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ABSTRACT 

This paper deals with control system design and implementation problems encountered in multiple robot systems. The 
methodology developed is depicted by a set of coordination mechanisms using hierarchical net structures and their ac-
companying rules. With the net models, the hierarchical and distributed control system is designed for an assembly task. 
Synchronization commands allow coordination of the movements of the robots. The net models make concurrency of 
the movements of the robots transparent to users. The net based machine controller executes robot motion control 
through the communication with the external robot controller using the command/response concept. Sensory signals 
indicating the change of state of robots are used to trigger or initiate tasks. Simultaneous movement of the robots is ob-
tained by creating different background threads running in parallel under Windows OS. The multilevel hierarchical 
control system can be consistently constructed using net models. 
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1. Introduction 

Recently, based on the rapid development of the micro-
processor technology, the factory automation systems 
have been continuing to become more and more large- 
scaled, complicated, and integrated. The two flows of 
control and data must be organized in the system, but to 
achieve it, system concept, system architecture, and sys-
tem design method are not established sufficiently. Some 
techniques derived from Petri nets have been success-
fully introduced as an effective tool for representing con-
trol specifications including concurrent processes, which 
are characteristic of complex systems, analyzing system 
properties and designing control systems [1]. Especially, 
Petri nets are used to indicate the flow of control, and by 
decomposing the net, the concept of upper and lower 
control levels is clarified. The coordinator is defined as 
the agent which consistently executes the flow of control 
in the upper control level bringing about cooperation 
among the local machine controllers in the lower control 
level. The microprocessors seem to be the most suitable 
to realize the coordinator. They can be used to realize the 
coordinators corresponding to decomposed nets, besides 
the coordinator in the upper control level, using software 
directly on the same hardware. 

The representation scheme of concurrent robotic ac-

tivities as a decision logic structure is essential to control 
multiple robot systems that may be considered the most 
significant development in robotics fields [2-4]. The au-
thor presents a net based methodology for synthesizing 
complicated control software hierarchically for large and 
complex robotic systems, especially multiple robot sys-
tems. An algorithm is proposed for coordination of ma-
chine controllers so that robots can synchronize activities 
and avoid harmful conflicts. By the proposed method, 
highly reliable and efficient development of complicated 
real-time concurrent control algorithms for multiple ro-
botic processes can be achieved. 

2. Modeling of Discrete Event Robot Systems 
with Petri Nets 

A Petri net comprises two types of nodes, places repre-
senting conditions (or states) and transitions representing 
events, which are interconnected by directed arcs [5]. 
Tokens, which reside at the places, are used to indicate 
the instantiation of a state. The current state of a net is 
represented by the distribution of tokens, or the marking, 
in the net. In a Petri net, the places, transitions and tokens 
are represented by the circles, bars and dots respectively. 
There are many forms of Petri net. The type considered 
here is the condition-event net in which each place can 
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contain not more than one token. This allows a one-to- 
one semantic correspondence between places and condi-
tions. 

Formally, a net is a bipartite graph represented by the 
4-tuple  such that:  , , ,G P T I O

 1 2, , ,p p
 1 2, , ,t t

n

 is a finite set of transitions; 
P p  is a finite set of places; 

mT t
:I T P

:O T P

 is the input function that maps transitions 
to bags of places; 

 is the output function that maps transi-
tions to bags of places. 

Thus the axioms of nets are as follows:  
1) A transition is enabled, if and only if, each of its 

input places has one token and each of its output places 
has no token; 

2) When an enabled transition fires, the marking is 
changed to the new one, where each of its input places 
has no token and each of output places has one token. 

A transition without any input place is called a source 
transition, and one without any output place is called a 
sink transition. A source transition is unconditionally 
enabled, and the firing of a sink transition consumes a 
token in each input place but does not produce any. Ac-
cording to these axioms, the number of tokens in each 
place never exceeds one, thus, the net is essentially 1- 
bounded and said to be a safe graph.  

In a net, a place represents a condition or state of a 
process or resource. A transition corresponds to an event 
or action. The input places of the transition define the 
conditions to the executions of the action. The output 
places define the results of the action. A token is placed 
in a place to indicate that the condition corresponding to 
the place is holding. 

