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ABSTRACT 

Tumor cells can evade immune surveillance by secreting immuno-suppressive factors such as transforming growth fac- 
tor-beta (TGF-β) and also, Interlukin-10 (IL-10). In this paper the optimal control of mathematical model for aggressive 
tumor growth via a new and proper approach known as AVK method has been considered. Moreover, we have imple- 
mented a special treatment so-called small interfering RNA (siRNA) to reduce presence and effect of TGF-β in tumor 
cells and also we have added Interlukin-2 (IL-2) into our treatment model to minimize the population of tumor cells. 
Further research and experimentation with these combination therapies may provide an effective solution in addressing 
the immuno-suppressive effects of TGF-β. Finally, we analyze the optimal control and system optimality of these equa- 
tions using numerical techniques.  
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1. Introduction 

The concept of immunotherapy is based on the body’s 
natural defense system, which protects us against a variety 
of diseases. Although we are less aware of it, the immune 
system also works to aid our recovery from many illnesses. 
Immunotherapy falls into three main categories: Immune 
cell-stimulating cytokines, monoclonal antibodies, and 
vaccines. Cytokines are a number of small proteins that 
carry signals locally between cells, and thus have an ef- 
fect on other cells [1]. Interleukin-2 (IL-2) is the main 
cytokine responsible for lymphocyte activation, growth 
and differentiation. IL-2 unlike classical chemotherapy 
does not kill tumor cells directly. Instead, IL-2 activates 
and stimulates the growth of immune cells, Natural Killer 
Cells (NK Cells) and most importantly T-Cells which are 
capable of destroying cancer cells directly [1]. Trans- 
forming growth factor-beta (TGF-) is also one of the 
family cytokines, which are present in both healthy and 
tumor cells [2,3]. Although TGF-β promotes healthy cell 
growth and function, the production of TGF- by tumor 
cells greatly challenges the immune system through the 
promotion of angiogenesis, enhancing tumor growth and 
metastasis [2]. In recent years several papers have begun 
to investigate the various aspects of the immune system 
response to cancer from a mathematical perspective. One 
of the first attempts to consider effects of immunotherapy  

was presented by Kirschner and Panetta. They study on 
the role of IL-2 adding with adoptive cellular immuno- 
therapy (ACI) [4]. Sarkar and Banerjee, expressed the 
model which consist of three ordinary differential equa- 
tions, tumor cells, hunting predator cells and resting pre-
dator cells [5]. Capputio et al. analyzed the interaction 
between NK cells, 8CD  cells and effect of Interlukin- 
21 (IL-21) in immunotherapy of tumor growth. They 
investigated effect of IL-21 on tumor cells. Then a year 
later they suggested optimal treatment of tumor cells via 
IL-21 [6]. In 2009 a mathematical models was presented 
by Jushi et al. They develop a new mathematical model 
of immunotherapy and cancer vaccination, focusing on 
the role of antigen presentation and co-stimulatory sig- 
naling pathways in cancer immunology [7]. Finally lets 
us to mention a recent paper by Arciero et al. which is 
presented a novel treatment strategy known as small in- 
terfering RNA (siRNA) therapy [8].Their model predicts 
conditions under which siRNA treatment can be suc- 
cessful in transformation of TGF-b producing tumors to 
either nonproducing or producing a small value of TGF-b 
tumors, that is to a non-immune evading state.  

In this paper, we try to extend the model of aggressive 
tumors presented by Arciero et al. [8] and add IL-2 in 
their mathematical model to enhance ability of immune 
systems. We will implement optimal control theory for 
decreasing the population of tumors cell. Finally we de- 
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sire to solve non-linear equations existing via a new and 
proper method named AVK. 

2. Immunotherapy of Tumors siRNA 

Through small interfering RNA (siRNA) treatment the 
initial delivery of double-stranded RNA (dsRNA) are 
taken into tumor cells (see Figure 1). Then the dsRNA is 
divided into 21 - 23 nucleotide-long segments known as 
siRNAs by enzyme Dicer. In that sense, enzyme Dicer 
target TGF-β mRNA once bound to the RNA-induced 
silencing complex (RISC) [5]. Complementary mRNA 
strands which is coded for TGF-β within tumor cells are 
determined by siRNA, subsequently, the RISC binds to 
and cleaves the mRNA to prevent production of TGF-β 
protein. Ultimately, siRNA treatment works to target the 
specific mRNA due to inhibiting TGF-β expression. 
Nevertheless, some drawbacks exist in this therapeutic 
strategy that may limit the effectiveness of it, such as the 
accessibility of siRNA target sites on TGF-β mRNA [9]. 
Moreover, cytokine therapy (e.g. IL-2 therapy) can be 
administered in combination with siRNA treatment, to 
not only inhibit the production and immuno-suppressive 
effects of TGF-β but also, increase ability of immune 
systems [2]. 

