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Abstract 
In this paper, the frequency of an earthquake occurrence and magnitude rela-
tionship has been modeled with generalized linear models for the set of 
earthquake data of Nepal. A goodness of fit of a statistical model is applied for 
generalized linear models and considering the model selection information 
criterion, Akaike information criterion and Bayesian information criterion, 
generalized Poisson regression model has been selected as a suitable model 
for the study. The objective of this study is to determine the parameters (a 
and b values), estimate the probability of an earthquake occurrence and its 
return period using a Poisson regression model and compared with the Gu-
tenberg-Richter model. The study suggests that the probabilities of earth-
quake occurrences and return periods estimated by both the models are rela-
tively close to each other. The return periods from the generalized Poisson 
regression model are comparatively smaller than the Gutenberg-Richter 
model. 
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1. Introduction 

The earthquake is the supreme terrifying and harsh phenomena of nature that 
can do significant damages to infrastructure and cause the death of people. Nep-
al is one of the paramount catastrophe prone countries in the world. Nepal si-
tuated in the center of the Himalayan range, lies in between 80˚4' to 88˚12' east 
longitude and 26˚22' to 30˚27' north latitude (MoHA & DP Net, 2015). Less than 
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10% of earthquakes happen within seismic plates, but remaining 90% are com-
monly found in the plate periphery (Lamb & Jones, 2012). The entire region of 
Nepal is likely to experience devastating earthquakes as it lies between two seis-
mically energetic Indian and Eurasian tectonic plates (MoUD, 2016). 

Nepal has a long history of numerous earthquakes and has experienced great 
earthquakes in the past two centuries with moment magnitudes Mw = 7 and 
greater. The recorded earthquake in the history of Nepal was on 7th June 1255 
AD with magnitude Mw = 7.7. On 16th January 1934 AD, an earthquake called 
Nepal Bihar Earthquake, hit Nepal and its surrounding regions with Mw = 8.4 
magnitude. The fatality figures were the highest for any recorded earthquake in 
the history of Nepal (MoHA & DP Net, 2015; MoUD, 2016). The latest earth-
quake experienced in Nepal was on 25th April 2015 at 11:56 am local time. The 
earthquake of magnitude 7.8 Mw, called Gorkha Earthquake, hit at Barpark lo-
cated 82 kilometers northwest of Nepal’s capital of Kathmandu affecting mil-
lions of citizens (USGS, 2016). This event has been the most powerful earth-
quake disaster to strike Nepal since the earthquake in 1934, tracked by many af-
tershocks, the largest being Mw = 7.3 magnitude on 12th May 2015. The devas-
tating earthquake included about 9000 fatalities, 23,000 injuries, more than 
500,000 destroyed houses, and 270,000 damaged houses (Lamb & Jones, 2012; 
NPC, 2015). People worldwide desire to know the likelihood of earthquakes but 
neither physical nor statistical models are adequate for predictions and other 
analysis of seismic pattern (Konsuk & Aktas, 2013; Vere-Jones, Ben-Zion, & Zu-
niga, 2005). There is a little evidence of failure of earthquake prediction, but this 
does not deny the need to look forward and decrease the hazard and loss of life 
(Nava, Herrera, Frez, & Glowacka, 2005). 

This paper anticipated to deal with the questions 1) What is the frequen-
cy-magnitude relationship of earthquake in this region? 2) Every how many 
years (in average) an earthquake occurs with magnitude ≥ M? 3) What is the 
probability of an occurrence of at least one earthquake of magnitude ≥ M in the 
next “t” years? The aim of the earthquake prediction is to aware people about the 
possible devastating earthquakes timely enough to allow suitable reaction to the 
calamity and reduce the loss of life and damage from the earthquake occurrence 
(Vere-Jones et al., 2005; Nava et al., 2005). 

