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ABSTRACT 

In our previous work [1], we calculated RKKY interaction between two magnetic impurities in pristine graphene using 
the Green’s functions (GF) in the coordinate-imaginary time representation. Now we show that the calculations of the 
GF in this representation can be simplified by using the Feynman’s trick, which allows to easily calculate RKKY inter-
action in gapped graphene. We also present calculations of the RKKY interaction in gapped or doped graphene using 
the coordinate-imaginary frequency representation. Both representations, corresponding to calculation of the bubble 
diagram in Euclidean space, have an important advantage over those corresponding to calculation in Minkowskii space, 
which are very briefly reviewed in the Appendix to the present work. The former, in distinction to the latter, operate 
only with the convergent integrals from the start to the end of the calculation. 
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1. Introduction 

RKKY interaction between two magnetic impurities in 
graphene was theoretically studied quite intensely during 
last several years [1-19] (A terse but precise review of 
the issue one can find in the book by M. Katsnelson [20]). 
One may ask, why the problem, which is in principle so 
simple (in the lowest order of perturbation theory, as it 
was treated in all the papers referenced above, the prob- 
lem is equivalent to calculation of a single bubble dia- 
gram), was the subject of so many publication, using dif- 
ferent approaches? 

One of the answers to this question is connected with 
the fact that a simply written integral is not necessarily a 
simply calculated integral. More specifically, in most of 
the approaches mentioned above the integrals defining 
the RKKY interaction in graphene turned out to be di- 
vergent, and to obtain finite values from these divergent 
integrals one has to implement the complicated (and to 
some extent arbitrary) cut-off procedure. The cure from 
this disease turned out to be calculation of this diagram 
not in Mikowskii, but in Euclidean space. Green’s func- 
tions (GF) in coordinate-imaginary frequency represen- 
tation were used in [3]. GF in coordinate-imaginary time 
representation were used in [1,7]. 

In the present work we generalize the approach of our 
previous publication [1] to treat the case of gapped gra- 
phene. Not to distract attention of the reader from the 
aspects of the physics we are going to concentrate upon, 
we consider a toy model of graphene, with free electrons 
being described by the 2d Dirac Hamiltonian. The exis-

tence of two Dirac points in graphene leads to additional 
angular dependent factor in the formula for the RKKY 
interaction. This angular dependence was thoroughly 
studied previously [5,8] and does not interfere with the 
physics we are discussing in this work. 

The effective exchange RKKY interaction between the 
two magnetic impurities with the spins 1S  and 2S , sit- 
ting on top of carbon atoms with the relative radius-vec- 
tor  is R

 2
RKKY 1 2

1

4
H J R  S S            (1) 

where J is the contact exchange interaction between each 
of spins and the graphene electrons, and  R  is the 
free electrons charge susceptibility, depending upon 
whether the carbon atoms belong to the same, or differ- 
ent sublattices. 

2. Imaginary Time Representation: Gapped  
Graphene 

The susceptibility expressed through the GF in the imagi- 
nary time-coordinate representation can be written as [1, 
5,6] 

     
0
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.      (2) 

Consider electrons in 2d described by Dirac equation 

0 0ti iv m       γ  ,           (3) 

where 2
1 2

1     γ . To find the GF in coordinate- 
time representation it is convenient to use the trick in-
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troduced by Feynman [21], that is to represent the GF as 

  0, tG R t i iv m I R ,       γ ,     (4) 

where 
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and 2 2 2 kE v k m . 

Going from real to imaginary time, instead of Equa-
tions (4) and (5) we obtain respectively 

  0,G R iv m I R        γ , ,    (6)  

and 
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Performing in Equation (7) angular integration we ob- 
tain 
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( 0J  is the Bessel function of zero order). Using mathe-
matical identity [22] 
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we obtain 
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In the gapless case 1mR v  we get [6] 
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Taking into account that  ( ), and 
performing integration in Equation (2) we obtain [5] 
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(CC can mean either AA or BB). 
In the opposite case 1mR v  we may approximate 

the GF as 
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Performing integration in Equation (2), both for intra- 
sublattice, and for inter-sublattice susceptibility we get 
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         (14) 

It is worth paying attention to the fact that Equation 

(14) seems to contradict rigorously proved theorem stat- 
ing that for any bipartite lattice at half filling, the RKKY 
interaction is antiferromagnetic between impurities sit- 
ting on top of atoms belonging to opposite sublattices 
(i.e., A and B sublattices in graphene), and is ferromag- 
netic between impurities sitting on top of atoms belong- 
ing to the same sublattice [1,5,23]. However, the theo- 
rem is not applicable to Hamiltonian corresponding to 
Equation (3), with its last term meaning that if we rewrite 
the Hamiltonian in the tight-binding representation, the 
intra-sublattice hopping will appear; hence the lattice is 
no longer bipartite. More specifically, the spectrum still 
has the symmetry of that in bipartite lattice, but the wave 
functions do not [1]. 