Conceptually, robotic processes are represented as se-
quential constructs or state machines, where each transi-
tion has exactly one incoming arc and exactly one out-
going arc. The structure of a place having two or more 
input or output transitions is referred to as a conflict, de-
cision, or choice, depending on applications. State ma-
chines allow the representation of decisions, but not the 
synchronization of parallel activities. 

The condition-event net is a subclass of Petri nets, so it 
can be represented by the ordinary Petri net [6]. Figures 
1(a) and (b) illustrate a simple net and its equivalent net 
represented by the ordinary Petri net, which is achieved 
by addition of a place with the inversion of the existence 
of token and the directions of its input and output arcs, 
for each place of the net. The enabling rule for the ordi-
nary Petri net, where all of its arc weights are 1, is that a 
transition is enabled, if and only if, each of its input 
places has more than one token. 

If there is no conflict place in a net, the net can be 
transformed to one with no loop, as shown in Figure 2. If 
there is a loop with no conflict place in a net, then the  

 
(a)                               (b) 

Figure 1. (a) A simple net and (b) its equivalent Petri net. 
 
 

 
(a)                            (b) 

Figure 2. (a) A net with no conflict place and (b) its equiva-
lent net with no loop. 
 
number of tokens in the loop is not changed.  

In case that there is initially no token in a net, if there 
is one token in a direct path between two transitions, then 
there is one token in one place in each of other paths be-
tween the transitions. Further, addition of a direct path in 
a path between the transitions does mot change the ena-
bling conditions of the transitions in the net, as shown in 
Figures 3(a) and (b). Generally, if there are several con-
current paths in two transitions and if there is initially no 
token in the net, the maximum number of tokens in each 
path is the least number of places in the paths. 

The condition-event net can be easily extended to adopt 
the following elements as input and output interfaces 
which connect the net to its environment: gate arcs and 
output arcs. A gate arc connects a transition with a status 
signal source, and depending on the signal, it either per-
mits or inhibits the occurrence of the event. An output 
arc connects a place with an external machine and sends 
a command signal to the machine. These interfaces are 
represented by transitions which represent the communi-
cation activities of the net with its environment.  

The places are connected via transitions, each having a 
boolean condition or gate condition. This condition is 
tested while the transition is enabled, i.e., when the pre-
ceding place is active. If the condition is true, the suc-
ceeding place becomes active, and the preceding place 
becomes inactive. Using gate arcs, an enabled transition 
fires when 1) it does not have any internal permissive arc 
signaling 0 nor any internal inhibitive arc signaling 1 and 
2) it does not have any external permissive arc signaling 
0 nor any external inhibitive arc signaling 1. Figure 4 
illustrates place and gate variables involved in transition  

Copyright © 2012 SciRes.                                                                                  ICA 



G. YASUDA 134 

 
(a)                            (b) 

Figure 3. (a) A net with direct path and (b) addition of 
dummy direct path. 
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Figure 4. Place and gate variables involved in transition 
firing. 
 
firing. The firing condition is expressed formally using 
logical variables as follows.  

The logical variable i  is set to 1 if a token is en-
tered into the place, and reset to 0 if a token is removed 
from the place. The logical variable k

p

g  is set to 1 if the 
gate condition is 1 (i.e. permissive signal on), and reset to 
0 if it is 0 (i.e. signal off). The logical variable k  is set 
to 1 if the transition is fired, and reset to 0 if it is not fired. 
Hence, from the above firing rules, the firing condition of 
transition  can be written as 

t

kt

k k

k i j k
j O

p g
 

 
    
 
 


k

i I

t p             (1) 

where  denotes the logical product operation, and 
I : set of input places of transition .  kt
O t

kt

k k

The marking change of input and output places of 
transition  can be described as follows: 

: set of output places of transition . 

For ,

For ,
i k i k i

j k j k j

p t p

p t p

  
  

1, , mt t

1, ,p 
np

p I

p O
         (2) 

From Equation (1), by the inversion of the existence of 
token and the directions of its input and output arcs of a 
place, the enabling condition of every transition is not 
changed. Using the above procedure, if a net has no con-
flict place, the net can be transformed into a net with no 
loop. 