Some researchers believed that the most analysis of seismic hazards is sensi-
tive to inaccuracies in the earthquake catalogue. It is assumed that the long-term 
earthquake catalogue is not homogeneous and the regular earthquakes, which 
might include foreshocks and aftershocks of characteristic events, follow Guten-
berg-Richter frequency magnitude relationship (Wyss, Shimazaki, & Ito, 1999; 
Kagan, 1993). In seismology, the Gutenberg-Richter relation is mainly used to 
find the association between the frequency and magnitude of the earthquake 
occurrence because the distributions of earthquakes in any areas of the planet 
characteristically satisfy this relation (Gutenberg & Richter, 1954; Gutenberg & 
Richter, 1956). 

https://doi.org/10.4236/gep.2019.79002


S. Noora 
 

 

DOI: 10.4236/gep.2019.79002 13 Journal of Geoscience and Environment Protection 
 

The earlier research papers have applied the generalized linear models (GLM), 
which included Poisson regression, negative-binomial, and gamma regression 
models, for an earthquake hazard analysis. Konsuk and Aktas (2013) analyzed 
that the magnitude random variable is distributed as the exponential distribu-
tion. The relation between magnitude and frequency is characterized using the 
Gutenberg Richter function. Shrey and Baker (2011) fitted logistic regression 
model by maximum likelihood method using generalized linear model for pre-
dicting the probability of near fault earthquake ground motion pulses and their 
period. Turker and Bayrak (2016) estimated an earthquake occurrence probabil-
ity and the return period in ten regions of Turkey using the Gutenberg Richter 
model and the Poisson model. 

Several studies mentioned that the generalized linear model is used to include 
a common method for computing parameter estimates, and it also provides sig-
nificant results for the estimation probabilities of earthquake occurrence and 
recurrence periods, which are considered as significant parameters of seismic 
hazard related studies (Nava et al., 2005; Shrey & Baker, 2011; Turker & Bayrak, 
2016). This study is noteworthy on its own from the Statistical and Geoscience 
perspectives on fitting the models to the earthquake data of Nepal. The impor-
tant seismic parameters (a and b values) of Gutenberg Richter (GR) relationship 
and generalized linear models are examined by studying the past earthquake da-
ta. It is also intended to estimate the probability of an earthquake occurrence 
and its return periods of occurring earthquakes in the future “t” years using GR 
relationship and compared with the Poisson model. 

2. Materials and Methods 

The earthquake data are obtained from the National Seismological Centre, De-
partment of Mines and Geology, Kathmandu, Nepal, which covers earthquakes 
from 25th June 1994 through 29th April 2019. It includes epicenter, latitude, lon-
gitude, stations, reporting time, and date. The most important factors affecting 
the seismic hazard in this region are taken into account such as frequency, mag-
nitude, probability of exceedance, and return period of earthquake (Sebastiano, 
2012). The statistical analysis has been accomplished using IBM SPSS 23.0 for 
Mac OS. In this study, the magnitude values, measured in local magnitude (ML), 
4.0 or greater are used for earthquake data. The local magnitude is the logarithm 
of maximum trace amplitude recorded on a Wood-Anderson seismometer, lo-
cated 100 km from the epicenter of the earthquake (Sucuogly & Akkar, 2014). 
The available data are tabulated for the frequency distribution of magnitude 4 ≤ 
M ≤ 7.6 and the number of earthquakes for “t” years. The Kolmogorov Smirnov 
goodness of fit test and the Anderson Darling test is used to check the normality 
assumption of the data (Gerald, 2012). 

The Kolmogorov Smirnov test statistics is defined by 

( ) ( )1max ,i i
i iD F y F y

n n
− = − −  

.                   (1) 
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where, F is the theoretical cumulative distribution of the distribution being 
tested. 

The Anderson Darling test statistics is defined by 
2  A n S= − −                             (2) 

where, ( ) ( ) ( )( )11

2 1
ln ln 1n

i n ii

i
S F y F y

n + −=

−
 = + − ∑ . 

Here, F is the cumulative distribution function of the specified distribution 
and n is the sample size. The Durbin Watson test is used to measure the auto-
correlation in residuals from regression analysis. 

The Durbin Watson test statistics is calculated using 

( )2
11

2
1

,  0 4
n

i ii
n

ii

e e
DW

e
DW−=

=

−
≤ ≤= ∑

∑
                   (3) 

where, ei are residuals from ordinary least squares regression (Gerald, 2012). 