3. Aggressive Tumor Model 

Aggressive tumor can produce TGF-β which is causing 
increased tumor growth from angiogenesis and the in- 
creased ability of the tumor to escape detection by the 
immune system due to immuno-suppressive properties. 
In [4] the mathematical model of passive tumors include- 
ing effector cells, tumor cells and IL-2 are presented. In 
this paper we present a mathematical model for aggres- 
sive tumor where E(t) is effector cells as a immune sys- 
tem of body, T(t) is tumor cells, I(t) is IL-2, and S(t) is 
related to production of TGF-β as a immuno-suppressive 
factor [8]. 
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In Equation (1), effector cells are assumed to be in- 
formed of the tumor site in case the tumor cells are ex- 
isted. The parameter c in the first term of Equation (1), 
measures the ability of the immune system to recognize 
tumor cells which is known as antigenicty of the tumor. 
Inhibitory parameter γ is a factor to show production of  

 

Figure 1. A model for performance of siRNA treatment to 
inhibit TGF-β production. 
 
TGF-β which is lead to decrease antigen expression [2]. 
The second term represents the mortality rate of effector 
cells. The third term, Michaelis-Menten forms of com- 
ponents, presents effector cell proliferation due to pres- 
ence of the cytokine IL-2 that can decrease when the 
cytokine TGF-β is produced. Where p1 is the maximum 
rate of effector cell, g1 and q2 are half-saturation con- 
stants, and q1 is the maximum rate of anti-proliferative 
effect of TGF-β.  

Equation (2) is related to the growth of the tumor cells. 
The first term represents logistic growth of tumor cells 
where r is intrinsic growth rate and K is carrying capacity 
of tumor in the absence of effector cells and TGF-β (or 
every simulated factor). The second term describes the 
reduction of the tumor population depends on immune 
clearance. The interaction between immune response and 
tumor cells is measured by parameter a [4]. The third 
term in Equation (2) accounts for the increased growth of 
tumor cells because of TGF-β production. In fact, TGF-β 
is a factor helps tumor cells to exceed their size. This 
term is a form of Michaelis-Menten which indicates a 
limited response of tumor cells to a growth-stimulatory 
cytokine like TGF-β. Also, p2 is the maximum rate of 
increased proliferation and g3 is the half-saturation con- 
stant. 

In Equation (3) the kinetics of IL-2 is explained. The 
first term shows IL-2 production with a maximum rate of 
p3 in the presence of effector cells stimulated and with a 
half-saturation constant g4 without considering TGF-β as 
a limited cause. In addition, parameter α measured the 
inhibition of IL-2 production in presence of TGF-β in an 
uncompetitive manner. In last term, the decay rate of IL- 
2 is represented by μ2.  

Equation (4) describes the rate of change in producing 
suppressor cytokine, TGF-β with p4 as the maximum 
rate of TGF-β production and c as the critical tumor cell 
population in which the switch occurs. Furthermore, μ3 
represented the decay rate of TGF-β [8]. For more details 
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about parameters which are used in these equations we 
can say that where it is possible, these parameters are 
taken from the medical literature and articles, and when 
there are unavailable experimental data for some pa- ra-
meters, we consider our goal to quantify the parameters 
influence on the model behavior. Table 1 lists the base- 
line values of the model parameters used in the numerical 
simulations. Briefly, values for the parameters are used 
without considering last equation. It means that we as-
sume . The equations are nondimensionalized 
as follows [8]:  

  0S t 

     

2 2

2 2

1 1 2 2 2 2

3 3 2 2 1 4

1 1 2 2 2 3

4 4 2 2

2 3

; ;

; ;

; ;

; ;

; ;

; ;

i i

c c

w E g x T g y I

t t c

p p p p

p p g g p

q q q q g

g g g r r k

a a g

   
 





    

 
  

 



 

 
 

1 3

2 3

4 2 3

2

2

; ;

; ;

; ;

;

;

g z S g

c g

p g

k g

g

  



 







    (5) 

Then, without considering over-bar notation for con- 
venience, the system of tumor growth in the absence of 
treatment is represented as below [8]: 
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With initial conditions 

