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ABSTRACT 

Autoimmune diseases are a heterogeneous group 
of disorders affecting different organs and tis- 
sues whose incidence are increasing worldwide. 
New tools, such as genome-wide association 
studies, have provided evidence for new sus- 
ceptibility loci and candidate genes in the dis- 
ease process including common susceptibility 
genes involved in the immunological synapse 
and T cell activation. Close linkages have been 
found in a number of diseases, including anky- 
losing spondylitis, multiple sclerosis, Crohn’s di- 
sease and insulin-dependent diabetes mellitus 
(Type 1 diabetes mellitus). The evidence for some 
associations with Type 1 diabetes was previously 
found in the region containing 5q15/ERAP1 (en- 
doplasmic reticulum aminopeptidase 1) (rs30187, 
ARTS1). Our aim was to conduct the first case- 
control study to test the association between the 
rs30187 polymorphism of ERAP1 and the de- 
velopment of Type 1 diabetes mellitus in patients 
selected from continental Italy. All control sub- 
jects were matched for the sex, age, ethnic ori- 
gin and geographical area. Genotyping of the 
rs30187 polymorphism of ERAP1 was carried out 
by the allelic discrimination assay on DNA ex- 
tracted from whole blood. We did not observe a 
statistically significant prevalence of the rs30187 
polymorphism of ERAP1 in our cohort of pa- 
tients than in controls suggesting a minor con- 
tribution of this gene to the pathogenesis of 
Type 1 diabetes mellitus in Italian patients. 
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1. INTRODUCTION 

Autoimmune diseases can affect different organs and 
tissues [1,2]. In these conditions, the breakdown in the 
balance between autoregulatory immune pathways and 
pathogenic autoreactivity leads to aggressive antibody 
and T-cell mediated reactions directed against antigens 
expressed by the host’s own tissues [2]. It is recognised 
that a complex interaction of genetic/environmental fac- 
tors underlies the etiopathogenesis of autoimmune dis- 
orders [1,3]. Their incidence is increasing worldwide [2]. 
This has stimulated investigations on their etiopathoge- 
nesis. With the advent of new tools, such as genome wide 
association studies (GWAS) [4], the evidence was pro- 
vided for new susceptibility loci and candidate genes in 
the disease process, involved in the immunological syn- 
apse and T cell activation [5]. Among organ-specific au- 
toimmune disorders, insulin-dependent diabetes mellitus 
[Type 1 diabetes mellitus, (T1D)] is a polygenic auto-
immune disease, which occurs in human leukocyte anti-
gens (HLAs) genetically predisposed individuals as a 
consequence of organ-specific immune destruction of the 
insulin-producing β cells in the islets of Langherans 
within the pancreas [6] by autoreactive T cells. Regard- 
ing T1D, currently 15 loci are shared with other im- 
mune-mediated disorders [7-11]. Among the identified 
candidates [7], there are: cytotoxic T lymphocyte-asso- 
ciated antigen 4 (CTLA4) which suppresses T cell activa-  
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Tion; protein tyrosine phosphatase non-receptor type 22 
(PTPN22) affecting the T cell receptor signaling pathway 
[8]; the interleukin-2 receptor alpha (IL-2Rα)/CD25 gene 
[9] playing a pivotal role in the development and func-
tion of regulatory T cells (Tregs), IL-7R [10] and SH2B 
adaptor protein 3 (SH2B3) [11].  

In recent years, a special focus was put on genes con- 
trolling the proteolytic pathways involved in antigen 
presentation [12]. In the autoimmune process, immune 
responses are generated against self-peptides which are 
presented in the context of Major Histocompatibility 
Complex (MHC) class I molecules. Antigenic peptides 
are produced in the cytoplasm as proteolytic interme- 
diates by degradation of endogenous proteins; this occurs 
through proteases including the multicatalytic protea- 
some [13]. The transporters associated with antigen 
processing (TAP1 and TAP2) transport proteolytic inter- 
mediates into the endoplasmic reticulum (ER) for further 
processing by ER aminopeptidases, ERAP1 and ERAP2 
(ERAP1/2), before being loaded onto MHC class I mo- 
lecules [14,15]. The highly polymorphic molecules MHC 
class I [16] represent primary components of host im- 
mune response, therefore, their genetic linkage with sev- 
eral autoimmune disorders was investigated [15]. GWAS 
and follow-up case-control studies were conducted lead- 
ing to ERAP1/2 single nucleotide polymorphisms (SNPs) 
identification in several autoimmune conditions [15], 
suggesting a putative role in their pathogenesis with as- 
sociated alleles through altered MHC class I peptide 
presentation. Close linkages have been found in a num- 
ber of diseases, including ankylosing spondylitis (AS) 
[17-19], multiple sclerosis (MS) [20], Crohn’s disease 
(CD) [21] and T1D [22].  

