
Intelligent Control and Automation, 2012, 3, 59-70 
http://dx.doi.org/10.4236/ica.2012.31008 Published Online February 2012 (http://www.SciRP.org/journal/ica) 









 Control of Uncertain Fuzzy Networked Control 
Systems with State Quantization 

Magdi S. Mahmoud 
Systems Engineering Department, King Fahd University of Petroleum and Minerals, Dhahran, Saudi Arabia 

Email: msmahmoud@kfupm.edu.sa 
 

Received September 11, 2011; revised October 11, 2011; accepted October 18, 2011 

ABSTRACT 

The problem of robust  control for uncertain discrete-time Takagi and Sugeno (T-S) fuzzy networked control sys-

tems (NCSs) is investigated in this paper subject to state quantization. By taking into consideration network induced 
delays and packet dropouts, an improved model of network-based control is developed. A less conservative de-
lay-dependent stability condition for the closed NCSs is derived by employing a fuzzy Lyapunov-Krasovskii functional. 
Robust  fuzzy controller is constructed that guarantee asymptotic stabilization of the NCSs and expressed in LMI- 

based conditions. A numerical example illustrates the effectiveness of the developed technique. 
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1. Introduction 

Fuzzy system models have been widely adopted to rep-
resent certain classes of nonlinear dynamic systems fol-
lowing the T-S fuzzy model [1]. Since then there have 
been several approaches for the study of stability analysis 
and robust controller synthesis using the so-called paral-
lel distributed compensation (PDC) method for uncertain 
nonlinear systems [2,3]. Sufficient conditions have been 
derived based on the feasibility testing of a linear matrix 
inequality (LMI) in [4-7] and extended for classes of 
nonlinear discrete-time systems with time delays in [8-10] 
via different approaches. Recently, much attention has 
been paid to the stability issue of network based control 
systems [11]. Several results pertaining to the analysis 
and design of networked control systems (NCSs) en- 
hanced their wide benefits such as reducing system wir- 
ing, ease of system diagnosis and maintenance, and in- 
creasing system agility, to name a few. However, com- 
munication network in the control loops gave rise to 
some new issues, especially the intermittent losses or 
delays of the communicated information due to use of a 
network, which imposes a challenge to system analysis 
and design. To address this challenge, many results have 
been developed in consideration of network-induced de- 
lay and packet dropout [12-18], with focus on stability 
analysis and controller design with random delays. 

Further consideration of the communication of the 
NCSs over the channel emphasized the importance of 
signal quantization, which has significant impact on the 

performance of NCSs. In this regard, the problem of 
guaranteed cost control and quantized controller design 
were discussed in [17] by using two quantizers in the 
network both from sensor to controller and from control-
ler to actuator, and the network-induced delay and data 
dropped were considered as well. 

Recent advances converted the quantized feedback de-
sign problem into a robust control problem with sector 
bound uncertainties, [11] and [16-18]. Parallel investiga- 
tions to the class of switched discrete-time systems with 
interval time-delays were developed in [19-23]. 

Despite the potential of these developments, the prob-
lem of how to analyze the stability of nonlinear NCSs 
with data drops still open. On the other hand, most in-
dustrial plants have severe nonlinearities, which lead to 
additional difficulties for the analysis and design of con-
trol systems. Though some issues on nonlinear NCSs 
have been investigated [23,24], limited work has been 
found on robust   state feedback controller design of 
networks for fuzzy systems with consideration of both 
network conditions and signal quantization. 

The guaranteed cost networked control and robust 

  problem based on the T-S fuzzy model was treated 
in [25]. The results were derived by using a single Lya- 
punov function (SLF) method, which in general leas to a 
conservative result. Designing fuzzy controllers for a 
class of nonlinear networked control systems was con- 
sidered in [26-28] by solving approximate uncertain lin-
ear networked Takagi-Sugeno (T-S) models with both 
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    xnetwork induced-delay and packet dropout. However, 
they do not quantize the signals. The foregoing facts mo-
tivate the present study. 

