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Abstract 
This work describes synthesis of graphene sheets with modified surface by sodium 
lauryl sulfate (SLS) surfactant using one-pot solvothermal reaction method. Effect of 
sodium lauryl sulfate surfactant amount on surface modification level of graphene 
sheets was investigated. Ether (-S-OR- at 762 cm−1 - 863 cm−1), thiocarbonyl (=C=S 
at 1050 cm−1 - 1176 cm−1) and sulfoxide (S-O, Vs and Vas at 1030 cm−1 - 1450 cm−1) 
functional groups released from sodium lauryl sulfate (SLS) surfactant during solvo-
thermal reaction and attached on the surface of graphene sheets were detected by 
(attenuated total reflectance-fast Fourier infrared) ATR-FTIR spectroscopy. (Atomic 
force microscope) AFM observations revealed apparent surface of graphene sheets 
modified by surfactant molecules with an average multiple profile of graphene na-
nosheets ≈ 4.8 nm high. This synthesis way of surface modified graphene sheets can 
be considered as easy, one-step and cheap method for manufacturing of novel bio-
surface with graphene, as reinforcement for biopolymer coatings such as ultra-high 
molecular weight polypropylene (UHMWPE), metallic biomaterials (Ti and Ti al-
loys) and bioceramics as hydroxyapatite (HA). 
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1. Introduction 

Graphene is one of allotropic modifications of carbon element with atomic number 6, 
located in the Periodic table of chemical elements, which was notable Nobel Prize in 
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Physics by A. Geim and K. Novoselov [1]-[3]. Graphene’s structure is basically com-
posed of monolayer carbon atoms hexagonal lattice, in which individual carbon atoms 
are connected by sp2 bonds, similar to those of nanotubes, fullerenes and carbon onions 
[4] [5]. Graphene is defining as two-dimensional (2D) material [6] [7], due to its width 
and length characteristics. Recent progress has shown that the graphene-based mate-
rials can have a deep impact on electronic and optoelectronic devices, chemical sensors, 
nanocomposites and energy storage [8]. Fabrication of graphene was achieved by sev-
eral methods: chemical reduction [9], plasma let [10], chemical vapor deposition [11], 
and so on [12].  

Chemical modification of graphene dispersion by surfactants in the content of man-
ufacturing and commercialization was reported [13].  

Sodium lauryl sulphate (SLS)-modified activated carbon from risk husk for waste lead 
(Pb) removal was synthesized by using of series of treatments, such as: carbonization, ac-
tivation with H3PO4 and surface modification using sodium lauryl sulfate (SLS) [14].  

This work was aimed to synthesize graphene sheets with modified surface by sodium 
lauryl sulfate (SLS) surfactant, using the simple and one-pot solvothermal reaction me-
thod. Solvothermal method is based on a chemical reaction between initial substances, 
mainly, the solvent and dissolved substances in it. Solvothermal reaction is generated 
inside stainless steel autoclave, under temperature and pressure conditions, in definite 
duration of time. Surface functionalized graphene has a number of superior advantages 
for biomedical applications, in particular, manufacturing of attachments for polymer 
molecules, creating of novel biosurface with graphene, as reinforcement for biopolymer 
coatings such as ultra-high molecular weight polypropylene (UHMWPE), metallic 
biomaterials (Ti and Ti alloys) and bioceramics as hydroxyapatite (HA). For example, 
chemical functionalization of graphene enables this material to be processed by solvent 
assisted techniques, such as layer-by-layer assembly, spin-coating, and filtration [15]. 
Surface modification of graphene by SLS surfactant positively improves the attachment of 
polymer molecules for creating of novel biosurface with graphene [16] [17]. It is also 
known that surface modification of graphene reduces its toxicity in vitro and in vivo [18]. 
At the same time, synthesis and surface modification of graphene sheets by SLS surfactant 
using the one-step solvothermal method and characterizations of as-obtained graphene 
were described in this work.  