Recently Fung and colleagues [22] selected SNPs for 
genotyping that had shown convincingly associated with 
at least one autoimmune condition within the previous 
two years. Among the others, the evidence for some as-
sociations with T1D was also found in the region con-
taining 5q15/ERAP1 (rs30187, ARTS1). ERAP1 was also 
tested for interaction with HLA class I, especially with 
HLA-A and HLA-B, but no evidence for an interaction 
was observed by the authors [22].  

In the light of the foregoing, we conducted a case-con- 
trol genetic association study to test the association of 
ERAP1 polymorphism rs30187 (minor A allele) with the 
development of T1D in an Italian sample of Caucasian 
ethnicity. 

2. MATHERIALS AND METHODS 

2.1. Subjects 

The patient group consisted of 234 T1D patients who 
were referred from the Department of Endocrinology at  
Bambino Gesù Children’s Hospital (OPBG) during the 
past 10 years. Patient’s sera were tested for autoantibo- 

dies (Abs) to glutamic acid decarboxylase (isoform 65) 
(GADA), protein tyrosine phosphatase IA2 (insulino- 
ma-associated antigen 2), insulin and steroid 21-hydrox- 
ylase (21-OH) by radioimmunoassay (RIA), to thyrog- 
lobulin (Tg) and thyroperoxidase (TPO) and anti-trans- 
gutaminase (TRG) by chemiluminescence method, to 
parietal cells (PCA), adrenal cortex (ACA) and islet 
cell by indirect immunofluorescence (IFL). Anti-platelets 
Abs were tested by enzyme-linked immunosorbent assay 
(ELISA). The control group was made up of 314 healthy 
blood donors recruited from the Blood Transfusion Cen-
tre at OPBG; they had no history of autoimmunity and 
no autoantibodies were detected in their serum. All con-
trol subjects were matched for sex, age, ethnic origin and 
geographical area. All enrolled patients and controls in 
this study were unrelated. Informed consent was ob-
tained from all those who took part in the present inves-
tigation before sampling. 

2.2. Genotyping for rs30187 ERAP1  
Polymorphism 

Peripheral blood was collected in EDTA tubes. Ge-
nomic leukocyte DNA was extracted from whole blood 
of patients and controls by QIAamp DNA blood mini kit 
(Qiagen, Hilden Germany). SNP rs30187 was genotyped 
by using Taqman® SNP genotyping assays (assay ID 
C_3056885_10, Applied Biosystems, New Jersey, USA) 
according to manufacturers protocols. PCR reactions 
were carried out in a total volume of 20 μl containing 10 
ng of genomic DNA, 1X TaqMan Universal PCR Master 
Mix No Amp Erase UNG and 0.625 μl Taqman® SNP 
genotyping Assays primers 40× and FAM/VIC labeled 
probes by Applied Biosystems as Assays-by-Design™ 
(Applied Biosystems). Genotyping reactions were per-
formed with an AB 7900 HT, and the allele call by the 
analysis of allelic discrimination plots with AB SDS 2.4 
software (Applied Biosystems, Foster City CA94404). 
All assays were performed in 96-well plates including 
replicate genotype known and negative control samples.  

2.3. Statistical Analysis  

SNP genotype data were assessed by Chi-squared (χ2) 
test and χ2 test with Yates’ correction (genotype test and 
allele test). Results were analyzed using the GraphPad 
Prism software version number 5 (San Diego, California, 
USA). A result with p < 0.05 was considered statistically 
significant.  