The dynamic behavior of the system represented by a 
net model is simulated using the enabling and firing rules. 
One cycle of the simulation comprises the following two 
steps. 

1) Calculate the logical variables of all transitions 
 using Equation (1). 

2) Calculate the logical variables of all places  
 using Equation (2). 

For efficient simulation combined with real-time con-
trol of a robotic system, the following steps are executed 
only when some gate condition is changed. 

1) Calculate the logical variable of the transition asso-
ciated with the new gate condition using Equation (1). 

2) If the transition is fired, calculate the logical vari-
ables of its input and output places using Equation (2). 

3) Then the marking is changed and a new command 
is sent to the corresponding machine. 

Figure 5 shows the net representation of real-time 
control of a robotic unit action. When a token is placed in 
a place which represents an action, the net based control-
ler initiates the execution of the action attached to the 
fired transition by sending the “start” signal through the 
output arc to the robot. Then the robot interprets the re-
quest and sends an acknowledgement to the controller. 
When the action is completed, the robot sends an “end” 
report to the controller. 

Figure 6 shows a net with parallel processes and its 
decomposition into two subnets using permissive and 
inhibitive gate arcs. Shared transitions are decomposed 
and assigned to the subnets, which exchange the signals  
 

Action 

: output arc 

req ack end : gate arc 

External robot controller 

S1 S2 C1 

C1: command start request 
S1,S2: status report (start acknowledgment, or end report) 

Figure 5. Net representation of execution of robotic action. 
 

: permissive

: inhibitive 

2t

3t

21t 31t

22t 32t

(a) 

(b)  

Figure 6. (a) A net with parallel processes and (b) its de-
composition into two subnets. 
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corresponding to the state of the respective place. 

3. Net Models of Hierarchical Coordination 
of Concurrent Robotic Tasks 

The methodology addressed in this paper regards tasks to 
be performed by robots as being primal. A single task 
executed by a robot is represented as a state machine. 
Places for motion and computational actions have a uni- 
que output transition. Decision actions introduce conflict 
into the net. The choice can either be made non-deter- 
ministically or may be controlled by some external signal. 
In the case of two concurrent tasks, where each task can 
be represented by a net model of a state machine, the 
composite net which is simply the union of such nets can 
represent the concurrent execution of two tasks. Parallel-
ism is usefully introduced into a system only if the com-
ponent tasks can cooperate in the system. Such coopera-
tion requires the sharing of information and resources 
between the tasks. 

Figure 7 shows an example of hierarchical coordina-
tion of concurrent tasks by two robots. The constituent 
transitions t11 and t12 from transition t1 should be syn-
chronized because they represent the same transition, so 
that the original transition is enabled if all transitions 
deriving for the distribution, called global transitions, are 
enabled. 

In case that a transition in conflict with other transi-
tions concerns two robots, if arbitration of the transition 
is performed independently in separate subnets, the re-
sults may be inconsistent with the original rule of arbitra-
tion. Figure 8 shows an example of hierarchical coordi-
nation of transitions in conflict. The transitions t1, t3 
represent the start of independent tasks, while transition 
t2 represents the start of cooperative task. If both of the 
transitions t21 and t22 are enabled, transition t2 is en-
abled. Further if transitions t11 and t32 are enabled, then 
transitions t1, t2, t3 are enabled and should be arbitrated 
using some arbitration rule. If transition t2 is not enabled, 
the enabled transitions t1 and t3 can be fired. So transi-
tions t11, t21, t22, t32 should be arbitrated together as a 
group. On the other hand, arbitration of local transitions 
in conflict is performed by local machine controllers. 

4. Implementation of Concurrent Control 
System for Assembly Processes 

A multiple robot system for robotic assembly operations 
has been constructed [7]. In the system, two small indus-
trial robots are placed so that they share a common work 
space as shown in Figure 9. They are of the type Mitsu-
bishi RM501, which has 5 degrees of freedom and 
close/open control of the gripper with its own built-in 
microprocessor control system. Each robot can be con-
trolled by a general microcomputer which sends com-

mands via a serial communication port. To direct a robot 
to move, the low-level command from the microcom-
puter must specify the number of steps that each joint of 
the robot arm must move. According to the physical di-
mensions, transformations were implemented to be used 
to calculate the joint steps to accomplish the desired 
move specified in the Cartesian coordinates. After com-
pleting each command, the robot sends an acknowledge- 
ment to the microcomputer. The syntax for the low-level 
commands as well as the protocols for sending and re-
ceiving data is specific to the robot.  

