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ABSTRACT 

Transport of suspensions and emulsions in porous media occurs in numerous processes of environmental, chemical, 
petroleum and civil engineering. In this work, a mass balance particle transport equation which includes filtration has 
been developed. The steady-state transport equation is presented and the solution to the complete advective-dispersion 
equation for particulate suspension flow has been derived for the case of a constant filter coefficient. This model in-
cludes transport parameters which are particle advective velocity, particle longitudinal dispersion coefficient and filter 
coefficient. This work recommends to be investigated by particle longitudinal dispersion calculation from experimental 
data, directly. Besides, the numerical model needs to be developed for general case of a transition filter coefficient. 
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1. Introduction 

The transport of particulate suspensions in porous me-
dium occurs in a variety of industrial and natural process 
such as wastewater treatment, propagation of pollutants 
in subsurface environment, fouling of membranes and 
seawater injection in oil reservoirs. Flow of solid and 
liquid particles with particle capture by the rock takes 
place during injection of seawater and produced water in 
oil fields. 

Particle transport and retention are mostly important 
for the environmental processes, where the particle con-
centration must not exceed a safety value, while the per-
meability changes is important for petroleum production 
due to its effect on well productivity and injectivity [1]. 

The study of particle retention in porous medium can 
be dated back to the work of Iwasaki [2] who proposed 
the following basic empirical for deep bed hydrosol fil-
tration. 
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where:   is the specific volume of deposited material 
(particle retained concentration),  is the fluid superfi-
cial velocity,  is the particle suspended concentration 
and 

u
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  is called the filtration coefficient. 
The must used approach for evaluating colloid migra-

tion, retention and detachment is solute transport mass 
balance equation with the sink term for particle retention 
[3,4]. 
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The term   in Equation (3) is called filtration coeffi-
cient. Equations (1) and (2) together with the formula for 
coefficient   are called the classical filtration theory in 
above references. 

In the current work, a theoretical investigation of par-
ticulate suspension flow through porous media has been 
done. The steady-state transport equation is presented 
and the solution has been derived. The filtration coeffi-
cient   will be discussed as a dominant parameter in 
the particle transport and retention through porous me-
dium. 

2. Particulate Suspension Flow through  
Porous Medium 

2.1. Filtration Theory 

When fluid containing particles reaches a porous medium, 
the liquid and the solid phase in the suspension can be 
separated, either by depositing in the pore or accumulat-
ing in front of the surface. This is similar to what hap-
pens in the filtration process. Then, the retention process 
of particles when flowing through a porous media is 
called Deep Bed Filtration [5]. The deep filtration occurs 
because of several mechanisms: the contacting of parti-
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cles with the retention site, the fixing of particle sites and 
the breaking away of previously retained particles [6]. 

2.2. Mechanisms of Particles Retention 

The particle capture in porous media can be caused by 
different mechanisms [7]. 

• Size exclusion (large particles are captured in small 
pores and pass through large pores); 

• Electrical forces (London-Van der Waals, double 
electrical layer, etc.); 

• Gravity segregation; 
• Multi particle bridging. 

3. Basic Formulation of Particles Transport 
through Porous Medium 

The model includes transport parameters which are parti-
cle advective velocity, particle longitudinal dispersion 
coefficient and filter coefficient. These parameters have 
been defined by dimensional analysis using the pertinent 
variables of the porous medium system. 

3.1. Advective Velocity 

The averaged particle velocity in the porous media, has 
been found to be either the same or slightly higher than 
that of the carrier fluid. This deviation is caused by the 
particle’s size. The expected difference can be deter-
mined by analyzing the velocity profiles of both the fluid 
and the particles in a pore. The model has been formu-
lated for a capillary tube which has a constant rate with 
the following assumption: No interactions between the 
particles and the wall, suspension is well-mixed with a 
constant concentration across the cross section .There is 
no transverse flow. 
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As the particle travels through a tube, Brownian mo-
tion and shear action will cause the particle to travel 
across the entire cross-section of the tube except that the 
center-line of the particle will be excluded from the im-
mediate region of the wall due to its radial dimension. 