2. Experimental Procedure 

A schematics of solvothermal synthesis method is presented in the Figure 1. Stainless 
steel autoclave (capacity of 100 ml) fixed to the metal equipment body, and was con-
nected with temperature controller. Initial substances (total volume 60 ml), composed of 
solvent (distilled water-ethanol mixture with 3:1 volume ratio), pure carbon powder 0.3 g 
(purity 99.9%, purchased from Kojundo Kagaku. Co.), sodium lauryl sulfate (SLS) sur-
factant (C12H25NaO4S, 5% solution, purchased from Kanto Chemical Co.) were placed in-
side the stainless steel autoclave and covered with lid. Solvothermal reaction tempera-
ture was set at 170˚C with further increase of inner-autoclave pressure to 1.4 MPa, and  
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Figure 1. Schematics of experimental setup: (a) Drawing of solvothermal synthesis equipment 
with labeled compartments: 1—vessel; 2—lid; 3—packing seal; 4—mount seal; 5—safety valve; 
6—pressure gauge; 7—valve; 8—thermo well; 9—stirrer; 10—stirring blade; 11—stirrer cooling 
hose outlet; 12—wrench; 13—heater; 14—thermo sensor; 15—tempertaure controller; 
16—rubber seal; 17—specimen pipe; 18—pressure safety branch compartment; (b) Figure of 
stainless steel autoclave containing initial reaction mixture; (c) Photograph of surface modified 
graphene sample obtained after solvothermal reaction.  

 
reaction time lasted for 1 hour. Solvothermal synthesis experiment was conducted three 
times, with SLS surfactant amounts of: 1 ml, 3 ml and 5 ml, for determination of sur-
factant amount effect on the surface modification of graphene sheets. Graphene sheets 
with modified surface by SLS surfactant were characterized by high resolution trans-
mission electron microscope (HRTEM) Technai F-20 S-Twin equipped with an Energy 
dispersive X-ray spectroscopy (EDX) detector for elemental analysis at 200 keV. The 
HRTEM samples were prepared by placing a drop of surface modified by SLS graphene 
sheets solution (in ethanol) on a holey carbon-coated copper grid. The excess solvent 
was evaporated and the specimen was dried in a vacuum overnight. X-ray photoelec-
tron analysis was carried out on Thermo Scientific XPS spectrometer. Raman spectrum 
was collected on HORIBA Jobin Yvon HR800 spectrometer, with He-Ne laser at 516 
nm. ATR-FTIR spectra were recorded using the JASCO FT/IR-6300 spectrometer. 
Atomic force microscopy analyses were conducted on 5500 AFM (N9410S) Keysight 
Technologies, Inc., with measurement mode: AAC (acoustic ac mode in air).  

3. Results and Discussions 

Multi layered graphene sheets formed after solvothermal reaction were detected by high 



Z. Abdullaeva et al. 
 

158 

resolution transmission electron microscope (HRTEM) and Raman spectroscopy ana-
lyses (Figure 2). HRTEM characterizations, which are proven to be an excellent tool for 
structure analysis [19], gave us a lot of necessary information regarding the structure, 
shape location, morphology and sizes of observing materials. Solubilization of carbon 
powder in ethanol-water mixture at 170˚C during solvothermal reaction and further 
graphitization led to formation of graphene sheets. Sonication technique can be applied 
for synthesis of graphene and separation of graphene multi-layer sheets into single 
sheets [20] [21], however, our focus was made on solvothermal synthesis and surface 
modification of graphene, rather than sonication and separation processes. Sonication 
technique can be applied for synthesis of graphene and separation of graphene multi- 

 

 
Figure 2. (a) HRTEM photograph of multilayer graphene sheets synthesized by solvothermal reaction method; (b) Raman spectrum col-
lected from graphene sheets synthesized by solvothermal method, by using He-Ne laser beam, inset corresponding to multilayer gra-
phene, inset adapted from [28] by permission of Elsevier; (c) High resolution photograph of graphene at 1 nm scale, red square shows 
areas for revealed hexagonal honey-comb lattice structure of graphene, inset is enlarged area shown in red square in (c), corresponding to 
the inter-atomic distance of 0.142 nm between C-C covalent bonds; (d) FFT image taken parallel with HRTEM observation; (e) Peak pro-
file showing inter-atomic distance between C-C bonds equal to 0.142 nm. 
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layer sheets into single sheets [22] [23], however, our focus was made on solvothermal 
synthesis and surface modification of graphene, rather than sonication and separation 
processes. Similar to previously reported works [22]-[24], solvothermally synthesized 
graphene exhibited analogical structures and dimensions. Inter-atomic distance be-
tween C-C bonds in solvothermally synthesized graphene are coincident with mechan-
ically exfoliated graphene, were equal to 0.142 nm [25] [26]. Comparing to other works, 
solvothermally synthesized graphene was stable against oxidation, whereas surface 
modified graphene by various surfactants [27] [28] were undergo reduction and oxida-
tion as well. 