     0 10 , 0 10 , 0w x   

In this section, we describe the case in which tumors 
become aggressive and interfere the body’s immune re- 
sponse  when TGF-β is produced, tumor mass 
has enough potential to grow near its carrying capacity 
and this situation can occur for all tumors at some p4 
value, regardless of the level of antigenicity. The three 
figures illustrate the different results when increasing the 
rate of TGF-β production (p4) for various values of anti- 
genicity (c). In Figure 2, the value of c and p4 are very 
small (c = 1 × 10–10). Therefore, tumor cannot be detected 
by the immune system. This result in rapid tumor growth 
quickly approaches its carrying capacity. Figure 3 pre- 
sents an intermediate value of c (c = 0.002) and two dif- 
ferent value of p4, p4 = 0 and 0.1, it clearly show that the 
more value of p4, the greater tumor growth. Also, uncon- 
trolled tumor growth is suppressed. Finally, Figure 4 
represents the lowest value of c (c = 0.0035) at which the  

 0 .z 

Table 1. List of parameters and their baseline values used. 

value Paramete value Parameter

0.27 days–1 p2 0.03 days–1 1 

2  107 pg/ml g3 0.1245 days–1 p1 

 5pg cell days  p3 2  107 pg/l g1 

1  103 cells/ml g4 0 - 0.035 days–1c 

10 days–1 2 0.1121 days–1 q1 

1  10–3 l/pg  2  106 pg/l q2 

10 days–1 3 0.18 days–1 r 

1  106 cells/ml c 1  109 cells/mlk 

 80 - 3 10 pg l days p4 1 days–1 a 

5  10–7 ml/pg  1  105 cells/mlg2 

 

 

Figure 2. A numerical simulation of aggressive tumors ver- 
sus time for c = 10–10 and p4 = 10–4.  
 

 

Figure 3. A numerical simulation of the aggressive tumors 
versus time for c = 0.002 with p4 = 0 and p4 = 0.1. 
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Figure 4. A numerical simulation of the aggressive tumors 
versus time for c = 0.0035 with p4 = 0 and p4 = 0.1. 
 
immune system has ability to control the tumor popula- 
tion. Tumor’s behavior has damped oscillations and shows 
downward trend. This manner sometimes is described as 
dormant. However, if p4 increases, the immune system is 
no longer successful in defeating the tumor, and large 
tumor mass again characterizes the tumor behavior near 
carrying capacity.  

4. Optimal Treatment of Tumors Using 
siRNA and IL-2 

In this section we have provided one of the mathematical 
models of aggressive tumor growth that implements 
siRNA treatment to suppress TGF-β production. In this 
paper, we incorporate IL-2 by defining a controller to the 
model. While not yielding persistent dormancy, siRNA 
offers a treatment technique that counteracts the devas- 
tating effects of TGF-β, such as IL-2 inhibition and in- 
creased tumor growth. Variable of u(t) is percentage of 
applying drug during immunotherapy that we expected to 
achieve the existing status of patient 0 0  
to desirable defining status 

 0 0 0, , ,w x y z
 ,

 
, ,f f fw x f fy z  . There- 

fore, we define a mathematical model Equations (14)- 
(18), including siRNA to suppress effects of TGF-β at 
tumor cells and also, IL-2 to enhance effects of immune 
system. Notice that the first three equations correspond to 
Equations (1), (2) and (3). Moreover, Equation (13) is 
modified version of Equation (4) that concentrates on 
cytokine TGF-β [8].  
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In the first term of Equation (13), the production of 
TGF-β due to effects of siRNA is inhibited; indeed, 
siRNA is bound to target TGF-β mRNA. Variable A 
represents total strands of siRNA, free and bound strands, 
and parameter f shows the proportion of variable A 
which is bound. Thus, the bound siRNA strands are de-
scribed by fA, and ki measures inhibition rate of siRNA 
as a suppressive factor.  

Equation (14) represents the injection and degradation 
of the siRNA. D1 describes a continuous infusion dose of 
siRNAs as a function of time. So, D1(t) = D0 ≡ constant. 
In fact, D0 is the injected dose. The second term, μ4, 
represents the decay of the free siRNA strands based on 
their half life which is estimated of 0.66 days−1 [10]. Also, 
in many vitro studies siRNA treatment have determined 
with an initial dose of 2 × 109 pg/ml of siRNA [11]; 
therefore, we take D0 = 5 × 1010 pg/ml as a comparable 
dose for an in vivo system. u(t) is a control function that 
explains percentage of using IL-2 and in this paper we 
recognize it as a continuous step function of time for 
each t relating to treatment period   