After the particle has traveled far enough longitudi-
nally through the tube, the particle will have spent equal 
amounts of time in all radial position across the capillary 
tube. Integration of the velocity profile of Equation (4) 
over the range of possible radii shown in Equation (4) for 
both the particle and fluid yields the higher average ve-
locity for the particle than that for the carrier fluid. 

The average fluid velocity,  in a capillary tube is: 
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The average velocity of a particle, PV  in a capillary 
tube is: 
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By inspecting Equation (5) and (6), the particles are 
expected to have a larger average velocity than the car-
rier fluid velocity. This enhanced velocity of the particle 
can be expressed as a fractional difference between the 
two average velocities: 
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This equation shows that as the radius of the particle 
increase, the difference between the average particle ve-
locity and the average fluid interstitial velocity also in-
crease. This increase is not unbounded but reaches a 

maximum  value for 
3
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velocity difference decrease. In physical sense, the pore 
radius can be estimated to approximately equal to  

one-fifth of media grain diameter (
1

5o gr d ); therefore  

the largest possible particle to be able to fit through the 
porous bed has a radius to this pore radius ( p oa r ). 

For a particle with p oa r , the particles have been 
shown to collect on the bed surface in a cake [6]. These 
references show that the onset of deep bed filtration oc-
curs for a particle radius pa .less than  

one-twentieth of the media grain diameter (
1

20p ga d

5

). 

Particles with the radii larger than this will not transport 
into the bed, but will collect on the surface. By lettingc 

g od r , the largest particle which will transport has a 

radius equal to one-fourth of the pore radius (
1

4p oa r ). 

3.2. Longitudinal Dispersion Coefficient 

An important element of any dispersion model is the re-
presentation of the geometry of the porous medium. 
Houseworth [8] has thoroughly reviewed such longitudi-
nal dispersion model for solute tracers. Instead of mod-
eling the internal structure of a porous medium, dimen-
sional analysis is used to analyze the problem. In this 
study, the effect of mechanisms is expected to scale with 
the pertinent transport variables. 

The pertinent variables for solute dispersion are: 

DL = longitudinal dispersion coefficient (L·T–1)  

D = free fluid molecular diffusion coefficient of 
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solute (L2·T–1)  

Vs = fluid interstitial velocity (L·T–1)  

and    dg = media grain diameter (L)  

From the Buckingham pi theorem, the following pairs 
of groups are formed: 
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D
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Experimental data for solute longitudinal dispersion in 
uniform media show good correlation with these dimen-
sionless groups [8]. When the Peclet number is grater 
than 1, the two groups can be reduced to one: 
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where P   De dynamic Peclet numbe S g

L
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An order to magnitude approximation for the longitu-
dinal dispersion coefficient for solutes can be made with: 

gL SD dV                 (10) 

Particle longitudinal dispersion is expected to be simi-
lar to that of solutes. Currently, no particle breakthroughs 
have been performed by others form which particle lon-
gitudinal dispersion coefficient be determined. 

3.3. Filter Coefficient 

Two approaches exist for analyzing the filter coefficient. 
These are the macroscopic mass balance approach and 
the microscopic trajectory analysis approach. Deep bed 
filtration studies have been conducted to analyze both the 
system variables and the underlying mechanisms in-
volved in the processes of capturing and retaining parti-
cles in porous media. 

3.3.1. Macroscopic Approach 
The macroscopic process of filtration or change in sus-
pension concentration over depth is first-order decay 
with distance in steady flow. The filter coefficient may 
be expressed as a function of single collector efficiency 
and the single collector efficiency may be related to mi-
croscopic filtration mechanism. 

Filtration results for steady state flow, neglecting lon-
gitudinal dispersion, gives: 
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 OC C exp x  

The filter coefficient theoretically may be expressed as 
the single collector efficiency as follows: 
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For T , the particles under consideration are those 
contained in a cylinder of diameter gd  which is coinci-
dent with the vertical axis through the media grain col-
lector.   can be found either experimentally or from 
the individual collector efficiency, T  and system vari-
ables using Equation (12). 