2.1. Gutenberg-Richter (GR) Relation 

Gutenberg and Richter (1954) have suggested an expression for the magnitude 
and frequency of earthquake events larger than magnitude (M). It states that the 
logarithm of the frequency is linearly dependent on the magnitude of the earth-
quake. The relation is generally fitted to the data that are available for any region 
of the globe. The Gutenberg Richter relation is 

( )–
10log  or 10 .a bMN a bM N= − =                     (4) 

where, N is a number of earthquakes having magnitude larger than M during a 
time period “t”, logN is a logarithm of the number of earthquakes with magni-
tude M, “a” is a constant that measures the total number of earthquakes at the 
given source or measure of seismic activity, and “b” is a slope of regression line 
or measure of the small versus large events. 

The annual frequency of exceeding the M event magnitude is computed di-
viding the number of events N by the “t” years, 

( ) ( )
1

N M
N M

t
= .                         (5) 

Taking logarithm on both sides of Equation (5) we get, 

( ) ( )1log log log log .N M N M t a bM t= − = − −              (6) 

The probability of occurrence of at least one earthquake of magnitude ≥ M in 
the next “t” years is 

( ) ( )1 )1 e N M tP t − ×= − .                        (7) 

The number of years, in an average, an earthquake occurs with magnitude ≥ 
M is given by 

( )1

1
RT

N M
=                            (8) 
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where, ( ) ( )–log
1 10 a bM tN M −=  (Gutenberg & Richter, 1954, 1956). 

2.2. Generalized Linear Models 

In the present study, generalized linear models (GLM) are applied as it basically 
eliminates the scaling problem compared to conventional regression models. An 
important characteristic of GLM is that it assumes the observations are inde-
pendent. The other assumption about the error structure is that there is, a single 
error term in the model. The normality and constant variance properties are not 
a compulsion for the error component. GLM is most commonly used to model 
count data. The selection of measurement scale is a significant feature of model 
selection; for example, in this study, transformed scale, such as logN and lnN are 
assumed to be better for additivity of systematic effects (McCullagh & Nelder, 
1989). 

Let 1 2, , , ny y y  be the independent response observations with mean 

1 2, , , nµ µ µ  respectively. The random element Y has an independent normal 
distribution with constant variance σ2 and E(Y) = μi. The systematic component: 
covariates 1 2, , , nx x x  produce a linear predictor iη . The link between the 
random and systematic components is i iµ η= . 

The generalized linear model is made up of a linear predictor 

0 0 1 1i i n nix x xη β β β β β= + = + + +∑                 (9) 

and two functions 1) a link function that describes how the mean, E(Y) = μi, de-
pends on the linear predictor ( ) ,  1, 2, ,i ig i nµ η= =   and 2) a variance func-
tion that describes how the variance, Var(Y) depends on the mean, Var(Y) = 
ϕV(μi), where the dispersion parameter ϕ is a constant (McCullagh & Nelder, 
1989; Dobson & Barnett, 2008). 

The dependent variable yi is a count (number of earthquake occurrence), such 
that 0,1,2, ,iy n=  . Hence, a rational probability model for count data is fre-
quently the Poisson distribution. 

The probability function of a Poisson distribution is given by 

( ) e
,    0,1, 2, ,

!

i iy
i

i i
i

f y
y

y n
µ µ−

==                   (10) 

where, the parameter μi > 0. The mean and variance of Poisson distribution are 
equal to the parameter μ. Nevertheless, this statement may not be true and occa-
sionally over dispersion or under dispersion conditions can be observed. When the 
observed variance is greater than the variance of a theoretical model, over disper-
sion happens. In the existence of over dispersion, the generalized negative binomi-
al regression model (GNBR) offers an alternative to the generalized Poisson re-
gression model (GPR). If the observed variability is significantly smaller than the 
predicted variance or under dispersion, Gamma models are more appropriate. 
GLM allows choosing the suitable model fit on the basis of dispersion parame-
ters and model fit criteria. The procedures of model fitting are 1) model selec-
tion 2) parameter estimation and 3) prediction of future values (McCullagh & 
Nelder, 1989; Kokonendji, 2014). 
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2.2.1. Model Selection 
The model selection information criteria that are based on likelihood functions 
and applications to the parametric model based problems are 1) Akaike informa-
tion criterion (AIC): AIC procedure is generally considered to select the model 
that minimizes AIC = −2LL + 2d, where LL is the maximized log likelihood of 
the model given “n” observation, “d” is the dimension of a model. Since the like-
lihood function’s value is multiplied by −2, ignoring the second component, the 
model with the minimum AIC is the one with the highest value of the likelihood 
function. 2) Bayesian information criterion or Schwarz information (BIC): It is 
also a widespread model selection principle. It selects the model that minimizes 

2 logBIC LL d n= − + . The best model is the one that provides the minimum 
AIC and BIC (Fabozzi, Focardi, Rachev, Arshanapalli, & Markus, 2014). 

