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ABSTRACT 

Interface bound states have been theoretically predicted to appear at isolated graphene-superconductor junctions. These 
states are formed at the interface due to the interplay between virtual Andreev and normal reflections and provide 
long-range superconducting correlations on the graphene layer. We describe in detail the formation of these states from 
combining the Dirac equation with the Bogoliubov-de Gennes equations of superconductivity. On the other hand, fluc-
tuations of the low-energy charge density in graphene have been confirmed as the dominating type of disorder. For 
analyzing the effect of disorder on these states we use a microscopic tight-binding model. We show how the formation 
of these states is robust against the presence of disorder in the form of electron charge inhomogeneities in the graphene 
layer. We numerically compute the effect of disorder on the interface bound states and on the local density of states of 
graphene. 
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1. Introduction 

The peculiar electronic band structure of graphene has 
been the focus of an intense research activity [1]. In gra- 
phene, the electronic low-energy properties are governed 
by a massless relativistic Dirac Hamiltonian which makes 
the carriers moving in it develop very interesting proper- 
ties like an electronic spectrum linear with the wave 
vector and electronic states which are chiral with respect 
to the pseudospin defined by the two atoms of the crystal 
unit cell. As a result, graphene exhibits exotic effects like 
the Klein paradox—perfect transmission through poten- 
tial barriers [2].  

Of particular interest is the case of a graphene layer in 
contact with a superconducting electrode, where the in- 
terplay between superconductivity and the relativistic 
behavior of charge carriers in graphene can be tested [3]. 
Graphene is not intrinsically a superconductor but it can 
easily inherit the bulk properties of other materials when 
in contact with them. Good contacts can be achieved 
between lithographically defined superconducting elec- 
trodes and graphene layers [4-7]. In such hybrid devices, 
a superconducting gap is induced by proximity effect on 
the graphene region underneath the metallic electrodes; 

in these conditions, Andreev processes featuring conver- 
sion of electrons into holes in the normal region and the 
creation of a Cooper pair in the superconductor take 
place [8]. In a recent experiment using planar Pb probes a 
high-quality tunneling spectroscopy has been performed 
when the Pb was in the superconducting regime [9].  

Several theoretical studies of the electronic and trans- 
port properties of graphene-superconductor hybrid struc- 
tures have been reported in the recent years. The differ- 
ential conductance and the spectral properties of gra- 
phene-superconductor junctions and graphene-based Jo- 
sephson junctions have been studied within a tight- 
binding framework and solving the Dirac-Bogoliubov-de 
Gennes (DBdG) equations under the approximation of 
neglecting inter-valley scattering [10-19]. The influence 
of electron-hole inhomogeneities on the Andreev reflec- 
tion on graphene-superconductor hybrid structures was 
studied in [20]. The properties of bound states arising 
from multiple Andreev reflections in a graphene Joseph- 
son junction have been analyzed in [21,22]. However, the 
special electronic properties of graphene are such that 
bound states can be formed even at isolated single junc- 
tions. The existence of interface bound states (IBS) was 
demonstrated in [23] for different edge orientations and 
doping conditions of the graphene layer. In this work we *Corresponding author. 
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study how robust these bound states are to the effect of 
disorder on the graphene sample. 

This article is organized as follows: First, we discuss 
in Section 2 the formation of interface bound states at a 
graphene-superconductor interface by matching of the 
solutions of the DBdG equations. In Section 3, we intro- 
duce the microscopic tight-binding model which includes 
a superlattice potential that is used to simulate the effects 
of disorder. Finally, in Section 4 we present our main 
results and end with some conclusions. 