The classical filtration theory assumes simultaneous 
particle capture and dislodging. On the contrary, the 
proposed model assumes that the particle capture takes 
place only if the total of torques for electrostatic and 
gravity forces prevails over the drag and lifting forces, so 
the resulting torque presses the particle towards the ma-
trix or the internal cake. 

3.3.2. Microscopic Approach 
Microscopic study of particle motion near a collector is 
defined as trajectory analysis. In porous media, particle 
path far from media grains follow fluid streamline. As a 
particle approach a media grain, the motion deviate from 
the streamline because of various forces and torques act-
ing on the particles. These forces are presented by trans-
port and attachment mechanisms. 

The transport mechanisms are: gravity settling, inter-
ception, Brownian diffusion and advection. The attach-
ment mechanisms are considered to be gravity, Lon-
don-van der Waals attraction, double layer forces. 

From a combination of the trajectory analysis, the 
three major contribution of filtration can be formulated. 
These are collection due to Brownian diffusion, intercep-
tion and settling. Here, we assumed double layer repul-
sive forces and hydrodynamic retardation (slow drainage 
of fluid from between two closely interacting particle 
which occurs before contact of particles) are negligible. 
The equations for these collection efficiencies are given 
in the following [7]. 

Collection due to Brownian diffusion, 
1 2

3 34D S pA Pe


               (13) 
1

34 SA  is constant. Also, either the particle Peclet number 
can be allowed to reach a minimum value of approxi-
mately 1, or as 1pPe   the efficiency reaches an as-
ymptotic value of 1. 

Collection due to interception, 
2 21.5I S RA N              (14)  

21.5  is constant here. Also the relative size group, 
RN , can be allowed to reach a minimum value of ap-
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proximately 1 in order for the efficiency to remain less 
than or equal to 1. 

As we mentioned before, the size of the largest parti-
cles which are able to penetrate and transport through a 
porous bed is one twentieth of media grain diameter 

(
1

20p gda ) or one-fourth of the pore radius (
1

4p oa r ). 

Collection due to settling, 
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The limit for this collection efficiency is the best pos-
sible collection which occurs for the settling velocity 
equaling the interstitial velocity. As the settling velocity 
becomes grater than the interstitial velocity, the effi-
ciency remains at a value of 1. 

The equation for total collection efficiency is: 

     

T

            (16) 

In this case,   has an asymptotic maximum value of 
1. 

For Brownian particles ( p ), there is 
good agreement between experimental and theoretical 
result but for advective particles ( p ), it is 
not, because of neglecting hydrodynamic retardation and 
London-van der Waals attraction. 
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So, the exact analytical solution is [9]: 
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The first term represents filtration due to Brownian 
diffusion. The second and third terms represent the com-
bined effects of interception and gravity when the retar-
dation and London-van der Waals attraction are included. 

The effects of surface double layer forces are ignored 
(attractive surface double layer is controlled by transport 
processes and not depend on surface chemistry). 

4. Modeling of Particle Transport and  
Filtration 

In this part, the steady-state transport equation is pre- 
sented and the solution to the complete advective-dis- 
persion equation for particulate suspension flow has been 
derived for the case of a constant filter coefficient. This 
model includes transport parameters which are particle 
advestive velocity and particle longitudinal dispersion 
coefficient. These parameters have been defined by di-
mensional analysis using the pertinent variables of the 
porous media system. 

4.1. Particle Advective Velocity 

The result of the size exclusion for particles flowing in 

capillary tube can be written as Equation (6) where 
2

3
 . By using the Equations (5), (6) and (7) we 

will have: 
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As the particle size increase, the difference between 
particle velocity and fluid velocity increase. 

4.2. Particle Longitudinal Dispersion Coefficient 

In modeling particle dispersion, the following variable 
substitutions are used: 

PD D  

PV V  

L LPD D  

Particle size variable can be removed by using the  

particle properties as shown, provided 1p

g

d

d
  also the  

effect of particle size is included in the enhanced advec-
tive velocity for the particles. 