2.2.2. A Goodness of Fit 
The goodness of fit of a statistical model is continued to explain how well it fits a 
set of observed values “y” by a set of fitted values µ̂  derived from the model. It 
tests the hypothesis as H0: The model fits, and H1: The model does not fit. It also 
reviews the inconsistency between observed values and the expected value be-
cause a small discrepancy may be acceptable, but not the larger one (McCullagh 
& Nelder, 1989). The deviance residual is considered for the generalized measure 
of discrepancy. The residual sum of squares is the deviance for Normal distribu-
tion and is given by ( )2ˆy µ−∑ . For Poisson regression, the deviance is G2, 
which is minus twice the log likelihood ratio. 

G2 is also called likelihood ratio statistic and is defined as 

2 2 lo
ˆ

gi
i

i

G y
y
µ

= − ∑                          (11) 

where, yi is the observed values and ˆiµ  is the fitted value. The small value of G2 
indicates that the model fits well (Bishop, Fienberg, & Holland, 2007). 

The other significant measure of discrepancy is the generalized Pearson Chi 
Square statistics, which is given by 

( )
( )

2
2 ˆ

ˆ
i i

i

y
V

χ
µ

µ
=

−∑                        (12) 

where, ( )ˆiV µ  is the estimated variance function for the distribution concerned. 
The Pearson Chi square statistics for the Normal distribution is the residual sum 
of squares, where as for the Poisson distribution it is the Pearson Chi square sta-
tistics, and is given by 

( )
( )

2
2 ˆ

ˆ
i i

i

y µ
χ

µ
−

= ∑                         (13) 

where, yi is the observed value, and ˆiµ  is the expected value under the assump-
tion that null hypothesis is true, i.e. the assumed model is a good one. X2 and G2 
are both measure how closely the model fits the observed data. The null hypo-
thesis is rejected if the values of X2 and G2 are large enough. After selecting the 
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model, the unknown parameters have to be estimated. The probability of ex-
ceedance in a time period “t”, described by a Poisson distribution, is given by the 
relationship: ( ) ( )1 e N M tP t −= − . The return period of earthquake is a statistical 
measurement representing the average recurrence interval over an extensive pe-
riod of time and is calculated using the relation ( )1RT N M=  (Madsen & 
Thyregod, 2010; Raymond, Montgomery, Vining, & Robinson, 2010; Shroder & 
Wyss, 2014). 

3. Results and Discussion 

The number of occurrence of earthquakes (n) is a count data and the parametric 
statistics for central tendency, mean = 26 and median = 6 are calculated. It is ob-
served that the most of the values are less than 26; hence, the average value cannot 
be deliberated as the true representation of the data. It can also be perceived that 
the data is positively skewed and lacks symmetry; and thus the normality as-
sumption has been severely violated. Therefore, to convert the non-normal data 
to the normal log transformation of cumulative frequency of earthquakes logN is 
used. 

The hypothesis for normality testing is 
H0: The data follow a specified distribution and 
H1: The data do not follow a specified distribution. 
In order to check the distribution of the transformed variable, first of all Kol-

mogorov Smirnov test is applied. 
Table 1 displays the Kolmogorov Smirnov test statistics for testing specified 

distribution of data. The p-value is not significant (0.147 > 0.05) and failed to 
accept H1 for logN, which displayed that normality, exists in the data. In addi-
tion, lnN also statistically fitted to the Poisson distribution, the p-values is not 
significant (0.629 > 0.05). The very severe limitation of the Kolmogorov Smirnov 
test is that the distribution must be fully specified, i.e. the parameters are known. 
If location, scale and shape parameters are estimated from the available data, the 
critical region of this test is no longer valid (Gerald, 2012). Therefore, the An-
derson Darling test is used to observing normality of the data. 