In this research work, we address the robust 

t 1

 state 
feedback control problem for discrete-time networked 
systems with state quantization and disturbances. The 
T-S fuzzy systems with norm-bounded uncertainties are 
utilized to characterize the nonlinear NCSs. Since the 
computation available is often limited, the quantized feed- 
back controller is designed under consideration of effect 
of network-induced delay and data dropout, the em- 
ployed quantizer is time-varying. By using a new fuzzy 
Lyapunov-Krasovskii functional (LKF), we provide a 
sufficient LMI-based condition for the existence of a 
fuzzy controller. A numerical example shows the feasi-
bility of the developed technique. 

Notations and facts: In the sequel, the Euclidean 
norm is used for vectors. We use  and WW   to de-
note the transpose and the inverse of any square matrix 

, respectively. We use   to denote a 
symmetric positive definite (positive semi-definite, nega-
tive, negative semi-definite matrix W  and 

W ( , <, 0) > 0W

I  to de-
note the  identity matrix. Matrices, if their dimen-
sions are not explicitly stated, are assumed to be com-
patible for algebraic operations. In symmetric block ma-
trices or complex matrix expressions, we use the symbol 
(  ) to represent a term that is induced by symmetry. 

n n

Fact 1: For any real matrices  and 
1, 2 3  with 

appropriate dimensions and 
3 3

t
I  , it follows that 

1 1
1 3 2 2 3 1 1 1

t t t t          2 2
, 0

t   

0T 
,S k 

thj

is , thenjnk M

 

Sometimes, the arguments of a function will be omit- 
ted when no confusion can arise. 

2. Problem Description 

A typical networked control system typically has a clock- 
driven sampler and a quantizer, controller, a zero-order 
hold (ZOH) which is event-driven. The sampling period 
is assumed to be  with the sampling instants as 

k . The plant belongs to class of uncertain 
discrete-time systems where the parametric uncertainties 
are norm-bounded. 

, = 1,

In what follows, we consider that this class is repre-
sented by Takagi-Sugeno fuzzy model composed of a set 
of fuzzy implications, and each implication is expressed 
by a linear system model. The  rule of this Takagi- 
Sugeno model has the following form: 

 1 1Rule : If ( ) is , andj nj k M   

        ,j1 = j jx k A x k B   u k w k 

  ,j

 

     = j jy k C x k D u  k w k   

= , ,0 , = 1, 2, ,Mk k k j r         (1)    

  where   , , , nk k k  1 2  are the premise vari-
ables, each  = 1, 2,jmM m n r

  nx k 
 are the fuzzy sets,  is 

the number of if-then rules and  is the state 
vector,   mu k   qy k  is the control input,    
is the output,   pw k   is the disturbance input which 
belongs to  2 0,  and M  indicates the maximum 
allowable signal transmission delay. The uncertain ma-
trices , ,j jA   sented by:  are repre

=j j j j j j

j j j j j j

j j j

j j j

A B A B

C D C D

A B

C D

  

  

    
       

   
     

1
1 2 3

2

= ( )

j j j

j j j

j

 

j j j j
j

A B

C D

M
F k N N N

M

   
    
 

          (2) 

    
 

, , ,where the matrices j j jA B 
, , , ,

 describe the nominal 
dynamics and 1 2 1 2 3j j j j jM M N N N  are known con-
stant real matrices with appropriate dimensions. The ma-
trices  jF k  are unknown time-varying and satisfying 

    , , 0tF k F k I kj j   

          

          

=1

=1

1 =

=

r

j j j j
j

r

j j j j
j

. 
Using a center average defuzzifier [1], product infer-

ence, and incorporating fuzzy “blending”, the fuzzy sys-
tem under consideration can be cast into the form 

x k f k A x k B u k w k

y k f k C x k D u k w k





  

  

     

   





     
  

(3) 

where 

     
=1

=1

= ,

=

j
j r

j
j

n

j jm m
m

F k
f k

F k

k M k






 





          (4) 

F

  mjmM k  is the grade of membership of where 
 m k  in jmM . In the sequel, we assume that 

     
=1

0, = 1,2, , , > 0, 0
r

j j
j

F k j r F k k   

     
=1

0, = 1, 0
r

j j
j

f k f k k   

 

and therefore 

 