    0 1, 0,1U u t u t t      

If u(t) = 1 means maximum percentage of immuno- 
therapy and u(t) = 0 is not using immunotherapy. The 
main object of u(t) is to improve the existing status of 
patient  0 0 0 0, , ,0X E T I S  to defined desirable status 
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Firstly, the equations are nominated in nondimen- 

sional form. The scaling used is the same as in Equation 
(5) with the following additions: 
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Then, without considering the over-bar notation for 
convenience, the system describing tumor evasion of 
immune surveillance in the presence of siRNA treatment 
may be written as follows:  
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We can attain v(t) by solving Equation (20) according 
to value of its parameters ( 0  and i  ) 
and then put it in Equation (19). Consequently, v(t) ≡ 
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 1 : ,E X U a b Rconstant.  
Often controllable problems have large dimensions 

and analyzing them is difficult so we try to estimate a 
control problem with linear programming then explain it 
via numerical results. In this method we first estimate our 
problem with calculus of variations then convert it with a 
linear programming problem. If the optimal answer of 
linear programming problem is zero or near zero, we can 
conduct system from one condition to another. Moreover 
answer of linear programming problem can provide 
proper estimation and desirable control of system. At- 
tending to this subject, we can apply discriminating 
method for nonlinear systems, therefore in this paper we 
estimate mathematical model of tumor growths via AVK 
method [12] to nonlinear programming problem after-
wards we can solve the nonlinear programming problem 
by LINGO software. We can approach exact answer of 
differential equation systems and achieve accuracy esti-
mation by increasing the number of division points in 
range [a, b].   

5. Objective Function and Multi Objective  
Optimal Control 

In this paper, we use control rule of u(t) for decreasing 
tumor size via mathematical model, tumor size is de- 
creased, and the prescribed dose is determined for the 
patient simultaneously. Therefore we intend to minimize 
multi objective optimization (Equation (21)) attentive to 

 and weights 1 = 0.8 and w2 = 0.2, so in 
this case we consider significance of minimizing tumor 
cells more than dose of prescription IL-2. Purpose of 
introducing this objective function is to decrease tumor 
cell population and amount of TGF- by using external 
drug source whereas effector cells and IL-2 is suffi- 
ciently increased on round of treatment.  
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6. AVK Method 

Definition 1: We focus on following nonlinear problems 
with uncertain parameter (NPUP)   

x f t x t u t

    

             (22) 

X and U are compact subsets and must be chosen as the 
system reaches from initial state x(t0) = xa to final state 
x(tf) = xb.  

Definition 2: First, consider nonlinear system (22), we 
define following functional that is called the total error 
functional. Let  
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Definition 3: The solution of uncertainty problem can 
track the desired curve xd(t), if we consider a multi objec- 
tive functional as 
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Definition 4: If t has  known distributed function 
similar to g(t), we may define new functional: 
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Theorem 2: Necessary and sufficient condition for a 
nonlinear function to be concluded a NPUP (22), with 
initial condition x(t0) and final state x(tf) is to satisfy the  

following relation in problem (23):  1 , , .E x t u t t

   

 

Note: Without loss of generality, we may assume t0 = 
0 and tf = 1.  

Note: We can assume h(t) is a non-negative piecewise 
continuous functional in [0, 1] instead of non-negative 
continuous condition in [0, 1] and for h = 0 we may as- 
sume h(t) = 0, almost everywhere in [0, 1] 

In AVK method, the following problem is defined in 
calculus of variations: 
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1 2    g(t) is a distribution function. We assume 
the optimal solution of problem (26) is x*(t), u*(t), the 
state and the control functions, respectively. According 
to Theorems 1 and 2:  
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;a a  
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0 1

1

2

, , , , ,

, , ,

, , , , .n

x f x u f x u a

x f x u

Then in general, for solving NPUP (1) we can solve 
the minimization problem (26) by Theorems 1 and 2. 
Thus the optimal solution of problem (22) is x*(t), u*(t) 
from optimization problem (26). 
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We have 1 2  in equivalent problem (26) so 
that  takes all values between [a1, a2]. Then divide the 
interval [a1, a2] is divided by n equal part. Let  

 2 1k a a n 1; .k k ka   

a 

   

Where k = 0, 1, ···, n, 0 1  and 2n . We de- 
fine non-consistent differential equation system: 

a 

x f x u x f x u a
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      (28) 