The Anderson Darling test is not available in SPSS version 23 and hence it is 
calculated using Anderson Darling normality test calculator for excel. The result 
is displayed in Table 2. The p-value = 0.09505 > 0.05 indicates normality. 

The Durbin-Watson test is used to determine whether there is evidence of 
first order autocorrelation in the data and result presented in Table 3. The hy-
pothesis for the Durbin Watson test is H0: There are no first order autocorrela-
tion and H1: The first order correlation exists. 

The small value of the D-W score (0.596 < 2) indicates a positive first order 
autocorrelation, which is assumed to be a common occurrence in this case. 
Hence, it can be concluded that the observations are linearly independent. The 
correlation value R = 0.995 specifies that there is a very high degree of associa-
tion between the magnitude and occurrence of the earthquake. The higher value  
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Table 1. Kolmogorov Smirnov (K-S) test. 

Variables Model 
Parameter Estimates Goodness of Fit Test 

Mean SD K-S p-value 

Log N Normal 1.39 0.964 0.126 0.147 

n Normal 26 42.6 0.304 0.000 

Ln N Poisson 3.24 1.8 0.749 0.629 

 
Table 2. Anderson Darling (AD) test. 

No. of data points Sample mean Sample sigma AD test statistic p-value 

37 1.391 0.964 0.6264 0.09505 

Variable: logN. 

 
Table 3. Durbin Watson (D-W) test. 

Model R R Square Adjusted R2 Std. Error of the Estimate D-W 

1 0.995 0.991 0.990 0.09407 0.596 

Predictors: (Constant), M. Dependent Variable: logN. 

 
of coefficient of determination (R2 = 0.991) portrayed, the magnitude of earth-
quake explained 99.1% of the variation in occurrence of earthquake while 0.9% 
were due to other variables that were not included in the model. According to 
the results, it is observed that logN and lnN can be considered as dependent va-
riables for Gutenberg-Richter model and generalized Poisson regression model 
or negative binomial regression model respectively. 

The model selection criterion for generalized linear models is illustrated in 
Table 4. The cumulative frequency of earthquake (N) is divided by the time pe-
riod (t) and used as a response variable in generalized linear models to select a 
suitable model. It demonstrates the values of AIC, and BIC for model selection 
which are reasonably smaller for the GPR model than the normal and GNBR. 
Hence, the generalized Poisson regression model is considered as the suitable 
model to fit the data. The significant measures of discrepancy for the Poisson 
regression model is deviance residual (value/df = 0.170) and generalized Pearson 
Chi square statistics (value/df = 0.110). These values measure how diligently the 
model fits the observed data. Furthermore, the generalized Poisson regression 
model is detected to be the best model to fit the data because 1) it was suitable 
for count data of earthquake occurrences, 2) model information criterion AIC 
and BIC are fewer, and 3 deviance and Pearson Chi square statistics are less than 
one. After selecting the model, the unknown parameters are estimated. 

The estimated parameters of the Gutenberg Richter relationship are demon-
strated in Table 5. The GR relationship of the earthquakes that had occurred in 
time period t = 25 years is expressed as logN = 6.532 − 0.887M, where, N is the 
number of earthquakes ≥ M, logN is the dependent variable, M is the predictor. 
The model provides the important parameters of the earthquake such as  
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Table 4. Model selection criterion for GLM. 

Model Selection Criterion 
Probability Distribution 

Normal Poisson Negative Binomial 

Log likelihood (LL) −119.330 −40.090 −60.504 

Akaike’s information criterion (AIC) 244.661 84.181 125.009 

Bayesian information criterion (BIC) 249.493 87.403 128.231 

 
Table 5. Parameter estimation for Gutenberg Richter model. 

Parameter B Std. Error 

95% Wald Confidence 
Interval 

Hypothesis Test 

Lower Upper Wald Chi Square df p-value 

Intercept 6.532 0. 0831 6.370 6.695 6182.335 1 0.000 

M −0.887 0.0141 −0.914 −0.859 3960.184 1 0.000 

Scale 0.008 0.0019 0.005 0.013    

 

a = 6.532, b = −0.887, a' = a − log(bln10) = 6.22, a1= a − log(t) = 5.13, and 1a′  = 
a' − log(t) = 4.82. 