Our objective in this paper is to design a fuzzy   
state feedback controller with state quantization. 
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3. Controlled Fuzzy System 

In what follows, we proceed to consider establish the 
main result for the uncertain discrete-time fuzzy net-
worked control systems described by (3) and design the 
quantized fuzzy   state feedback controller. We con-
sider a limited capacity communication channel and for 
reducing the amount of data rate of transmitting in the 
network, which led to the increase quality of service of 
the network, we assume that the state vector 



 x k

    

 is 
measurable. The state signal from sensor to the controller 
is quantized via a quantizer, and then transmitted with a 
single packet. To reflect realty, network-induced time 
delay is modeled as an input delay and the packet drop-
out will be considered. 

3.1. State-Feedback Control 

In effect, we seek to design the state-feedback controller:  

   = kK x d T= ,u k g k k 

  
      (5) 

where g k  is the feedback law to be defined in the 
sequel and  are some integers such   , = 1,2,3,d k k

 that  1 2 3, , ,d d d 1, 2,3, 

   = =d T k k d T k k  

> 1d d
< ,d d

   
  

1 ,

, 1

k d d T k

T k

. Introduce  

  = kk k d T   which contains the information of packet 
dropouts and improper packet sequence in the control 
signal. Note that . k k

It has been pointed out in [19] that when  

1k k  there would be no packets dropout and the 
case 1k k  represents continuous packets lost. In 
addition, when 1k k  the new packet reaches the 
destination before the old one. This case might lead to a 
less conservative result. In the sequel, we assume that 

 and it is readily seen that  

= 1,d d

1 >kd  kd

 
  

1

1

k k

k kk d T k d

 

 

   

  



 
 

It should be observed that  k  accounts for the time 
from the instant k  when sensor nodes sample the sen-
sor data from the plant to the instant when actuator transfer 
data to the plant. Extending on this, we remark that 

d T

      
=1

, 1k k
k

d T k d T k     1 0 0= , , 0k k


  

  , ,m M Mk T T         

m M

 

Consequently, we define 

m M m

> 0, > 0

 

where    are known finite integers. 

3.2. Quantizer 

Let the quantizer be described as  

           =
t

j j jq1 1 2 2= ,m m jq q q q q     

where  , = 1,2, ,q j m   is a symmetric, static and and 
time-invariant quantizer and the associated set of quanti-
zation levels is expressed as  

   = , = 1, 2, 0jQ j   

Q

         (6) 

Note that the quantization regions are quite arbitrary. 
In case of logarithmic quantizer, the set of quantization 
levels  becomes  

     0 0= , = , = 1, 2, 0j j jQ j          

0

 

where   is the initial state of the quantizer and  

j0 < < 1  is a parameter associated with the quantizer 
 f  . In this regard, a particular characterization of the 

quantizer is given by 

 

1 1
if < , > 0

1 1

= 0 if = 0

( ) if < 0

j j j
j j

x x

q x x

q x x

  
 

   

 


 

    

where 
1

=
1




j

. It follows from [19] that, for any j
j

 q  , a sector bound expression can be expressed as: 

     = 1 ) ,j j q j j q j jj j
q x D x x D x   

qD



For simplicity in exposition, we use  to denote 
 q jj

D x . Thus,  q   can be written as  

  = qq x I D x

k

 

We assume henceforth that the updating signal at the 
instant  has experienced signal transmission delay 
 k , however the delay between the sensor and quan-

tizer is neglected. In view of the limited capacity in 
communication channel, the state signal from sensor to 
the controller is quantized via a logarithmic quantizer 
 q   for reducing the amount of data rate of transmitting 

in the network. When the static and time-invariant quan-
tizer   =q x x , the state feedback controller would be in 
the form of   = ku k K x d T , which is the same as a 
traditional one. 

Incorporating the notion of parallel distributed com-
pensation, the following fuzzy state-feedback stabilizing 
control law is used: 

   1 1Rule : If is , and is , thenj n jnj k M k M   

     = j qu k K I D x k k          (7) 

where jK  is the control gain for rule . 
Accordingly, the overall fuzzy control law is expressed by 

, = 1,2, ,j j r

          
=1

=
r

j j q
j

u k f k k K I D x k k      (8) 
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   

    ,j

k x k

k w k 
  

 

   j

x k

k w k 
 

  ) = ,

Applying controller (8) to system (3) with some mathe- 
matical manipulations, the resulting closed-loop system 
can be cast into the form: 

Copyright © 2012 SciRes.    

