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Abstract 
 
In this paper, A Novel Stochastic Algorithm using Pythagorean means for minimization of the objective 
function is described. The algorithm is initially tested with Rastrigin’s function and compared with Genetic 
algorithm results for the function with the same initial conditions. After this, it is used in tuning the gains of 
fuzzy PD + I controller for trajectory control of PUMA 560 robot manipulator. The results are again verified 
with the results of genetic algorithm. 
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1. Introduction 
 
PUMA 560 is a six Degree of Freedom industrial robot. 
It has a wide variety of applications including material 
handling, welding, assembling, painting, grinding and 
other industrial applications [1]. Fuzzy PD+I controllers 
are the most general use fuzzy controller as it has the 
following advantages of being Simple, having Less 
overshoot, Removes steady state error, and smoothens 
control signal [2]. The most popular technique in evolu-
tionary computation research has been the genetic algo-
rithm which can be applied to any problem that can be 
formulated as function optimization problem [3]. By 
tuning the gains of the Fuzzy PID controller using ge-
netic algorithm and other search algorithms better results 
are obtained [1,4]. Some of the basics of any stochastic 
algorithms are discussed in the work of Pierre and Jean 
[5]. 

The main motivation for writing this paper is to pro-
pose a stochastic algorithm that will minimize the objec-
tive function and converge faster than the Genetic Algo-
rithm. As part of preliminary study, this algorithm will 
be tested with a standard test function, namely Rastrigin’s 
function, and later on used for tuning the gains of fuzzy 
PD+I controller for trajectory control of PUMA 560 ro-
bot manipulator. The convergence of both the standard 
test function and gain tuning by proposed algorithm are 
compared with genetic algorithm convergence. An in-

ference is drawn as to which algorithm is better with 
reference to convergence plot.  

This paper is organized as follows. Section 2 intro-
duces PUMA560 robot arm and its dynamics. Section 3 
provides discussion on Fuzzy PD + I controller scheme. 
Section 4 describes Genetic Algorithm. Section 5 intro-
duces a Novel Stochastic Algorithm for optimization. 
Section 6 results and discussions are provided, and in 
Section 7 conclusions and future scope are presented. 
 
2. Dynamics of PUMA 560 
 
Dynamics of a serial n-link rigid robot can be written as: 

     ,M q q c q q g q              (1) 

where q is the n × 1 vector of joint displacements, q  is 
the n × 1 vector of joint velocities,   is the n × 1 vector 
of actuators applied torques, M(q) is the n × n symmetric 
positive definite manipulator inertia matrix, ( , )c q q  is 
the n × 1 vector of centripetal and Coriolis torques and 
g(q) is the n × 1 vector of gravitational torques due to 
gravity. We assume that the robot joints are joined to-
gether with revolute joints.  

Let the desired joint position qd be a twice differenti-
able vector function. We define a control problem to 
determine the actuator torques in such a way that the 
following control aim be achieved: 
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              (2) 

A six DOF PUMA 560 robot is considered for the 
simulation, the Kinematical and dynamical parameters of 
the arm and the torque limitations are adopted from the 
work of Srinivasan et al, and references therein [6]. 
 
3. Fuzzy PD + I Controller 
 
In this structure, the fuzzy system is applied only to the 
proportional and derivative signal of the linear PID con-
troller [7]. The integral signal uses conventional linear 
method. The major roll of the integral signal is to elimi-
nate the steady state error. The transient response is af-
fected mostly by the proportional signal and the deriva-
tive signal. For the enhancement of the transient response, 
the varying gains are implemented on the proportional 
and derivative parts using two-input fuzzy system. The 
nonlinearities that make the varying gains possible are 
added by the fuzzy control rules and the membership 
functions. 

Figure 1 shows the structure of the Fuzzy PD + I con-
troller, where GCE, GE, GIE and GU are the gains of 
Fuzzy PD + I controller and more often called scaling 
factors which can be varied to tune the controller. Ge-
netic Algorithm and proposed stochastic algorithm are 
used in this paper to tune these. Figure 2(a) shows the 
surface view of the fuzzy PD controller and Figure 2(b) 
shows the membership function and Figure 2(c) shows 
the rulebase of the Fuzzy PD controller used. 
 
4. Genetic Algorithm 
 
Genetic Algorithms are general purpose search algo-

rithms which use principles inspired by natural genetics 
to evolve solutions to problems. The basic idea is to 
maintain a population of chromosomes which represents 
candidate solutions to the concrete problem being solved, 
that evolves over time through a process of competition 
and controlled variation. Each chromosome in the popu-
lation has an associated fitness to determine (selection) 
which chromosomes are used to form new ones in the 
competition process. The new ones are created using 
genetic operators such as crossover and mutation.  

