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Abstract 
 
In this paper, we propose a new approach for a class of optimal control problems governed by Volterra inte-
gral equations which is based on linear combination property of intervals. We convert the nonlinear terms in 
constraints of problem to the corresponding linear terms. Discretization method is also applied to convert the 
new problems to the discrete-time problem. In addition, some numerical examples are presented to illustrate 
the effectiveness of the proposed approach. 
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1. Introduction 
 
Consider the following optimal control problem gov-
erned by Volterra integral equation (OCV): 

      
0

minimize , , d
T

G y T F t y t u t t       (1) 

        
0

subject to , , , d ,

0

t
y t p t K t s y s u s s

t T

 

 
    (2) 

where  and  are the state and control func-
tions respectively on . The integral Equation (2) is 
applied in a natural way in the study of economic prob-
lems, population dynamics and etc., see for instance Hri-
tonenko and Yatsenco [1], and Kamien and Schwartz [2]. 
The OCV problem (1)-(2) has been studied by many au-
thors, including Neustadt [3-5], Bakke [6], Carlson [7], 
Vinokurov [8], Medhim [9], Schmidt [10-13], Wolfans-
dorf [14], Elnagar, Kazemi and Kim [15], Pan and Teo 
[16], Angell [17,18], Belbas [19,20], Carlier and Tah-
raoui [21], and Burnap, and Kazemi [22]. The method 
usually employed for OCV problem (1)-(2) is method of 
necessary conditions of the type of Pontryagin maximum 
principle. In the Recent works, Vega [23] gives the nec-
essary condition for optimal terminal time of OCV prob-
lem (1)-(2) and verifies the terminal time T and final state 

(.)y (.)u
[0, ]T

 y T  by conditions  , 0TT y   and   ,T y T 0  . 
Bonnens and Vega [24] discuss problem (1)-(2) with 
running state on the initial and final states. Also, Belbas 

[25] applied the ideas of dynamic programming to OCV 
problem (1)-(2).  

In this paper, we are interested to solving the follow-
ing class of the OCV problem (1)-(2) which we called it 
COCV problem:  

   
0

minimize d
T

c t y t t              (3) 

          
0

subject to , d , d ,

0

t
y t p t f s u s t s y s s
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    
 


(4) 
where function  is a continuous function. A con-
trolled Volterra integral equation similar to equation (4) 
is discussed in [16]. We suppose that 

(.,.)f

 u t U , 
[0, ]t T  where U a compact and connected set. In addi-

tion, we let the final state  y T  is a given known num-
ber. Here, the linear combination property of intervals is 
used to convert nonlinear controlled Volterra integral 
Equation (4) to the equivalent linear equation. The new 
optimal control problem with this linear Volterra integral 
equation is transformed to a discrete-time problem that 
could be solved by linear programming methods. This 
paper organized as follows. Section 2, transforms the 
nonlinear function  to a corresponding function 
that is linear respect to a new control function. Section 3, 
converts the new problem to the discrete-time problem 
via discretization. In Section 4, numerical examples are 
presented to illustrated effectivness of this approach. 
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Finally, the conclusion of this paper is given in Section 
5. 
 
2. Metamorphosis of the COCV Problem 
 
In this section, COCV problem (1) is transformed to the 
new equivalent problem. First, we state and prove the 
following two theorems: 

Theorem 2.1: Let  be a continuous function on 
 where U is a compact and connected subset of 

, then for any arbitrary (but fixed) 

(.,.)f
[0, ]T U

m [0, ]s T  the set 
  , : f s u u U  is a closed interval in . 

Proof: Assume that [0, ]s T  be given. Let  u   
 , f s u . Obviously, (.)  is a continuous function on U. 

Since, continuous function preserve compactness and 
connectedness, the set is compact and 
connected. Therefore,  is a closed inter-
val in .□  

  :u u
  :u u 



U

U


For any [0, ]s T , we may suppose the lower and 
upper bounds of interval   , :F s u u U  are  g s  
and  respectively. Thus we have:  w s

       , , 0,g s f s u w s s T           (5) 

In other words 

      min , : , 0,
u

g s f s u u U s  T      (6) 

      max , : , 0,
u

w s f s u u U s T        (7) 

Theorem 2.2: Let functions (.)g  and  be de-
fined by relations (6) and (7). Then they are uniformly 
continuous on .  

(.)w

[0, ]T
Proof: We will show that (.)g  is a uniformly con-

tinuous function. It is sufficient that we show that for any 
given 0  , there exists 0   such that if 

1 2 s N s  then    1 2g sg s    where  N z  
is a  

(.,.f

neighborhood of . Since, any continuous 
function on compact set is a uniformly continuous. The 
function  on compact set  is a uni-
formly continuous, i.e. for any 

z

) [0, ]T U
0   there exists 

0  , such that if   1 2 ,,s u N s u  then 
   1 2,u f ,s uf s   . Thus  f s u 1 2 , ,s uf   . 

In addition, by (5), 1 1   ,g s f s u  and so  1g s   
 2 ,f s u  . Now, by taking infimum on the right hand 

side of the last inequality  g s 1 g s 2 
  g s


 2 1

. By a simi-
lar procedure, we have g s   . Thus 
   1 2g s g s   . The proof of uniformly continuity of 

 is similar. □  (.)w
By linear combination property of intervals and rela-

tion (5), we have for any [0, ]s T : 

             ,f s u s w s g s s g s s    , [0,1]

,

 (8) 

Thus, we transform COCV problem (3)-(4) by relation  

(6) as the following continuous-time problem: 

   
0

d
T

minimize c t y t t             (9) 

           
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0
, d

0 1, 0,

t
subject to y t q t h s s d t s y s s

t t T





    
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where  and      
0

d
t

q t p t g s s        h t w t g t    

for any [0, ].t T  Note that in the new problem (9), 
which is a optimal control of linear Volterra integral 
equation, (.)  is the new control function. Next section, 
converts the problem (9) to the corresponding linear pro-
gramming problem. 
 