Table 6 displays the estimated parameters in the generalized Poisson regres-
sion model and is given by lnN = 15.06 − 2.04M, where, lnN is the response va-
riable. The other significant parameters of the earthquake are obtained: a = 15.06, 
b = −2.04, a' = 13.513, a1 = 11.84, and 1a′  = 10.29. 

The relationship between frequency and magnitude of an earthquake ≥ 4 us-
ing GR model and GPR model is shown in Figure 1. 

The seismic risk expressed in percentage and the return period of the earth-
quake in years in the Gutenberg Richter model is illustrated in Table 7. The GR 
relation is logN(M) = 6.532 − 0.887M. The annual frequency of exceeding the M 
event magnitude is N1(M) = N(M)/t = N(M)/25. Taking logarithm on both sides, 
logN1(M) = logN(M) − logt = logN(M) − log25 = 6.532 − 0.887M − 1.398 = 5.134 
− 0.887*M. For magnitude 7.5, logN1(M ≥ 7.5) = 5.134 − 0.887*7.5 = −1.5185. 
Now, N1(M ≥ 7.5) = 10(−1.5185) = 0.030305. Hence, the return period for 7.5 mag-
nitude is given by TR(M ≥ 7.5) = 1/N1(M) = 32.99 years. Similarly, the return pe-
riod for magnitude 6 and 7 are calculated as 1.54 and 11.88 years. The probabili-
ty of occurrence of at least one earthquake of magnitude ≥ M in the next “t” 
years, is obtained by the relation, ( ) ( )1– *1 e N M tP t   = − . For illustration, when M 
= 7.5 and t = 50 years, P(t) = 1 − e(−0.030305*50) = 78%, which is the probability of 
exceedance in 50 years. 

The probability of exceedance expressed in percentage and the return period 
of an earthquake in years for the Poisson regression model is shown in Table 8. 
The GPR relation obtained is lnN = 15.06 − 2.04M. The annual frequency of ex-
ceeding the M event magnitude for 7.5 ML is calculated as N1(M) = exp(a − bM − 
lnt) = 0.031. The probability of occurrence of at least one earthquake of magni-
tude ≥ 7.5 within 50 years is obtained as 79% and the return period is 31.78  
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Table 6. Parameter estimation for generalized Poisson regression model. 

Parameter B Std. Error 

95% Wald Confidence 
Interval 

Hypothesis Test 

Lower Upper Wald Chi Square df p-value 

Intercept 15.06 0.1263 14.812 15.307 14207.391 1 0.000 

M −2.04 0.0283 −2.095 −1.984 5198.546 1 0.000 

 
Table 7. Probability of exceedance (%) and return period using GR model. 

M N1(M) 
Probability of exceedance (% ) for t years TR 

(Years) t = 1 t = 5 t = 10 t = 20 t = 50 t = 100 

4.0 38.55 100 100 100 100 100 100 0.03 

4.5 13.89 100 100 100 100 100 100 0.07 

5.0 5.00 99.3 100 100 100 100 100 0.20 

5.5 1.80 83.5 100 100 100 100 100 0.56 

6.0 0.65 47.7 96 100 100 100 100 1.54 

6.5 0.23 20.8 69 90 99 100 100 4.28 

7.0 0.08 8.1 34 57 81 99 100 11.88 

7.5 0.03 3.0 14 26 45 78 95 32.99 

7.6 0.02 2.4 12 22 39 71 92 40.47 

 
Table 8. Probability of exceedance (%) and return period using GPR Model. 

M N1(M) 
Probability of exceedance (% ) for t years TR 

(Years) 

Theoretical 
Return 
Period t = 1 t = 5 t = 10 t = 20 t = 50 t = 100 

4.0 39.69 100 100 100 100 100 100 0.0252 1 

4.5 14.31 100 100 100 100 100 100 0.0699 1 

5.0 5.16 99 100 100 100 100 100 0.1938 1.01 

5.5 1.86 84 100 100 100 100 100 0.5373 1.18 

6.0 0.67 49 97 100 100 100 100 1.4901 2.05 

6.5 0.24 21 70 91 99 100 100 4.1325 4.65 

7.0 0.09 8 35 58 83 99 100 11.460 11.97 

7.5 0.03 3 15 27 47 79 96 31.78 32.28 

7.6 0.03 3 12 23 40 72 92 38.97 39.48 

 
years. The theoretical return period is the reciprocal of the probability that the 
event will be exceeded in any one year. There is a statistical statement that on an 
average, a 10 years event will appear once every ten years and the same process 
may be true for 100 year event. The theoretical values of return period in Table 
8 are slightly greater than the estimated return periods. 