2. Interface Bound States 

The special electronic properties of graphene are such 
that bound states can be formed at isolated graphene- 
superconductor junctions [23]. The mechanism for the 
emergence of these states can be understood from the 
scheme depicted in the left panel of Figure 1. As is usu- 
ally assumed the junction can be modeled as an abrupt  
 

 

Figure 1. (a) Simple model for the emergence of IBSs illus- 
trating the scattering processes taking place at a gra- 
phene-superconductor interface with an intermediate heav- 
ily doped normal graphene region of width d. Cases (i) and 
(ii) correspond to the situation with F Fv q E E  and 

F Fv q E E , respectively, where D> E > EF. (b) Map 

of the spectral density of states where the light regions in-
dicate a higher spectral density showing the emergence of 
the IBS from the Dirac cone. The spectral density has been 
calculated using the microscopic tight-binding model for an 
undoped (EF = 0) semi-infinite region of graphene without 
disorder coupled to a superconductor. The distance from 
the interface is equivalent to the superconducting coherence 
length x. The white dashed line corresponds to the disper-
sion relation of (9). 

discontinuity between two regions described by the 
DBdG equation, taking a finite superconducting order 
parameter   and large doping  on the super- 
conducting side (S) and zero order parameter and small 
doping 

�S
FE

FE ~  on the normal side (N). For the analysis 
it is instructive to include an artificial intermediate nor- 
mal region with 0   and I S

F F , whose width, d, 
can be taken to zero at the end of the calculation. This 
intermediate region allows to spatially separate normal 
reflection due to the Fermi energy mismatch from the 
Andreev reflection associated to the jump in 

E E

 . The 
DBdG equation reads 

F

F

H E
E

E H
 

  
   

          (1) 

with the excitation energy E positive unless otherwise 
specified. The pair potential couples electron and hole- 
like excitations from different valleys (opposite momen- 
tum), described by the same Hamiltonian  

 F x x y yH i v       . 

We assume in (1) a s-wave pairing which leads to a con- 
stant gap   which is diagonal in sublattice space. 
Whenever the pair potential is assumed constant, the low 
energy spectrum is given by 

 2
2 2Δ F FE E v k q    2 . 

we define the component of the momentum perpen- 
dicular to the interface as 

   
2 2

,
S S

F e h F Fv k E v q    , 

with 2 2E D2    the conserved component of the 
momentum parallel to the interface. The basis of scatter- 
ing states in the normal region  with 0x  Δ 0  is  

 1,e ,0,0 e e
Ti ik iqye e

e
  

x ,          (2) 

 0,0,1, e e e
Ti ik x qyh h

h
 

   ,          (3) 

for states moving towards the interface and  

 1, e ,0,0 e e
T ik xi iqye e

e
 

   ,          (4) 

 , 0,0,1,e e e
Ti ik x iqyh h

h
  

  ,           (5) 

for states moving away from the interface. We define 
   ,

,e
i e h

F e h Fk iqv E


   E . Analogously, the basis 
of scattering states in the superconducting region x d  
with 0   and S

FE �  reads 

 , e , , e e e
S S S
e e e

T
i i ik xS i

e u u v v   
qy        (6) 
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 , e , , e e e
S S S
h h h

T
i i ik xS

h v v u u      iqy



      (7) 

where   ,
,e

S
e hi S

F e h Fiqv k E


    and with  

   2 2 2u v E    

the BCS coherence factors, normalized so that  
. Finally, for the intermediate region  2 2 1u v 

0 x d   we use the normal state basis changing the 
doping level to I

FE . 
As shown in Figure 1 (case i), an incident electron 

from the normal side with energy E and parallel momen- 
tum  such that q F Fv q E E   is partially trans-
mitted into the intermediate region and after a sequence 
of normal and Andreevreflections would be reflected as a 
hole. This process can either correspond to retro or spe- 
cular Andreev reflection depending on whether FE E  
or FE E  [8]. 

For F Fv q E E   neither electron or holes can 
propagatewithin the graphene normal region. However, 
virtual processes like theone depicted in Figure 1 (case ii) 
would be present. These correspond to sequences of An- 
dreev and normal reflections within the intermediate re- 
gion. A bound state emergeswhen the total phase   
accumulated in such processes reach the resonancecondi- 
tion 2 πn  .  