A GA starts off with a population of randomly gener-
ated chromosomes, and advances toward better chromo-
somes by applying genetic operators modeled on genetic 
processes occurring in nature. The population undergoes 
evolution in a form of natural selection. During succes-
sive iterations, called generation, chromosomes in the 
population are rated for their adaptation as solutions, and 
on the basis of these evaluations, a new population of 
chromosome is formed using selection mechanism and 
specific genetic operators such as crossover and mutation. 
An evaluation or fitness function(f) must be devised for 
each problem to be solved. Given a particular chromo-
some, a possible solution, the fitness function returns a 
single numerical fitness, which is supposed to be propor-
tional to the utility or adaptation of the solution repre-
sented by that chromosome.  

Although there are many possible variants of the basic 
GA, the fundamental underlying mechanism consists of 
three operations: 

1) Evaluations of individual fitness, 
2) Formation of a gene pool (intermediate population) 

through selection mechanism, and, 
3) Recombination through crossover and mutation op-

erators. 
 

 

Figure 1. Structure of the fuzzy PD + I controller.   
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Figure 2. (a) Surface view, (b) Membership function (Mam- 
dani type) and (c) Rulebase of the fuzzy PD controller. 
 

The below pseudo-code shows the structure of a Basic 
GA [8], where P(t) denotes the population at generation 
t. 
Procedure Genetic Algorithm 
Begin(1) 
     t = 0; 
     initialize P(t); 

     evaluate P(t); 
     While (Not termination-condition) do 
      Begin(2) 
 t = t + 1; 
 select P(t) from P(t-1); 
 recombine P(t); 
 evaluate P(t); 
       End (2) 
End(1) 
 
5. A Novel Stochastic Algorithm Using  

Pythagorean Means for Optimization 
 
Given a space   of individual solutions nR  and 
an objective function f, ( )f R  , optimizing f is the 
process of finding the solution   which minimizes 
(maximizes) f. 

Random search consists of picking up random poten-
tial solutions and evaluating them. The best solution over 
a number of samples is the result of random search. Sto-
chastic algorithm is nothing other than a random search, 
with hints by a chosen heuristics (or meta-heuristics) to 
guide the next potential solution to evaluate [5]. Stochas-
tic optimization algorithms were designed to deal with 
highly complex optimization problems. There are a 
number of stochastic search algorithms present, Genetic 
algorithm, simulated annealing, ant colony optimization, 
etc to name a few. In this paper the proposed algorithm is 
compared with the genetic algorithm, the scope of work 
is restricted to comparison with genetic algorithm only. 
The proposed stochastic search algorithm is initially 
tested on Rastrigin’s function and then later is used to 
minimize the ISE of the joint for trajectory tracking con-
trol of the PUMA560. 

Before describing the algorithm, a small discussion 
about Pythagorean means is given. The three classical 
Pythagorean means are the arithmetic mean (A), the 
geometric mean (G), and the harmonic mean (H) [9]. 
They are defined by: 

   1 1

1
,..., ...n nA x x x x

n
            (3) 

 1 1,..., n
n nG x x x x             (4) 

 
1

1 1 1
,...,

n

n

x x

n
H x x 

 
          (5) 

Each of these means satisfies the properties: 

 , ,...,M x x x x               (6) 

   1 1,..., ,...,n nM bx bx bM x x         (7) 

There is an ordering to these means (if all of the xi are 
positive): 
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     1 1 1,..., ,..., ,...,n n nA x x G x x H x x     (8) 

with equality holding if and only if the xi are all equal.  
The search algorithm is divided into three phases. In 

the first phase the search space is searched thoroughly 
and if the solution exists outside this search space then 
the space is extended, this can be considered as a global 
search. In the second phase the search space restricted 
but still able to change its neighborhood considerably, 
this can be considered as a moderately local search. And 
in the third phase the search is completely restricted to a 
very small space in the neighborhood of the solution, this 
can be considered as a highly restricted local search 
phase. 

Before starting the algorithm, as part of initialization a 
random number vector ‘x’ is generated within the range 
specified as the search space, this is done just once. With 
the start of the algorithm, value of x is used as the centre 
and absolute value of x is used as spread of the normal 
distribution in the first iteration. The spread should al-
ways be positive. The random numbers are generated by 
a Gaussian function, in other words they are normally 
distribution. After the first iteration the number gener-
ated by the normal distribution is taken as ‘x’. The algo-
rithm is discussed phase by phase. Let y be the function 
to be minimized. 