Figure 2 demonstrates the probability of earthquake occurrence (%) for dif-
ferent time periods in years using GR and GPR models. In GR model, the  
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Figure 1. Magnitude (ML)-frequency relation using GR and GPR models. 

 

 
Figure 2. The probability of exceedance (%) for t years using GR and GPR models. 

 

probability of an earthquake incident of magnitude less than 6 is almost certainly 
in the next 10 years and more, with the return period 1.54 years. In GPR model, 
the probability of the earthquake event of magnitude less than 5.5 is almost cer-
tainly in the next 5 years and more, with the return period 0.537 years (196 
days). 

The probability of exceedance using the GR model is found to be less than the 
results obtained from the GPR model for magnitude higher than 6.0. Likewise, 
the return periods obtained from both the models are slightly close to each oth-
er. The return period values of GPR model are comparatively less than that of 
the GR model. The probability of exceedance in 10 years with magnitude 7.6 for 
GR and GPR models is 22% and 23% and the return periods are 40.47 years and 
38.99 years respectively. The estimated values depict that the probability of ex-
ceedance increases when the time period increases. It can also be noticed that the 
return period of the earthquake is larger for the higher magnitudes. 

4. Conclusion 

The frequency magnitude relationship of the earthquake data of Nepal modelled 
with the Gutenberg Richter (GR) model is logN= 6.532 − 0.887M and with ge-
neralized Poisson regression (GPR) model is lnN = 15.06 − 2.04M. The parame-
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ters a and b values for GR and GPR models are (a = 6.532, b = −0.887) and (a 
=15.06, b = −2.04) respectively. The return periods from GPR model are mod-
erately smaller than that of GR model. In GR model, the return period for 7.5, 7 
and 6 magnitudes are 32.99 years, 11.88 years and 1.54 years respectively. In 
GPR model, the return period for 7.5, 7 and 6 magnitudes are 31.78 years, 11.46 
years, and 1.49 years respectively. 

This study suggests that the probability of earthquake occurrence produced by 
both the models is close to each other. In GR model, the probability of earth-
quake occurrence of at least one earthquake of magnitude ≥ 7.5 in the next 10 
years is 26% and the magnitude ≥ 6.5 is 90%. The probability of exceedance of 
magnitude 6 or lower is 100% in the next 10 years. Similarly, in GPR model, the 
probability of earthquake occurrence of at least one earthquake of magnitude ≥ 
7.5 in the next 10 years is 27% and the magnitude ≥ 6.5 is 91%. The probability 
of exceedance of magnitude 6 or lower is 100% in the next 10 years. 

However, it is very important to understand that the estimated probability of 
an earthquake occurrence and return period are statistical predicted values, cal-
culated from a set of earthquake data of Nepal. All the parameters required to 
describe the seismic hazard are not considered in this study. The earthquake ca-
talogue has 25 years of data so the predicted values of return period and the 
probability of exceedance in 50 years and 100 years cannot be accepted with 
reasonable confidence. Actually, nobody knows that when and where an earth-
quake with magnitude ≥ M will occur with probability 1% or more. Neverthe-
less, the outcome of this study will be helpful for the preparedness planning to 
reduce the loss of life and property that may happen due to earthquakes because 
Nepal lies in the high seismic region. Further research can be conducted consi-
dering other rational earthquake hazard parameters for different regions that are 
prone to earthquake occurrence. 

Data Availability 

The data studied in this paper is the earthquake data from the National Seismo-
logical Centre, Department of Mines and Geology, Kathmandu, Nepal, which 
covers earthquakes from 25th June 1994 through 29th April 2019. It is an open 
access data available on the website http://seismonepal.gov.np/earthquakes. 
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