It is quite straightforward to determine the dispersion 
relation for the IBS from the model represented in the top 
panel of Figure 1. The phase accumulated by a sequence 
of normal and Andreev reflections in the intermediate 
region can be obtained from the corresponding coeffi- 
cients re, rh and rA. From the matching of the solutions of 
the DBdG equations at the interface between the gra- 
phene and the intermediate regions one obtains 

,
,

,
,

, ,

e e
e

e e

Ii e h i e hIi e h
e h Ii ie h e h

r






 










,             (8) 

where     , arcsinI I
e h F Fv q E E     

 .  

The condition F  allows to take  

, . On the other hand, in the region of evanescent 
electron and hole states for graphene (

, ,I
FE E v�  q

0I
e h �

F Fv q E E  ), 
re,h be- come a pure phase factor , with   ,e hi exp

   , ,2sgn arctan expe h F e hq E E          

and    , sgn argcosh e h F Fq v q E E



.  

For the Andreev reflection coefficient between regions I 
and S one has AexpAr i , where  arccosA E  , 
as it corresponds to the Andreev reflection at an ideal N-S 
interface with  [24]. In the limit the 

total phase accumulated is thus h

�S
FE 0d

2  A e    , from 
which one obtains the following dispersion relation 

     2 22 2gn e

s cos

   e h
F

e h

E E
 

 

e s

2 co



 


e h
E

 

.  (9) 

This dispersion simplifies to  

 2 2     F FE v q v q  

at the charge neutrality point (i.e. for ). In this 
case the IBS approaches zero energy for  and 
tend asymptotically to the superconducting gap for large 
q. Notice also that the decay of the states into the gra- 
phene bulk region (

0FE
q 0

0x  in the top panel of Figure 1) is 
set by  ,exp e hx  , where  

 , ,sinhe h F F e hv E E    

for the electron and hole components respectively, which 
can be clearly much larger than the superconducting co- 
herence length 0 Fv   when . It is also in- 
teresting to notice that the IBSs survive when , 
i.e. in the regime corresponding to the usuSSal Andreev 
retroreflection, but with a much smaller spatial extension. 

�FE
 FE

3. Microscopic Model 

In order to describe the interface more microscopically, 
we analyze the electronic states of a graphene layer using 
the tight-binding approximation, 

† †
g i j i i i

ij i

H t c c V c c    ,       (10) 

where 02 3 2.6 g Ft v a  eV denotes the hopping ele- 
ment between nearest carbon atoms on the hexagonal 
lattice and 0 0.142a  nm is the smallest carbon-carbon 
distance. 0 iV V Vi is the potential applied to the lat-
tice, where 0V  is a uniform on-site doping and iV  
represents small fluctuations over the doping level (i.e. 
charge inhomogeneities as introduced below). The spin 
degree of freedom has been omitted due to degeneracy. 

We assume that the graphene region is a strip with 
armchair edges along the y-direction as sketched in Fig- 
ure 1. We model the strip by repeating a unit cell com- 
posed of four atoms N times along the x direction and M 
times along the y direction (see Figures 2(a) and (b)). As 
a consequence, the length of the graphene layer is 

03L N a . For describing the  limit we im- 
pose periodic boundary conditions in the y direction and 
define 

�W L

π ,π   q d dSC SC  as the corresponding wave 
vector, with dSC the vertical length of the supercell. 

We connect the leftmost graphene armchair edge to a 
superconducting electrode and the rightmost to a normal 
lead. We maintain the graphene sublattice structure at the 
edges, thus representing the experimental situation where 
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the electrodes are deposited on top of a graphene layer 
[16,25-28]. The presence of the superconducting corre- 
lations requires introducing the Nambu space, describing 
electron and hole propagation within the graphene layer. 
The self-energy on the graphene sites at the layer edge 
coupled to the normal lead is approximated by a 
8 8M M  matrix with elements , , R R

ij ij v     , 
where , 1, ,  4 

, 1, i j
, 

 label the atomic sites within the 
unit cell,  label the unit cells in the super-
lattice and 

, M
,e h   label the matrix elements in 

Nambu space. Following the geometry depicted in Fig-
ure 2, the elements of the self-energy matrix are explic-
itly defined as  