Phase I: This is the phase of global search, so the 
neighborhood to be searched from the present solution 
has to be very large. This is ensured by making the 
spread of the normal distribution equal to the arithmetic 
mean of the best solution of y so far and the absolute 
value of random number x generated in the previous it-
eration by the normal distribution. By using the number 
generated in the previous iteration in calculating the 
spread, it is ensured that there is a certain degree of ran-
domization or perturbation in search neighborhood, 
which will ensure that unknown better solutions can be 
explored. The mean of the normal distribution will be the 
values of x corresponding to the solution of best y. If a 
better solution is obtained the best x and best y are up-
dated. When best x is updated the centre of the distribu-
tion also moves to this location. This way it is ensured 
that the search space is made variable, moving towards 
better solution. The reason for using arithmetic mean for 
spread in this stage is that the value spread will be large 
and half way between the x and y. For example let us 
consider that y is a function of x where x is a vector of 
size 1. Now if for x = 10, best y = 0.2, then the spread 
that will be used for next search will be (10 + 0.2)/2 
which is a value 5.1. This is a pretty large value of 
spread considering the value of x. 

Phase II: This is the phase of moderate local search, so 
the neighborhood to be searched from the present solu-

tion has to be moderate. This is ensured by making the 
spread of the normal distribution equal to the geometric 
mean of the best solution of y so far and the absolute 
value of random number x generated in the previous it-
eration by the normal distribution. The mean of the nor-
mal distribution will be the values of x corresponding to 
the solution of best y. If a better solution is obtained the 
best x and best y are updated. When best x is updated the 
centre of the distribution also moves to this location. The 
reason for using geometric mean for spread in this stage 
is that the value of spread will be close to the minimum 
value of x and y. For example let us consider that y is a 
function of x where x is a vector of size 1. Now if for x = 
10, best y = 0.2, then the spread that will be used for next 
search will be 10*0.2  which is 1.141. This is a mod-
erate value of spread considering the value of x. 

Phase III: This is the phase of extreme local search, so 
the neighborhood to be searched from the present solu-
tion has to be very small. This is ensured by making the 
spread of the normal distribution equal to the harmonic 
mean of the best solution of y so far and the absolute 
value of random number x generated in the previous it-
eration by the normal distribution. The mean of the nor-
mal distribution will be the values of x corresponding to 
the solution of best y. If a better solution is obtained the 
best x and best y are updated. When best x is updated the 
centre of the distribution also moves to this location. The 
reason for using harmonic mean for spread in this stage 
is that the value of spread will be very close to the 
minimum value of x and y. For example let us consider 
that y is a function of x where x is a vector of size 1. 
Now if for x = 10, best y = 0.2, then the spread that will  

be used for next search will be 
2*(10*0.2)

(10 0.2)
which is  

0.39. This is a small value of spread considering the 
value of x. 

The value of the x corresponding to the best y is re-
turned as a result of possible solution. Flow chart of the 
proposed algorithm is shown in Figure 3.  

This algorithm is initially used to find the minimum of 
Rastrigin’s function. A comparison of Rastrigin’s func-
tion results by the proposed algorithm and Genetic algo-
rithm is made. Based on the success it is implemented for 
tuning the gains of the Fuzzy PD + I controlled PUMA 
560 arm for pseudo-random joint trajectories. A com-
parison of results by the proposed algorithm and Genetic 
algorithm is made. 

The objective functions considered here for gain tun-
ing is based on the error criterion. In this paper, per-
formance of gain tuning is evaluated in terms of Integral 
square Error (ISE) error criteria. The error criterion is 
given as a measure of performance index. The ISEs of 
individual joints are added together to obtain an overall  
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Figure 3. Flow chart of the proposed stochastic optimiza-
tion algorithm. 
 
ISE. This is done to simplify the task of minimization 
algorithm. The objective of the minimization algorithm 
is to minimize this overall ISE. The overall ISE is given 
by Equation (9).  

 
6

2

1
i

i

ISE e t dt


               (9) 

where ei(t) is the error signal for the ith joint. Here i can 
take values from 1 to 6 corresponding to 6 joints. 
 
6. Results and Discussions 
 
Simulations are carried out using MATLAB Version 

7.0.1.24704 (R14 with Genetic algorithm & Direct 
search toolbox and Fuzzy Logic Toolbox), 2 GHz com-
puter with 2 GB RAM. Population size used is 20. To 
verify the functioning of the proposed algorithm, it is 
first tested on Rastrigin’s function. Rastrigin’s function 
is often used to test the algorithm, because it has many 
local minima. Once the algorithm works on Rastrigin’s 
function, it can be tested on other functions. For two in-
dependent variables, Rastrigin's function is defined as in 
Equation (10) 

   2 2
1 2 1 220 10 cos 2 cos 2Ras x x x x x       (10) 

Rastrigin’s function has many local minima but the 
function has just one global minimum [10], which occurs 
at the point [0,0] in the x-y plane, where the value of the 
function is 0. At any local minimum other than [0,0], the 
value of Rastrigin's function is greater than 0. The farther 
the local minimum is from the origin, the larger the value 
of the function is at that point. Figure 4 show the plot of 
Rastrigin’s function. 

