integral control action must be bounded, an- 
other is how cancel the terms on    0    . There-
fore, for solving these two troubles above, an ingenious 
de  as fosign method is proposed llows: just the integrator 
is taken as     1

d dT
xV x x   


   , which is 

obtained by differentiating the function     and us-
ing the partial derivative of Lyapunov function 

 xV x x   as the indispensable element of integrator, 
and then we get    T

xV x x     . Thus, we not only 
obtain a bounded integral control action  K   but 
also cancel the terms on    0   time de-
rivative of Lyapunov function, and then Theorem 1 can 
be established only by some bounded information. Con-
sequently, the ve integral 
control is verified. Moreover, this resulte
new integrator with a concave function gain  

 

on of general c

 in the 

onca
d 

 justificati
in a class of 

  1
d d  


, 

 2. This is why the control law (10) is called 
general concave i

Remark 2: From the control law (10), vious 
that the highlight point of thi ontrol strategy is 
that the integrator output could tend to infinity but the 
integral control action is finite, which is the same as the 
one proposed by [19]. This means that this kind of inte- 
gral control can devote its mind to counteract the un- 
known constant uncertainties or disturbances and filter 
out the other action, and then the stability analysis is easy 
to be achieved in theory and actua

see Figure
ntegral control. 

it is ob
s integral c

tor saturation is easy to 
be eliminated in practice. 

Remark 3: From the statement above, it is easy to see 
that: for achieving the integral control, we only need to 
find a control input  xu x  and a Lyapunov function 

 xV x  such that 0x   is an exponentially stable equi- 
librium point of the system (5). Especially, when the  
 

 

Figure 2. The concave function gain curve. 
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function  ,g x w
condition (14) can be

on the closed
(13), is th

results in a class 
 control int

, that is, m
ed into general

oreover, t
 and  xV x

he mo

 is equal to a constant, the dilemma 
 removed, that is, the stable condi-

tions -loop system (11), except for the con-
dition e same as the one of the system (5). This 
not only of general strategy to transform 
ordinary o general integral control but also the 
guess [17] any control laws can easily be trans- 
form  integral control laws, is verified 
partly. M here is great freedom in the choice of 

such that the control engineers can 
st appropriate control input 

 xu x
choose t

 
 xu x
r. 

 in 
 

on thes
hand to design their own general integral controlle

Based e statements above, it is not hard to 
know that all of them constitute a simple and ingenious 
method to design general integral control together. 

4. Simulation 

Consider the pendulum system [21] described by, 

sina b cT        

where 0a g l  , 0b k m  , 21 0c ml  ,   is 
gle sub d by the rod and the vertical axis, and 

T  is the torque applied to the pendulum. Vie  as 
the control input and suppose we want to regulate 

the an tende
w T

  to 
 . Taking 1x    , 2x    and u T , the pendu- 
lum system can be written as, 

 
1 2

1 2sin

x x

2x a x    bx c


  
 

u
         (19) 

 point 
is  and 



It is easily to know that the desired equilibrium
 T0 0 0x   0 sinu a c  is the steady- 

to maintain equilibrium at state control that is needed 0x . 
Thus, t tio  as, 

  1 1 2 2xu x k x k x   , where k1 and k2 are all positive 
nstants. 
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Now, using the linear system theory, the choice  
 1 cosk a c   and 2 0k   ensures that the matrix A 
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and 10c  , and then solving the Lyapunov equation 
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gence and good flexibility and can effectively deal with 
unknown exogenous disturbances, nonlinearity and un- 
certainties of dynamics. 

5. Conclusions 

A class of fire-new general integral control named gen- 
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eral concave integral control was proposed in this pape
The main contributions are as follows: 1) the partial de-
rivative of a class of general Lyapunov function is firstly 
introduced into the integrator design; 2) the bounded 
integral control action and concave function gain i
grator are normalized; 3) a general strategy to tran
ordinary control into general integral control is proposed;
4) by using Lyapunov method and LaSalle’s invariance
principle, the theorem to ensure regionally as well as
semi-globally asymptotic stability is established only by
some bounded information. Moreover, the highlight
point of this integral control strategy is that the integrator 
output could tend to infinity but the integral control

r. 

nte- 
sform 

 
 
 
 
 

 - ac
tion is finite. Therefore, a simple and ingenious method 
to design general integral control is founded. 

In this note, only a class of general integral control 
was presented. It is clear that we can not expect one par- 
ticular procedure to apply to all system. Therefore, new 
design techniques for general integral control are needed 
to solve the wider theoretical and practical problems. 
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