11, 44, 3 2 R R i    

and 14, 41, 14, 41, 1 2      R R R R
ee ee hh hh     (see more 

details in [16,28]). 
Analogously, the self-energy describing the coupling 

to the superconducting electrode on the left armchair 
edge is described by a matrix with elements with gBCS = 

 

 

Figure 2. (a) Unit cell of the superlattice with four carbon 
atoms; (b) Graphene region showing the axis selection for N 
= 17 horizontal cells and M = 9 vertical cells. The normal 
and superconducting electrodes would be coupled to the left 
and right armchair edges, respectively; (c) Example of a 
two dimensional superlattice potential with horizontal pe- 
riod dx and vertical period dy extended over a graphene 
region with N = 72 and M = 48 cells. A disordered superlat- 
tice potential takes random values in the range [−Vd, Vd] at 
every square region given by dx × dy. 

22, 33,

23, 33, 23, 32,

22, 33, 22, 33,

3 2

1 2

3 2

L L
BCS

L L L L
ee ee hh hh

L L L L
eh eh he he BCS

g

f

 



   
        

       ,

  (11) 

2
BCSEf E E     2



 the BCS amplitudes and the 
superconducting gap. 

The spectral properties of the system are calculated 
using the local retarded Green function , where ˆ ,r

iiG q E
1, , i N  labels the horizontal sites of the layer. We 

can thus define the local density of states (LDOS) at the 
site i as 

 
 

 2

π / ˆTr Im
π /2π

rSC SC qi i
SC

d d
E d

d
     iG 


,  (12) 

which is normalized to one electron per site and spin. To 
remove the dependence on the width of the superlattice 
dSC, it is convenient to normalize the LDOS with the 
density of a bulk graphene layer with zero doping at 

 E , 0 , which for  �  F SCv d  is given by  

 2
2π SC Fd v . 

The results thus obtained do not depend on the ratio 
 gt  used in our tight-binding calculations. In Figure 
1(b) we show a map of the spectral density of states (the 
integrand of (11)) for an undoped (EF = 0) semi-infinite 
region of graphene coupled to a superconductor. The 
energy-momentum map has been calculated at a distance 
to the interface comparable to the superconducting co-
herence length    Fv  . The IBSs are located outside 
of the bulk band of graphene. The white dashed lines 
indicate the solution of (9). 

Model for Disorder Due to Charge Puddles 

The electron-hole inhomogeneity in graphene is modeled 
using a two-dimensional superlattice potential. As it is 
sketched in Figure 2(c), we divide the graphene layer 
into square supercells of horizontal length 0d 3x n a  
and vertical length 03 yd ma , with n ≤ N and m ≤ M. 
At each supercell, we define an electrostatic potential 

iV  which takes random values in the range [−Vd, Vd], 
with Vd the disorder strength. This random superlattice 
potential is added to the uniform electrostatic potential V0. 
Consequently, V0 stands for the doping level of the gra- 
phene layer and iV  represents the charge inhomoge- 
neities characteristic of graphene (i.e., charge puddles 
[29,30]). Following [30], the best estimation for the 
maximum strength of the charge puddles is of 30 meV, 
over a region of typical size no greater than 30 nm. 

4. Effect of Disorder 

When studying the low-energy physics of graphene close 
to the Dirac point, the electron-hole inhomogeneity in 
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graphene (i.e., charge puddles [29,30]) is a type of charge 
disorder that has to be taken into account.  

The results presented in Figure 1(b) correspond to a 
semi-infinite layer of pristine graphene connected to a 
superconductor. A more realistic model should include 
size effects such as a graphene layer with a finite length, 
and the possibility of electron-density inhomogeneities. 
Although the effect of having a finite length in the nor- 
mal region can be treated within both the continuous and 
the TB models, the latter is more suitable to explore the 
effect of disorder.  