     

    
=1

ˆ1 =

ˆ ˆ( )

r

j j
j

j j q

x k f k k A

B k K I D x k k

 




  

  


 

       

      
=1

ˆ=

ˆ ˆ

r

j j
j

j j q

y k f k k C k

D k K I D x k k

 




 

  


 (9) 

which belongs to the class of switched time-delay system 
[15], where 

  
=1 =1

ˆ ˆ( ) = , (
r r

j j j j
j j

j jA k f k A B k   f k B  

   ,

 

  
=1 =1

ˆ ˆ( ) = , ( ) =
r r

j j j j
j j

C k f k C D k  
r r

j jf k D  

  ˆ

(10) 

  
=1 =1

ˆ ( ) = , ( ) =j j j j
j j

k f k k     j jf k  



,

 

4. Quantized Fuzzy Control Design 

In this section, we seek to establish a sufficient condition 
for the solvability of the robust   control problem. 
This condition will be expressed in an LMI framework to 
facilitate the design of the desired fuzzy state feedback 
controllers. Based on the so-called parallel distributed 
compensation scheme, the following theorem establishes 
a delay-dependent stabilization condition for the closed- 
loop fuzzy networked control system (9): 

Theorem 4.1 Consider system (9). Given the bounds 

m M  > 0 and a scalar constant  , there exists a fuzzy 
controller in the form of (8), such that the uncertain closed- 

loop fuzzy system (9) with an   disturbance attention 
level 


  is asymptotically stable, if there exist matrices 

0 < ,0 < ,0 < ,0 < ,0 < ,0 < , ,j j j cj jP Q Z S R R K
, , , , ,a c a

j aj matrices 

c a c     1 2> 0, > 0,j j and scalars   
3 4> 0, ,

 

j j

0, 1
•
tj sj

j
rj

j r
  

satisfying  

       

 


          (11) 

 1 2 3 4

1 2 3 4

ˆ=

= ,

t
tj oj j j j j j j

rj j j j jdiag I I I I

   

   

       

   





1 2 3 4= ,sj j j j j   

 

   


1 2 3= 0 0 0 0 0 0 0t
j j j j jN N K N

           (12) 

   

1 1= 0 0 0 0 0 0 0 0 0t
j jM

 

    

2 1= 0 0 0 0 0 0 0 0 0t
j s s j ajM R      

3 10 0 0 0 0 0 0 0 0t
j M M j cjM R      

4 2= 0 0 0 0 0 0 0 0 0t
j M jM      (13)  

1 ,j m r

Proof: In what follows, we adopt a parameter- 
dependent approach [15]. Consider system (9) with 



         
=1 =1

= , = ,
r r

 and define 

j j j j
j j

P k f k P Q k f k Q  

         
=1 =1

= , = ,
r r

 

Z j j j j
j j

k f k Z S k f k S  

         
1 1

,
r r

a j aj c j c
j j

R k f k R R k f k R 
 

  

 

j  (16) 

 

   

2

0 0

0 0

0 0 0 0 0 0 0

0 0 0 0 0 0

0 0 0

2 0 0 0

2 0 0

2 0

t tt t
a j s j M j j

t t t t t t t t
j j s j j M j j j j

j
t t
j jˆ =oj

ooj oaj a

aa c

j

c

j j j

aj j j

cj j j

j j

A A I A I C

K B K B K B K D

S

I

P I B K

R I B K

R I B K

Z

I D K

 

 



   

    
    

    
     
     

      

 

  
  
  




 
 
  
  
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













 

 = 1 , =t t
j a a oaj a c a a

t
c c

P Q Z S             

 











       (14)








=

ooj j s j j

t t
aaj j c c c cQ     

                              (15)
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where 0 < ,0 < ,0 < ,0 < ,0 < ,0 <j j jP Q Z S j aj cjR R  are 

matrices of appropriate dimensions and ( ), ( ), ( ),P k Q k Z k  

a c ng matrices that are 
directly include the membership functions instead of a 
single matrix, a fact that aims at relaxing the conser- 
vatism. For simplicity in notation, we let 