We are looking for the best solution x*(t), u*(t) for the 
non-consistent differential equation system (28) where 
all discrete values of  are included. The best solution for 
the optimization problem (26) is minimizing the total 
error of above system, i.e. total error in L1 space is mini- 
mized as follows: 
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              (29) 

 
 1d fx xNow, we will solve problem (29) approximately. We 

partition the interval 0,1t  to m equal subintervals 
(cells), where m is arbitrary fixed positive integer and 
then problem (29) yields to 

     1

, 0
0

, , d .
n
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For summarize, the initial value x x  and final  

value   are neglected. Let 1t m 
   

 for the 
first derivative we have   x .t x t t x t t   

0t
 

Suppose  

   

, thus the approximate value achieves 
to the best value for derivation at the time t. Hence t or 
sampling time is very important, and must be chosen 
small, so the number of partitions is great. This is a tra-
deoff between sampling time and speed of problem solv-
ing. Also, we use L1 norm as follows:  
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Remark: As we know, an approximate value of inte- 

gral K x x
a c

 is (b-a). K(c), where c is any point such 
as . So, applying above remark, and assume c 

is an ending point in any subinterval, minimization prob- 
lem (29) is formed as Equation (31) according to Equa- 
tion (30).  b 
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where the unknown parameters are defined as below: Thus, we simplify obtained discretized problem (31) in 

the form 
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As a whole, problem (32) is a NLP problem and we 
may obtain its solution by many packages such as Lingo, 
Matlab, Gino, etc. Finally, by obtaining the solution of 
problem (32), we recognize the value of unknown ad- 
missible pair i i ,x u n l state and control function at   
points. We can construct the optimal solution for NPUP 
(22) by two piecewise functions  .,i ix u   Theorem 2 
will show existence of the optimal solution for the NPUP 
(22) [12].  

7. Simulation 

After using AVK method for discrete equations, we will 
achieve a control problem (i.e. problem 32) by synthe- 
sizing objective function (21) with initial and final condi- 
tion. Supposing the reason of aggressive tumor growth is 
inadequacy or inability of patient’s immune system that is 
caused to create tumor and finally death. We use one of 
the immunotherapies so-called cytokines IL-2 in order to 
improve immune system. The initial and final conditions 
are taken from clinical experiences. Considering T = 
10000 (normalization round of treatment), n = 20 (num-  

ber of divisions) and weights 1 = 0.8 and 2 = 0.2 to 
prove the effect of drug control on improving immune 
system. We can observe population of tumor cells and 
also external drug source control with optimal answer. In 
both Figure 5 and Figure 6, c = 0.002 and p4 = 0.5. In 
general, we have tried to minimize population of tumor 
cells by adding objective function and an external drug 
source (injecting IL-2 cytokine parallel to siRNA treat- 
ment) under control. In Figure 2, the maximum number 
of tumor cells was shown about 104 cells before treat- 
ment. Whereas, In Figure 5, the final number of tumor 
cells is about 103 cells after using treatment (i.e. siRNA 
and IL-2) which means that we could manage to over- 
come 90% of tumor cells. Note that there is no situation 
in which tumor could be cleared by the body [4] so this is 
an acceptable result. If the amount of drug used at the 
end of treatment is paused, tumor cells start to grow 
again, so using drug has to be continued forever. Figure 
6 shows percentage of using IL-2 as a drug to minimize 
number of tumor cells during a 1000-day period which 
indicates that how much drug is needed for each period.  
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Figure 5. Population of tumor cells on round of treatment 
(T = 10,000). 

 

Figure 6. Amount of drug on round of treatment (T = 
10,000).  
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8. Conclusion 

The aim of this paper was to exhibit a new and proper 
approach, known as AVK method, which could solve the 
nonlinear equations without changing its structure. The 
fairly proper efficiency of this suggested method was 
shown by numerical results. As was described, siRNA 
treatment inhibits the production and immuno-suppres- 
sive effects of TGF-β by targeting the specific mRNA 
sequence which leads to its synthesis. Furthermore, add- 
ing IL-2 in to the model could result in controlling tumor 
by enhancing an immune response. The mathematical 
model of aggressive tumor was extended to include thera- 
peutic strategy using siRNA and IL-2.   

9. Suggestion 

An extension along this line of work will be to examine 
the effect of other cytokines such as IL-10, IL-12 and 
interferon-, which are involved in the cellular dynamics 
of the immune system response to tumor invasion and 
how these cytokines affect the dynamics of the system. 
For future study, the addition of each cytokine above 
with other treatments such as chemotherapy and radio- 
therapy into our treatment model could result in actual 
tumor clearance.  
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