3. Discrete-Time Problem 
 
Now, discretization method enables us transforming con-
tinuous problem (9) to the corresponding discrete form. 
Consider equidistance points 0 1 20 Ns s s s T       
of interval  which defined as  [0, ]T

j

T
s j

N
 ,  0,1, ,j N 

where N is a given big number. Also, we set j jt s  
for 0,1, ,j N  . By trapezoidal approximation in nu-
merical integration, problem (9) is converted to the fol-
lowing discrete-time problem: 

1

0 0
1
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2 2

N

j j N N
j

T T T
c y c y c y

N N N




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q d y
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


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where 

 j jy y t ,   j jh h s ,  ,   ,ij i jd d t s  j jc c s ,  

 j jt   and  j jq q t  for all . 
In problem (10), final state is 

, 0,1,2, ,i j N 
  that is a known number. 

By solving problem (10), which is a linear programming 
problem, we are able to obtain the optimal solution j

  
and jy  for all 0,1,2, ,j N  . Note that, for evaluat-
ing optimal control variable , we must use the fol-
lowing equation: 

(.u )

     , .f s u h s g s           (11) 

 
4. Numerical Examples 
 
Here, we use our approach to obtain approximate optimal 
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solution of the following two COCV problems by solv-
ing linear programming (LP) problem (10) via simplex 
method [26] in MATLAB software.  

Example 4.1: Consider the following COCV problem: 

   1

0
minimize cos 3π dt y t t              (12) 

     

    

   

0

subject to

π
sin 3π sin

4

            cos 3 π d

0 0.5, 0,1

(1) 1.

t
y t t u s s

t s y s s

u t t

y

       


  


  





 

Here,   π
, sin

4
f s u u s

   
 

,    , cos3 πd t s t s    

   cos 3πc t t  and for all    sin 3πp t t [0,1]t , 
 and u . Thus by (6), (7) [0,1]s [0, 0.5]

     
[0,0.5]

π
min sin sin , 0,1

4u
g s u s s s



      
  

  

   
[0,0.5]

π
max sin sin , 0,1

4 8u
w s u s s s




           
    

 . 

hence  

           
0

d sin 3π cos 1, 0,1
t

q t p t g s s t t t       

         π
sin sin , 0,1

8
h s w s g s s s s

       
 

 

Assume that  and 100N 
100j

j
s   for all 0,1,j    

2, ,100.  The optimal solutions jy  and j
 , 0,1,j   

 of problem (12) is obtained by solving prob-
lem (10) which is illustrated in Figures 1 and 2 respec-
tively. Here, the value of optimal solution of objective 
function is –0.470. The corresponding Equation (11) for 
this example is  

2, ,100

 

 

Figure 1. Optimal trajectory  of Ex.12. (.)y

 

Figure 2. Corresponding optimal control  of Ex.12. (.)
 

   π
sin , 0,1,2, ,100

4 j j j j ju s h s g s j         
  

  

therefore 

     14
sin , 0,1, 2, ,100

πj j j j ju h s g s s j        

The optimal control *
ju , of this 

example is showed in Figure 3.  
0,1, 2, ,100j  

Example 4.2: Consider the following COCV problem: 

   1

0
minimize 0.5 dt y t t          (13) 

       
   

0

3subject to 3ln 2 d

0 1, 0,1

(1) 1.

t tsy t t u s s te y s s

u t t

y

    

  

 


 

Here     , 3lnf s u u s s3 2    ,  , )d t s tets  , 
 c t 0.5 t   and  p t t  for all , [0,1] [0,1]st   

and [0,1]u . In this example for all  [0,1]s

       
[0,1]

3min 3ln 2 3ln 3 ,
u

g s u s s s


        

     
[0,1]

3max 3ln 2 3ln( 2),
u

w s u s s s


        

         3 ln 3 ln 2 .h s w s g s s s        

Moreover for all [0,1]t  

     
        

0
d

3 3 ln 3 3 3log 3 3

t
q t p t g s s

t t t t

 

       


,
 

Let 100N   and 
100j

j
t   for all .  0,1, 2, ,100j  

We obtain the optimal solution jy  and j
 , 0,1,j   

 of problem (13) by solving problem (10) 
which is illustrated in Figures 4 and 5 respectively. In  
2, ,100
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Figure 3. Optimal control  of Ex.12. (.)u

 

 

Figure 4. Optimal trajectory  of Ex.13. (.)y

 

 

Figure 5. Corresponding optimal control  of Ex.13. (.)
 
addition, by (11) the corresponding  for this ex-
ample is 

(.)u

     1/3
3

2 , 0,1,2, ,100j j jh s g s

j ju e s j
       

 
  

The optimal control *
ju ,  of prob-

lem (10) is showed in Figure 6. Here, the value of opti-
mal solution of objective function is 0.071. 

0,1,2, ,100j  

 

Figure 6. Optimal control  of Ex.13. (.)u

 
5. Conclusions 
 
In this paper, we posed a different approach for a class of 
nonlinear optimal control problem including Volterra 
integral equations. In our approach, the linear combina-
tion property of intervals is used to obtain the new cor-
responding problem which is a linear problem. The new 
problem can be converted to a LP problem by discreteza-
tion method. Finally, we obtain an approximate solution 
for the main problem. In next works, we are going to use 
our approach for subclasses of problem (1)-(2) which 
Volterra integral equation is similar to Equation (4), but 
objective functional is quadratic or nonlinear with re-
spect to state variables. 
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