Raman spectroscopy was used to study the number of layers and structure of surface 
modified graphene sample synthesized by solvothermal method. Peaks for D band at 
1327.29 cm−1, G band at 1572.5 cm−1 and second ordered 2D band at 2663.54 cm−1 are 
detected during Raman spectroscopy analysis. It can be seen that shape and intensity of 
Raman peaks can be different depending on laser and wavelength type used during 
analysis [29]. Also, D band in the Raman spectrum can be composed of more than one 
peak, such as D1 and D2, which is associated with scattering of electrons by mechanism 
of double resonance process [30]. Solvothermally synthesized graphene composed of 
multilayer, which can be explained by the intensity and shape of 2D band peak [31] 
[32]. The intensity of the G band increases with increased graphene layers, and the 
shape of 2D band evolves into four peaks of bilayer graphene [33]. The 2D peak in 
graphene is due to two phonons with opposite momentum in the highest optical branch 
near the K ( 1A′ symmetry at K) [34]. 

Figure 3 shows XPS spectrum collected from surface modified graphene sheets by 
solvothermal method, inset is C-C line C1s peak detected at 284.7 eV binding energy. 
Oxidation of graphene was not occurred during solvothermal reaction, which can be 
seen from the general survey, as there is only carbon atom C1s was appeared, and no 
oxygen atom peak was detected. Further qualification of obtained data is referred to 
[35] [36]. 

ATR-FTIR spectroscopy was applied to determine SLS (C12H25NaO4S) surfactant 
molecules attached on the surface of graphene sheets. Figure 4 shows ATR-FTIR spec- 

 

 
Figure 3. XRS spectra collected from surface modified by SLS surfactant graphene sheets: (a) Scan plot showing single peak for 
carbon C1s atom at 284.7 eV binding energy; (b) General survey showing peak for C1s carbon atom, and no peak for oxygen.  
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Figure 4. ATR-FTIR spectra of surface modified by SLS surfactant graphene sheets synthesized 
by solvothermal reaction method. Detected functional groups were released from SLS 
(C12H25NaO4S) surfactant during solvothermal reaction synthesis.  

 
tra for pure carbon powder, surface modified graphene sheets by 1 ml SLS, and surface 
modified graphene sheets by 5 ml SLS, respectively. Adding of 5 ml SLS surfactant to 
the reaction mixture, provided higher intensity and much more number of peaks be-
longing to the ether (-S-OR) at 700 - 900 cm−1, thiocarbonyl (=C=S) at 1050 - 1200 cm−1 
and sulfone (=S=O) at 1030 - 1450 cm−1 functional groups, respectively, in contrast to 1 
ml of SLS surfactant amount.  

Also, symmetric C-H stretches (CH3) at 2875 cm−1, asymmetric C-H stretches (CH2) 
at 2919 cm−1 and asymmetric C-H stretches (CH3) at 2956 cm−1 were detected. Attach-
ment of above functional groups followed by release of them from SLS (C12H25NaO4S) 
surfactant during solvothermal reaction. 

In comparison with other reported methods for surface modification of graphene, 
solvothermal reaction method have several advantages, such as: use of low temperature 
energy (1˚C - 300˚C), short reaction time (1 hour is quite enough), one-step process 
(synthesis of graphene and its surface modification can be achieved at the same time).  