This analysis shows that particle and solute longitudi-
nal dispersion are similar. When the particle Peclet 

number ( pPe = P g
p

P

V d
Pe

D
  is grater than 10, the two 

groups can be reduced to one : 
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An order of magnitude approximation for the longitu-
dinal dispersion coefficient for particles can be made 
with: 

LD P P gV d

1pPe 
10Pe 

              (21) 

As mentioned before, the dimensional argument for 
defining the longitudinal dispersion coefficient is only 
valid when . For uniform media, this restriction 
is seen to be p . Flow conditions are simultane-
ously limited to the linear, laminar regime for which the 
Reynolds number must be less than 10. 

4.3. Steady-State Transport Equation and 
Solution 

Particle removal or filtration occurs as a particle suspen-
sion flows through a porous medium due to the interac-
tion of the advecting particles and grains of the medium. 
Iwasaki [1] is credited with being the first to express fil-
tration a first-order decay of particle concentration with 
distance: 
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5. Conclusion C
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             (22) 
In this work, a mass balance particle transport equation 
which includes filtration has been developed. This model 
includes transport parameters which are particle advec- 
tive velocity, particle longitudinal dispersion coefficient 
and filter coefficient. The steady-state transport equation 
is presented and the solution to the complete advective- 
dispersion equation for particulate suspension flow has 
been derived for the case of a constant filter coefficient. 
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and a solution in dimensional terms: 

0 expC C x 

* * *expC x
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or in dimensionless terms: 

               (25)  
This work recommends to be investigated by particle 

longitudinal dispersion calculation from experimental 
data. Besides, the numerical model needs to be devel-
oped for general case of a transition filter coefficient. 
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A complete equation of steady-state filtration can be 
formulated by using the general steady-state advection- 
dispersion equation of transport for particle concentration 
with a sink term to describe particle removal due to fil-
tration: 
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Appendix. Solution Derivation 

Consider the one-dimensional steady-state particle ad-
vective-dispersion equation which includes the removal 
term to account for filtration effects: 
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With the following boundary conditions: 
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For convenience, the x-variable is allowed to range from 
negative to positive infinity  x    , although the 
equation are only applied for x > 0 this avoids difficulty 
at x = 0, because small dispersion is allowed. In dimen-
sionless form, the transport equation becomes: 
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With the same boundary conditions: 
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In order to derive a solution, try the following as a solu-
tion: 

 * *C x    
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Check the equation (A.3) by substituting into Equation 
(A.2), this results in second-degree polynomial in term of 
  and two roots of this polynomial are: 
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Using these two roots, Equation (A.3) becomes: 
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The constants of this Equation can be determined by ap-
plying the boundary conditions: 
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By substituting these constants into Equation (A.4), the 
solution to Equation (A.2) becomes: 
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Nomenclature 
dg= media grain diameter (L) 
dp= particle diameter (L) 
c = suspended particle concentration in carrier fluid 
σ = particle retained concentration 
kdet = detachment rate coefficient 
U = flow velocity 
US = fluid velocity 
UP = particle velocity 
UO = fluid centerline velocity 
r = radial distance 
ro = capillary radius 
ap = particle radius 
p = dynamic pressure 
x = longitudinal distance 
DL = longitudinal dispersion coefficient (L·T–1) 
D = free fluid molecular dispersion coefficient of solute 
(L2·T–1) 
VS = fluid interstitial velocity (L·T–1) 

Pe = Peclet number = S gV .d

DL
 

PeD = dynamic Pec let number = S gV .d

DL
  

C = particle concentration (M·L–3) 
X = longitudinal position (L) 
λ = filter coefficient (L–1) 
WS = particle settling velocity 
VS = fluid interstitial velocity 
Ρpf = densities of particle and fluid, respectively 
g = gravitational acceleration 
H = Hamakar constant (ergs) 
NG = gravitional group = ηG 
DLP = particle longitudinal dispersion coefficient (L2·T–1) 
DP = particle molecular diffusion coefficient in a free 
fluid (L2·T–1) 
VP = particle velocity (L2·T–1) 
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