Two robots cooperate with one another in building a  
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Figure 7. Hierarchical coordination of concurrent tasks. 
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Figure 8. Hierarchical coordination of tasks in conflict. 
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Figure 9. View of experimental robot system. 
 
component, one holding some part while the other at-
taches some other part to it. The following items of in-
formation are required to generate task specification. 1) 
which parts are required for assembly, 2) connection re-
lationship between parts when connected, 3) procedures 
for connecting parts, 4) initial and final positions of parts. 
The assembly process consists of two concurrent proc-
esses; main process and sub process which are assigned 
to Robot 1 and Robot 2 respectively. Figure 10 shows 
the conceptual net model of an example assembly task, 
which is specified using the following commands. 

1) Part 1 is the basic part. 
2) Part 2 is connected to Part 1 (Part 2 + Part 1). 
3) Connection of Part 4 and Part 3 starts after connec-

tion of Part 3 and Part 2 ends. 
4) Part 7 and Part 2 (Part 8 and Part 4) must be con-

nected together to connect Part 3 and Part 2 (Part 5 and 
Part 4). 

Then, commands or subtasks are assigned to robots on 
the assumption that one part connection is one subtask. 
Subtasks in the main process must be executed sequen-
tially and no overlap is permitted. There can be a wait 
status between subtasks. Part connections in sub process 
may be required for part connections in the main process. 
The end of the subtask in the main process is synchro-
nized with the end of the global move of the subtask in 
the sub process. This causes the subtask in the main 
process to wait while the local move is executed in the 
sub process. When the subtask in the sub process ends, 
the next subtask in the main process starts. To synchro-
nize complicated processes, several subtasks can be com- 
bined into one group subtask. If subtasks for robot 1 and 
robot 2 are described on the same transition, they are 
executed simultaneously, and the subtask on the next 
transition is not executed until they terminate.  

The procedure for generation of motion of the robots is 
as follows. The layout of the robots is determined con- 

sidering operational efficiency, and the work points are 
defined considering the positions of the robots. Then how 
the robots should move to the work points is determined 
taking the other robot’s location and the environment 
into consideration. Finally moving procedures and how 
the robots’ hands move between work points are deter-
mined. The local path is extracted from the connection 
information to separate the connected parts and connect 
one of them to other parts. The local path defined with 
respect to one of the part’s coordinate system is con-
verted to world coordinates. A CAD based teaching sys- 
tem for multiple robots with 3D assembly modeler was 
developed to extract the items required for assembly, 
which are automatically translated into robotic task speci- 
fication. Finally, coordinated robot motion is executed by 
a net based operation simulator.  

As a prototype, system control software is imple- 
mented on a general PC using multithreaded program-
ming [8]. Concurrent movement and coordination of the 
two robots in the system is obtained through four differ-
ent background threads running in parallel. The control 
software consists of three different layers, each of which 
is executed by the respective thread: the system modeling 
thread, the system control thread, and the task execution 
thread, as shown in Figure 11. The system modeling 
thread contains the sequence of user commands for as-
sembly task specification as well as the net modeling and 
drawing. For the example system, detailed net models 
can be automatically generated using the database of net 
models of general robotic operations. The thread is a core 
component which receives the states of all robots and 
machines in the system, and decides the next task. It then 
constructs the net model to be executed by the system 
control thread.  