Table 1 shows the tabulated results for Rastrigin’s 
function by Genetic algorithm and proposed algorithm. 
The initial range of search space was [9,10]. 

Figure 5 shows the comparative plot for objective 
function value of Rastrigin’s function by Genetic algo-
rithm and proposed algorithm with the x axis denoting 
the objective function value of Rastrigin’s function and y 
axis denoting the number of iteration. Since we are using  
 

 

Figure 4. Plot of the Rastrigin’s function. 
 
Table 1. Results for Rastrigin’s function by genetic algo-
rithm and proposed algorithm. 

Algorithm used x1 x2 y 

Genetic Algorithm 0.0011 0.99877 0.99808 

Proposed algorithm 2.06E-07 -2.21E-07 1.81E-11
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Figure 5. Comparative plot for objective function value of 
Rastrigin’s function by Genetic algorithm and proposed 
algorithm. 
 
genetic algorithm with population size of 20, one genera-
tion corresponds to 20 iterations. Genetic algorithm is 
run for 100 generations, in other words 2000 iterations. 

With the encouraging Rastrigin’s function result, the 
algorithm is used for tuning the gains of the Fuzzy PD + 
I controller of PUMA 560. A Pseudo-random joint angle 
trajectory is used as input to robot arm as shown in Fig-
ure 6. Pseudo random joint trajectory generation is dis-
cussed in Appendix A. 

The objective function used is as described in Equa-
tion (9). Figure 7 shows the convergence of both Ge-
netic algorithm and the proposed algorithm. Figure 8 
shows the joint error plot for gain tuning by Genetic al-
gorithm and Figure 9 shows the joint error plot for the 
gain tuning by the proposed algorithm. 

The value of the performance index by the Equation (9) 
is 4.15E-03 for Genetic algorithm after 1000 iterations 
(50 generation) and 3.63E-03 for the proposed algorithm 
after 1000 iterations. 
 

 

Figure 6. Pseudo-random input joint angle trajectories. 

 

Figure 7. Convergence plot of Genetic algorithm and the 
proposed algorithm. 
 

 

Figure 8. Joint errors plot for gain tuning by Genetic algo-
rithm. 
 

 

Figure 9. Joint errors plot for gain tuning by proposed al-
gorithm. 
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7. Conclusion and Future Scope 
 
The results obtained for the Rastrigin’s function shown 
in Figure 5 and Table 1 is quite encouraging. The mini-
mum value obtained for Rastrigin’s function is very 
close to the value 0 when evaluated using the proposed 
algorithm. It proves its worth by being able to converge 
at a faster rate when compared to Genetic algorithm. It is 
also seen that gain tuning of Fuzzy PD + I controller of 
PUMA560 using the proposed algorithm results in a 
quicker convergence and better performance than genetic 
algorithm, performance based on the overall ISE. In fu-
ture minimization and optimization of much more com-
plicated problems using the proposed algorithm can be 
taken up. 
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Appendix 
 
The method for generating pseudo random joint trajecto-
ries is described below: 

A sequence of Pseudo random numbers is passed 
through a system with transfer function given chosen by  

trial and error. Transfer function chosen is 
2

100

100s s 
.  

When the pseudo random numbers are passed through 
this system a continuous pseudo-random signal is ob-
tained which is given to the joint angles. 

Time intervals at which the numbers in the sequence 
appears are 
[0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1], that is at time = 0 
the first element in the sequence appears, at time = 0.1 
the second element and so on. 

Joint 1 Pseudo-random sequence:  

[0.1 0.1 0.2 0.3 0.4 0.2 0.4 0.2 –0.1 –0.2 0] 

Joint 2 Pseudo-random sequence:  

[0 0.1 0.3 0.2 0.5 0.4 0.3 0.2 0.1 0 0] 

Joint 3 Pseudo-random sequence:  

[–0.3 0.2 0.4 0.3 0.4 0.6 0.8 0.2 0.4 –0.2 0] 

Joint 4 Pseudo-random sequence:  

[–0.2 –0.1 0.3 0.2 0.4 0.1 0.4 0.3 0.5 0.08 0] 

Joint 5 Pseudo-random sequence:  

[0.2 –0.1 0.4 0.2 –0.4 –0.2 0.1 –0.3 –0.5 –0.08 0] 

Joint 6 Pseudo-random sequence:  

[0.3 –0.5 0.4 –0.2 0.4 0.6 0.5 0.3 0.5 0.2 0] 

 
 
 
 
 
 
 
 