3. Imaginary Frequency Representation 

The approach will be based on equation [24]  

   21
; dR G R  




 

  ,         (15) 

where ( ; )G R  is the GF in the coordinate-imaginary 
frequency representation. 

3.1. Gapped Graphene 

The Green’s function is 
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Hence for the diagonal part of the GF we obtain 
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and for the non-diagonal part 
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Substituting into Equation (15) we obtain [25] 
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For 1mR v , using mathematical identity [22] 
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we recover Equation (12). 
For 1mR v  we may use asymptotic expression for 

modified Bessel functions 

  ~ e
2

zK z
z


,            (22) 

After calculating the resulting integrals in Equation (20) 
using the Laplace method, we recover Equation (14). 

3.2. Doped Graphene 

For the case of doped (ungapped) graphene the GF is 
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where   is the chemical potential. For the diagonal 
part of the GF in coordinate representation we obtain  
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and for the non-diagonal part  
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0K  and 1K  are the modified Bessel function of zero 
and first order respectively. We have used mathematical 
identity, valid for Re  [22] 0z
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The susceptibility (15) is expressed through the integrals 
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Considering integrals in the complex plane it is conven- 
ient to deform the contour of integration and present the 
integrals as  
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Taking into account the identity  
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we get [12]  

       

       

2
0 00

2
0 10

1 16 d

16
1 d

3

F

F

k RCC CC

k RAB AB

R R zz J z Y z

R R zz J z Y z

 

 

 

 





0

1 ,

    
    




 (30) 

where Fk v , and  are given by Equation 
(12). The integrals in Equation (30) can be presented in 
terms of Meijer functions [12,19] (I address the reader to 
these References for the details). 

 0 R

It is interesting to compare the RKKY exchange in 
doped graphene, with its two sublattices and linear dis-
persion law, with that in ordinary two-dimensional elec-
tron gas. For the latter the Green’s function is 
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and the susceptibility turns out to be [26] 
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4. Conclusion 

In the end we would like to mention again that in the 
case considered, the GF calculations in Euclidean space, 
as it is not infrequently happens, have advantages over 
those in Minkowskii space. In particular, using the for- 
mer one have to operate only with the convergent inte- 
grals, in distinction to what happens when one uses the 
latter.  
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Appendix: Approaches Based on Real  
Frequency GF 

The approach, used in [2,4,5] is based on equation  
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 n nE   and  is the Fermi dis-
tribution function. This approach, though looking quite 
straightforward, brings with it a problem. In a model of 
infinite Dirac cones, for  we obtain a di-
verging integral.  
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The problem can be formulated in a different way. 
Being calculated in a realistic band model, with the 
bands of finite width,  is not a universal 
quantity. It depends not only on infrared physics, but on 
the properties of electron spectrum and eigenfunctions in 
the whole Brillouin zone (even for small ).  

 0 q , 

q
Another approach, formulated in [6], starts from a 

well-known equation for the susceptibility  
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where  is the retarded green’s function. Here again 
the integral diverges on both limits of integration. How-

ever the authors changed the contour of integration, 
transforming the divergent integral (5) into the conver-
gent integral along the imaginary axis (see also [27]). 
The authors also considered RKKY interaction in gapped 
graphene, when the power law decrease of the interaction 
with the distance turns into the exponential law. Actually, 
the authors made the transition from real to imaginary 
frequencies, so some of our results are close to ones ob-
tained in [6].  

G

The approach, using formula  

     ,r r n r V r              (2) 

and, hence, calculating electron susceptibility on the ba-
sis of equation  
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where FE  is the Fermi energy, was first used, in appli-
cation to graphene to the best of our knowledge, in [8]. 
An advantage of this approach is that it allows to easily 
consider the case of doped graphene, the disadvantage is 
that the approach, like the one presented above, has to 
deal with the divergent integral (the integral with respect 
to diverges at the lower limit of integration). To ob-
tain finite values from these divergent integral, similar to 
what was necessary for the approach mentioned in the 
beginning of the, one has to implement the complicated 
(and to some extent arbitrary) cut-off procedure [5].
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