The system control thread contains system control 
commands for all the robots so as to accomplish a coor-
dinated task. The thread also oversees the operation of a 
set of logically decentralized controllers. The coordina-
tion mechanism is implemented as a detailed representa-
tion of the original net, and the coordinator information 
is memorized in a table of the system controller and used 
to perform the net execution efficiently with the other 
tables representing the structure of the net specifying the  
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Figure 11. Software structure of distributed control system using multithreaded programming. 
 
robotic task. Based on the coordination information, the 
system control program such as synchronization and ar-
bitration can be written as production rules or IF-THEN 
expressions in the C language, such that rule conditions 
shown by a conjunctive form would, as a consequence, 
have a set of actions. In the hierarchical and distributed 

architecture composed of the system controller and sev- 
eral machine controllers [9], the enabling conditions of 
the global transitions are sent from each machine con- 
troller to the system controller, and the resulting actions 
are sent from the system controller to the machine con-
trollers.  
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Task execution threads are created to perform the di- 
rect control of the robots. Each thread checks its queue 
for any records not executed yet. If the queue is empty, it 
suspends itself and waits for a new record. Whenever a 
new record is inserted, the thread wakes up immediately 
and resumes execution by processing the new record. 
After a high-level, system control command requiring 
robot interaction is read by the thread, the necessary cal- 
culations are performed and then the proper low-level 
command is sent to the robot. This robot first acknowl- 
edges that it has received the low-level command and 
later that it has finished executing the command. A 
thread waiting to read the acknowledgement from a robot 
waits in high priority and wakes up immediately when it 
arrives. Computations needed for the next robot com- 
mand fill the gaps between I/O operations so that the 
control of the robots is accomplished very efficiently.   

In addition to using pipes to communicate information 
between threads, other information is exchanged through 
shared memory. The database of net models of general 
robotic operations is created by the modeling thread and 
used by the system control thread. This shared memory 
also includes different flags used for mutual access con-
trol between the system control thread and the task exe-
cution threads. Coordination of mutual access among 
these threads was implemented through equivalent P and 
V semaphore operations in the following way. Each 
thread associates with it a flag in the shared file and a 
thread executes an equivalent P operation by decreasing 
the value of its flag. If this result is not negative, the 
thread continues. If this result is negative, the thread 
sleeps for a time and checks again.  

Numerous simulations and real experiments using re- 
alized computer solutions indicate that the assembly task 
was realized satisfactorily; transitions in the detailed nets 
fire simultaneously as the transition in the conceptual net 
model of the whole system task. The control software 
provides concurrent movement of all the robots in the 
system, and it provides synchronization commands to 
allow coordination of their movements to accomplish 
user defined tasks. In contrast to decentralized imple- 
mentation using synchronization mechanisms such as the 
WAIT and SIGNAL statements, synchronization can be 
easily implemented for several tasks by hierarchical co- 
ordination. The unique feature of the proposed method is 
that it provides modular software development for han- 
dling robots made by different manufacturers. By im- 
plementing the control software within a Windows XP 
SP3 and Visual C# environment, its extendability and 
transportability to other systems are ensured. Different 
robots can be interfaced to the system by simply adding 
specific motion procedures to the command library of net 
models. Transportability of the software was achieved by 
using the C language; it was transferred successfully to a 

microcomputer H8/3069 from Hitachi running the real- 
time OS ITRON 4. The performance of the control sys- 
tem using multithreaded programming depends on the 
operating system. If the task execution layer is imple- 
mented on a distributed microcomputer network con- 
nected via a serial bus [10,11], where each microcom- 
puter is dedicated to the local net model of a robot or 
subsystem in the overall system, the performance of the 
distributed control system can be greatly improved.  

5. Conclusions 

A methodology of representing the interaction between 
robots and the interlock signals in multiple robot systems 
has been developed. The net models allow the user to 
visualize graphically the task programmed and the condi-
tions required to initiate the constituent subtasks. Based 
on the hierarchical structure of Petri nets, hierarchical 
coordinator algorithms are designed to properly perform 
tasks that require the cooperation of two or more robots.  

The coordination mechanism can be implemented in 
each layer repeatedly. The overall control system is con- 
sistently organized, such that for the coordinator in a 
layer the coordinator in one-level lower layer appears as 
the net based controller, and for the net based controller 
in a layer the net based controller in one-level upper 
layer appears as the coordinator. This means that the 
structure of the control system corresponds to the hierar-
chical and distributed structure of the robot system.  

The net model is more general in comparison to the fi-
nite state machine model, because a changeover from one 
system state to the other is based on data from sensors 
and on information from lower levels. The solution is 
sufficiently cost-effective since the net model for system 
control is not so large and the detailed net models for 
robot control are state machines. These net models can 
be implemented on general PC, microcomputers or PLCs 
using conventional programming languages.  
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