( )S k , ( ), ( )R k R k are 

     ˆ= ,j j

fuzzy weighti

 
=1

r

j

A k f k  k A k   

 = ,j qK I D   

     ˆ= ,j jk C k   

 = ,j qK I D   

j j k   

     ˆ
j jk k          (17) 

ent  

       
=1

ˆ
r

j j
j

B k f k k B k  
r

 
=1j

C k f k 

r

       
=1

ˆ
j j

j

D k f k k D k  

       ˆ= ,
r

k f k k  
=1j

  =
r

k f k  
=1j

In terms of the state increm

     = 1x k x k x k   and the tim

we consider the Lyapunov-Krasovskii functional (LKF):  

           = o a c m nV k V k V k V k V k V k     

       = ,t
oV k x k P k x k

       
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k
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a
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1
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=
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t
m

j m k jM

V k x m Q m x m




 

  
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1 1

= =
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=
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t
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V k x m R m x m

 

 

 

 

 e-span =s M m   , 

x m R m x m







 

 

  

 

 

 



 

 

j r 

      (18) 

We focus initially on the case 1 . A straight- 
forward computation gives the first-difference of  

     = 1V k V k V k  

     

 along the solutions of (17) 

with the help of (9) and (10) as: 

       

                           

= 1 1

=

t t
o

t

k x k P x k P k x k

      ,t

1k x kV

A k x k B k x k k k w k P k A k x k B k x k k k w k      

   

            
   

               
= 1

k m
t t t

a j j
j k M

k Q k x k x k k Q k x k k x Q k x



 



 

      

       

x k P k x k



 V k x 

              t t t t
c m m M Mk x k x k Z k x k x k Sx k x k S k x k d=V k x k Z             

     
= 1

k m
t t

j k M

x k Q k x k






 

   

               
1 1

= =

k km
t t t t

a M c j a j j c j
j k j kM M

R k x k x k R k x k x R k x x R k x


 

         =m M mV k x k Q k x k  

   =n M mV k x k           
  

 

      (19) 

ce analysis, we invoke the following identities 

       
1

( )

2 2 0
k

t t
a c j

j k k

x k d k x k x k k x


 


 

 
          

 
  

         
( ) 1

=

2 2 ][ = 0
k k

t t
a c M j

j k M

x k x k k x k k x k x



   

 



 
        

  
  

To facilitate the delay-dependen

 x k

Copyright © 2012 SciRes.                                                                                  ICA 



M. S. MAHMOUD 64 

         2 2 ][t t
a c m

j k

x k x k k x k x k k         
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= ( )

= 0
k m

j
k

x





 



 
 
 

               (20) 

for some matrices , ,a c  , and proceed to get 
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
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In terms of 

 
 

t

t
m M

k
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e form: 
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      (22) 

where , ,oo aa oa    are given by (15). If 0j   for 
all admissible uncertainties satisfying (2), then by Schur 
complements it follows from (32) that   0,V k   for 
any   0k   guaranteeing the internal stability. Pro- 

 further and op stabceeding  to assure the closed-lo ility 
with  -disturbance attenuation, we follow [15] to get: 

 

    
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Next, by applying Fact 1, we obtain 
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k P


   
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 
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 
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= 0

=
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t
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     

     

 


 

    

 



        (25) 

for some scalars 1 2 3 40, 0, 0,j j j j 0     

 
 . Note that  

     0, 0,1 .j jf k f k k j r        The quan-  

tities 1 2 3 4ˆ ˆ ˆ ˆ, , ,j j j j     correspond to 1 2 3 4, , , j j j j    

given by (13) after deleting the last element, and  
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 
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          


 

 

     = , =aj j j q cj j j qB K I D D K I D      (26) 
where , ,ooj aaj oaj

   

    are given by (15). Further con- 
vexification of  j  in (35) yields  

1 1 1 1
1 1 1 2 2 2 3 3 3 4 4 4 < 0t t t t

oj j j j j j j j j j j j j                                       (27) 

r complements using the algebraic inequality 

 1 0X X I    for any matrix > 0X , 

sired stability condition can then be cast into the LMI 
(11), which concludes the proof. 