Atomic Force Microscopy is measurement technique, which can provide information 
not only about physical dimensions, but also let to detect surface features on nanoma-
terials. Figure 5 presenting AFM images of surface modified by SLS surfactant gra-
phene sheets synthesized by solvothermal synthesis. Figure 5(a) shows solvothermally 
synthesized graphene sample which was dissolved in ethanol, dropped onto mica sub-
strate and dried prior to observation. As it was discussed earlier [37], SLS surfactant 
molecules attached onto graphene surface by using of low energy solvothermal reaction 
method, were observed as protuberant areas on the surface of graphene flakes shown in 
the Figure 5(a) inside red square, with height profile indication of 4.8 nm. Figure 5(c) 
shows surface modified graphene sheets by SLS surfactant, when sample was subjected 
onto HOPG substrate for AFM observation. Line profile in panel (d) represents the av-
erage obtained within the yellow line in panel (c), and the virtual nanosheets ≈ 27 nm  



Z. Abdullaeva et al. 
 

161 

 
Figure 5. AFM images of surface modified by SLS surfactant graphene sheets synthesized by solvothermal method: (a) AFM image taken 
by using the mica substrate, inset is enlarged area shown in small red square, arrows indicating surfactant molecules attached to the gra-
phene surface; (b) Height profile projected within the yellow line and showing graphene sheets height equal to 4.8 nm; (c) AFM image of 
SLS surfactant modified graphene sheets taken using the HOPG as substrate; (d) Line profile obtained within the yellow line in panel (c), 
and shows graphene nanosheets height attached with surfactant, equal to 27 nm. 
 

high (relative to HOPG substrate). 
Table 1 presenting Antibacterial activity of surface modified by SLS surfactant gra-

phene sheets, studied using 3 M Petrifilms for E. coli bacterial colonies. It was observed, 
that antibacterial activity was higher for graphene sheets utilized 5 ml of SLS for surface 
modification, comparing to samples utilized 3 ml and 1 ml of SLS surfactant. Following 
results were obtained after average E. coli bacteria colonies calculation: for case 136.6 
μg/ml of surface modified by SLS graphene nanosheets, 660 counts for 1 ml of SLS uti-
lization, 570 counts for 3 ml of SLS utilization, and 376 counts for 5 ml of SLS surfac-
tant utilized for surface modification. Antibacterial activity can be initiated by inhibi-
tion of metabolic processes [38] in E. coli bacterium colonies. 

Summary of graphene family materials discussed [39], indicating slight and nearly no 
toxic effects of graphene, reduced graphene and oxidized graphene against E. coli bac-
terium colonies.  

These obtained results are certainly supporting the biomedical applications of surface  
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Table 1. Antibacterial activity of surface modified by SLS surfactant graphene sheets synthesized 
by solvothermal reaction method. 

Sample 
Graphene sheets  

modified by 1 ml of SLS 
Graphene sheets  

modified by 3 ml of SLS 
Graphene sheets  

modified by 5 ml of SLS 
Control 

Average E. coli  
counts 

660 570 376 1050 

 
modified by SLS surfactant graphene nanosheets. Graphene elicit toxic effects both in 
vitro and in vivo, whereas surface modifications can significantly reduce its toxic inte-
ractions with living systems [17], which allows biomedical applications of surface mod-
ified by SLS graphene sheets, in particular as inner linings and as reinforcement for 
biopolymer coatings such as ultra-high molecular weight polypropylene (UHMWP), Ti 
and Ti alloys and hydroxyapatite (HA).  

4. Conclusion 

Synthesis of surface modified graphene sheets by SLS surfactant during solvothermal 
reaction was highlighted in this work. Atomic state and elemental composition of sur-
face modified graphene were consisted of C-C bonds with inter atomic distance 0.124 
nm, and associated with C1s XPS peak, excluding oxidation of synthesized graphene. 
Multilayer graphene sheets consisting of hexagonal honey-comb lattice were revealed 
by HRTEM, and structure was determined by Raman spectroscopy. Influence of SLS 
surfactant amount on surface modification and attached functional groups were deter-
mined by attenuated total reflection FTIR spectroscopy. Higher amount of surfactant 
resulted in much more surface modification areas with higher intensity peaks and 
quantities of functional groups. Antibacterial activity of surface modified by SLS sur-
factant graphene sheets is found to be higher in case of increased amount SLS surfac-
tant used during surface modification. Obtained results are highlighting biomedical ap-
plications of surface modified by SLS graphene sheets, as biocompatible coating plat-
form between polymer, metallic, ceramic type implants and the living tissue.  
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