3. RESULTS 

The study population was 234 patients and 314 
healthy controls. The mean actual age of T1D patients 
was 16.8 years (ranging from 2.6 to 39.1 years). Most of 
the patients were recruited at disease onset with a mean 
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age at disease onset of 9 years. The mean age of the con-
trol group was 25 years (ranging from 18 to 39 years). 
Demographic and clinical characteristics of patients are 
shown in Table 1. 

The T1D cohort population included 118 males and 
116 females. In the female group of 116 patients, 82 pa-
tients were recruited at the disease onset, while 34 had 
long-standing disease. In the male group of 118 patients, 
86 were selected at the disease onset, while 32 had 
long-term disease. T1D patients presented associated 
autoimmune manifestations (Table 1). Autoimmune gas-
tritis was confirmed by the presence of PCA Abs in 2 
female patients. In addition to T1D 46 patients were af-
fected by autoimmune thyroid diseases (autoimmune 
polyglandular syndrome Type III variant): two patients 
were affected by Basedow’s disease and 44 patients were 
affected by Hashimoto’s thyroiditis confirmed by the 
presence of circulating Tg and TPO Abs and echografic 
pattern of diffuse hypoechogenicity. In association with 
T1D, 21 patients developed celiac disease confirmed by 
the presence of TRG Abs. 4 female patients manifested 
vitiligo. In addition to T1D one patient was affected by 
ulcerative colitis, one by autoimmune leucopenia con-
firmed by the presence of anti-leukocyte abs and one  

patients was affected by autoimmune thrombocytopenia 
confirmed by the presence of anti-platelets Abs. The ge-
notype and allele distribution of rs30187 ERAP1 SNP in 
T1D patients compared to controls are shown in Table 2. 
The SNP did not significantly deviate from Hardy- 
Weinberg equilibrium. We detected rs30187 SNP G/G 
homozygotes in 90 patients (38.4%) and 114 controls 
(36.3%); rs30187 SNP A/G heterozygotes in 101 patients 
(43.1%) and 155 controls (49.3%); rs30187 SNP A/A 
homozygotes in 43 patients (18.37%) and 45 controls 
(14.3%). These differences in frequency distribution 
were found to be not statistically significant. Similarly no 
significant association was noted in allele frequencies of 
rs30187 SNP among T1D patients and control (Table 2) 
being the alleles equally distributed among patients and 
controls (the allele A was detected in 187 patients (40%) 
and 245 controls (39%), whereas the allele G was de-
tected in 281 patients (60%) and 383 control (39%). 
These results suggest that ERAP1 has a minor contribu-
tion in the TD1 pathogenesis. 

4. DISCUSSION 

Fung et al. [22] analysed 17 SNPs from 16 gene re-  

 
Table 1. Clinical characteristics of T1D patients. 

 
Number of T1D 

patients 
Mean age at 
disease onset 

Number of patients at  
disease onset 

Number of patients with 
long-term disease 

Associated autoimmune  
diseases* 

 234 9 168 66  

AG (2) 

BD (1) 

CD (10) 

HT (32) 

V (4) 

Female 116 8.9 82 34 

UC (1) 

AL (1) 

BD (1) 

CD (11) 

HT (12) 

Male 118 9.1 86 32 

AT (1) 

*AG: autoimmune gastritis, BD: Basedow’s disease, CD: Celiac disease, HT: Hashimoto’s thyroiditis, V: Vitiligo, UC: Ulcerative colitis, AL: Autoimmune 
leucopenia, AT: Autoimmune thrombocytopenia. 

 
Table 2. The distribution of genotype and allele frequencies of the rs30187 SNP of ERAP1 among T1D patients and controls. 