The results for a graphene layer of horizontal length 

03 800L a   with armchair edges coupled to a su- 
perconductor are presented in Figure 3. Figure 3(a) has 
been calculated with the strength of the disorder potential 
set to zero. The results for the LDOS (right panel) are 
similar to the undoped case presented in [16]: a clear 
peak at , which rapidly decays inside the normal 
region after a few times the superconducting coherence 
length ξ. The finite length of the graphene layer is mani- 
fested by the appearance of energy bands close to the gap 
edge. The spectral density of states is plotted in the left 

  E

 

 

Figure 3. LDOS for a graphene layer of length L = 197 nm 
(800 armchair cells) coupled to a superconductor on an 
armchair edge calculated within the tight-binding model. 
For the simulation, the superconducting gap has been cho- 
sen to be D = 0.005 tg. (a) The results for the case without 
disorder. On the left, the spectral density of states, calcu- 
lated at a distance from the interface comparable to the 
superconducting coherence length x, in a color map where 
dark blue is the absence of states. On the right, the LDOS 
as a function of the energy and the distance to the inter- 
face; (b) The same as before with the introduction of a ran- 
dom superlattice potential of strength Vd = 0.01 tg, with spa- 
tial periods  nm.   10x yd d

panel, calculated at a distance ξ from the interface. The 
IBS is clearly distinguishable outside of the Dirac cone 
(dark red in the color plot, the dark blue corresponds to 
the absence of spectral density). The finite armchair layer 
considered now presents a gap in the energy of the nor-
mal state. The Dirac cone is not uniform but is formed by 
discrete energy levels (light blue areas in the color plot) 
due to the finite size of the layer. 

When the disorder is taken into account (Figure 3(b)), 
the peak at the edge of the gap remains unaltered and the 
decay is comparable to the non-disordered case (right 
panel). The weight of the states below the gap becomes 
more important in the spectral density, as it is shown in 
the left panel. The energy levels are deformed and ac- 
quire a bigger weight in the spectral density (light blue in 
the color plot).  

For this strength of the disorder, the envelope of the 
LDOS is still comparable to the non-disordered case, but 
small fluctuations appear. The main effect of disorder 
can be seen as an effective doping, which does not alter 
deeply the LDOS. In Figure 4 we show the LDOS cal- 
culated at a distance from the interface 6 , where the 
IBS has completely decayed. The solid red line corre- 
sponds to the case where the disorder strength is set to 
zero. The LDOS presents a soft modulation and is sym- 
metric with respect to the energy—as corresponds to an 
undoped case. The introduction of disorder breaks this 
electron-hole symmetry and clearly affects the modu- 
lation of the LDOS (blue dashed line).  

The strength of the random superlattice potential used 
in these simulations is 0.01 2.7d gV t   meV, which is 
comparable to the greatest estimation for the measured 
strength of the charge inhomogeneities in graphene [30]. 
The periodicity of the superlattice potential is  

10 x yd d  nm, which is slightly smaller than the typi-  
 

 

Figure 4. LDOS with the same parameters as in Figure 3 
calculated at a distance 6× from the interface for the case 
without disorder (red solid line) and with disorder strength 
Vd = 0.01 tg (blue dashed line). 

Copyright © 2013 SciRes.                                                                             Graphene 



P. BURSET  ET  AL. 40 

cal length of a charge puddle in graphene, with an aver-
age size of 30 nm. In spite of this, the chosen values are 
close enough to assume that a bigger period for the su-
perlattice potential would not affect considerably the 
LDOS profiles. 

In conclusion, we have shown that interface bound 
states appear at isolated graphene-superconductor junc- 
tions. The presence of charge inhomogeneities in the 
normal region induces strong fluctuations in the LDOS 
profile and breaks the electron-hole symmetry of the 
LDOS. However, the IBS modifies more intensely the 
LDOS and thus this electron-hole symmetry cannot be 
appreciated at a distance from the interface comparable 
to 2 - 3 ξ. For a longer distance, the IBS have decayed 
and the effect of the disorder is clearly shown in the 
LDOS. The formation of IBSs and their effect on the 
profile of the LDOS is robust against a disorder strength 
comparable to the measured strength of the charge pud- 
dles in graphene. 
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