Remark 4.1 
4.
of robust   for fuzz

 family of strict umbe  

es as 

ˆ
j 

 By Schu

 X I the de-

It is significant to observe that Theorem 
1 provides a delay-dependent condition for the design 

y NCS in terms of feasibility test-
LMIs with a total n r of LMI- ing of a

variabl 6 1r r  . The key feature is that the ma-  

trix gain jK  i eated as a direct LMs tr I variable. This 
will eventually lessen the conservatism in robust fuzzy 

 
It is worthy to note that the number of 

early

k



control design.
Remark 4.2 

LMIs increases lin  with the number of rules r  
which limits the applicability of the method for very large 
values of r . Had we used 

   = f k P 
r r
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=1 =1
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then Theorem 4.1 reduces to the following corollary: 
Corollary 4.1 Given the bounds ,

 

= < 0,t s

r

  
    

 


                    (28) 
m M   and a scalar 

constants > 0 , there exists a fuzzy c ntroller in the 
form of (8), such that the uncertain cl ed-loop fuzzy 
system (9) with an   disturbance attention level 

o
os  1 2 3 4= t

t o j j j j            

1 2 3 4= ,r j jdiag I I I I   

  
,P   is asymptotically stable, if there exist matrices 0 <

0 < ,0 < ,0 < ,0 < ,0 < ,Q Z S R R  matrices , ,


a c ,j a cK    
, , ,a c a    and scalars 1 2 3 4> 0, > 0, > 0, ,c j j j j     

satisfying 

j j   
  

 1 2 3 4= ,s      

3 0 0 0 0 0j jN   

0 0 0 0    

1 2 0 0t
j j jN N K  

1 10 0 0 0 0 t
j jM 

2 10 0 0 0 0 0j s s M R 0 0 0t
j aj       
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and the number of LMI variables w  . The 
KF becomes non-fuzzy. 

5. Special Cases 

In this section, we seek to derive a sufficient condition 
for the solvability of the robust   control problem for 
NCS without quantizer. 

NCS without

system
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be expressed as: 
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The corresponding control design is given by the fol- 
lowing corollary: 
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where the various terms are as in (13)-(15). 

6. Example 

In what follows, a typical simulation example is consid- 
ered to illustrate the fuzzy controller design procedure 
developed in Theorem 4.1. A class of discrete-time fuzzy 
networked control systems model with state quantization 
is described by: 
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For the purpose of implementation, we consider the 
fuzzy system to be controlled through a network. A 
quantizer  q   is selected to be of of logarithmic type 
with 1 2 30.8,  0.7,  0.9,     leading to 1 0.1111,   

2 3= 0.1765, = 0.0526  . The bounds on data packet 
dropout are selected as 0.6, = 3.2,m M=   respectively. 
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Figure 1. Controlled-output trajectory. 
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Figure 2. First state trajectory. 
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Figure 3. Second tate trajectory. 
 
Theorem 4.1 yiel e fuzzy   state-feedback con-
troller gains of th : 

 
 
 

03 9.3657 ,

4 8.8945

8.2863

 s

ds th
e form

1

2

3

= 0.25,

= 18.54

= 17.723

= 15.7715

K

K

K



 

The simulation results of the state and controlled- 
output trajectories are plotted in Figures 1-3. It is quite 
evident that all the state and output variables of the fuzzy 
system settle at the equilibrium level within 20 sec. 

7. Conclusion 

We have addressed the problem of robust   state-
feedback controller design for discrete-time Takagi- 
Sugeno (T-S) fuzzy networked control systems including 
state quantization. A quantized feedback fuzzy controller 
has been designed under consideration of effect of net-
work-induced delay and data dropout, and the time- 
varying quantizer has been selected to be logarithmic. By 
employing a fuzzy Lyapunov-Krasovskii functional, we 
have derived some LMI-based sufficient conditions for 
the existence of fuzzy controller. A numerical example 
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has been given to illustrate the efficiency of the theoretic 
results. 
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