Genotype counts (GG/AG/AA) P genotype
a Allele counts (A/G) P allele

b 

T1D patients Controls  T1D patients Controls  

90/101/43 114/155/45 0.267 187/281 245/383 0.7955 

aChi-square test; bChi-square test with Yates’ correction. 
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gions that were previously considered to be related to the 
pathogenesis of several autoimmune conditions including 
AS, rheumatoid arthritis (RA), systemic lupus erithema 
tosus (SLE), MS, and celiac disease to determine whe- 
ther they could be associated also with T1D, since there 
was previous evidence of overlapping risk alleles across 
autoimmune diseases. Analysed genes included: ERAP1 
(rs30187), found associated with AS (vide supra); 
CD58 (rs12044852), found associated with MS; STAT3 
(signal transducer and activator of transcription 3, 
rs3816769), found associated with CD, IL-1A (rs17561) 
found associated with AS, MMEL1-TNFRSF14 (mem- 
brane metallo-endopeptidase-like 1 tumor necrosis fac- 
tor receptor superfamily, member 14 herpesvirus entry 
mediator) (rs3890745), STAT4 (rs7574865) and TNFAIP3 
(rs6920220 and rs10499194), which have been associated 
with both RA and SLE [15]. Among the others, the 7q23 
gene desert (rs11761231), CCL21 (rs2812378), TRAF1/C5 
(rs3761847), CDK6 (rs42041), KIF5A (rs1678542) and 
CD40 (rs4810485) found associated with RA were con- 
sidered. In addition BANK1 (rs10516487), FAM167A 
(rs13277113) and ITGAM (rs9888739) found associated 
with SLE were also included in the investigation [22].  

8010 cases and 9733 controls were analysed [22]. All 
cases (from the Juvenile Diabetes Research founda-
tion/Welcome Trust Diabetes and Inflammation Labora-
tory’s British case collection) and controls were of 
self-reported white ethnicity and chosen to be matched 
geographically. Some evidence for an association with 
T1D was detected in the regions containing the following 
genes: 2q32/STAT4, 17q21/STAT3, 6q23/TNFAIP3 and 
12q13/KIF5A/PIP4K2C. Evidence for some association 
with T1D was found in the region containing 5q15/ 
ERAP1 (rs30187, ARTS1). ERAP1 was also tested for 
interaction with HLA class I, especially with HLA-A and 
HLA-B, but no evidence for an interaction was observed 
by the authors [22].   

In our observational study conducted in 234 patients 
and 314 controls of Italian ancestry, we could not repli-
cate the association of the intergenic ERAP1 SNP 
rs30187 found by Fung et al. (2009) [22], suggesting a 
minor contribution of this gene to the pathogenesis of 
T1D in the Italian population. Failure of our study to find 
a definitive association could be due to insufficient 
power within the sample. To define the putative associa-
tion of the ERAP1 polymorphism with T1D development 
large population-based case-control studies, necessitating 
follow-up from different ethnicities, will be required. On 
a speculative basis other polymorphisms within the 
ERAP1 gene may be involved in the susceptibility to 
T1D.  

The relevance of the putative pathogenetic role of 
proteolytic pathways such as ERAPs in autoimmunity 
remains to be ascertained. In particular the role of SNPs 

on ERAPs that have been linked with predisposition to 
autoimmune disease has to be unravelled. How ERAP1/2 
SNPs affect disease pathogenesis and which is in addi- 
tion the diagnostic and prognostic value of their detec- 
tion is at present unknown. In particular, future investi- 
gations are required to study their effects on protein 
function and antigen processing. 

Furthermore cross-talk among different proteolytic 
pathways was recently highlighted i.e. components proc- 
essed in the ubiquitin/proteasome system possibly en-
gaged in autophagic pathways [23]. Recent data, in par-
ticular, emphasized the putative role of autophagy in the 
pathogenesis of autoimmune diseases [24] since the al-
ready reported discovery of polymorphisms in auto-
phagy-related genes in patients affected by disorders 
such as inflammatory bowel diseases (IBD), RA, psoria-
sis, vitiligo, MS and SLE [25]. Recent data also demon-
strated the requirement of autophagy in thymic epithelial 
cells (TECs) for loading endogenous antigens onto MHC 
class II and that this mechanism was critical for negative 
selection of CD4 T cells [26]. 

Deregulated autophagy was detected in T cells from 
lupus-prone mice and also found in T cells from patients 
affected by SLE possibly contributing to the survival of 
autoreactive T cells during lupus development as also 
shown in the experimental autoimmune encephalomye-
litis model [27,28].  

These observations open perspectives in unraveling 
the pathogenesis of autoimmune diseases through the 
combined analysis in GWAS of genes related to different 
proteolytic pathways.  

5. CONCLUSION  

We could not replicate in T1D patients from Conti- 
nental Italy, the association of the ERAP1 polymorphism 
rs30187 previously reported by Fung and colleagues [22]. 
Our results suggest a minor contribution of the poly- 
morphism to the pathogenesis of the disorder. 
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