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Abstract 
Model Output Statistics (MOS) is a well-known technique that allows improving outputs from nu-
merical atmospheric models. In this contribution, we present the development of a MOS algorithm 
to improve air quality forecasts in Catalonia, a region in the northeast of Spain. These forecasts are 
obtained from an Eulerian coupled air quality modelling system developed by Meteosim. Nitrogen 
Dioxide (NO2), Particulate Matter (PM10) and Ozone (03) have been the pollutants considered and 
the methodology has been applied on statistical values of these pollutants according to regulatory 
levels. Four MOS algorithms have been developed, characterized by different approaches in rela-
tion with seasonal stratification and stratification according to the measurement stations consi-
dered. Algorithms have been compared among them in order to obtain a MOS that reduces the 
forecast uncertainties. Results obtained show that the best MOS designed increases the accuracy 
of NO2 maximum 1-h daily value forecast from 71% to 75%, from 68% to 81% in the case of daily 
values of PM10, and finally, the accuracy of O3 maximum 1-h daily value from 79% to 87%. 
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1. Introduction 
Air quality is one of the main issues that concerns current atmospheric research. Global air pollution has an im-
pact on human health [1], climate change [2] and on the physics and chemistry of the atmosphere [3]. Meteoro-
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logical and air quality related environmental phenomena influence and limit the regional and urban development 
and safety management, which often leads to severe negative impacts on public health, economy and environ-
ment of polluted areas.  

In Spain, annual average values of Nitrogen Dioxide (NO2) and Particulate Matter (PM10) are elevated in 
many urban air quality measurement stations with traffic influence [4]. Whereas, high ozone levels are measured 
in rural or suburban areas located downwind of urban or industrial locations and where local ozone precursors 
are lacking [5] [6].The area of study is Catalonia (41.82˚N, 1.47˚E) in north-eastern Spain, in which six episodes 
with high levels of pollutants have been recorded in the last five years, thus making the Catalan Government 
adopt temporary mitigation measures. Figure 1 shows the topographical features of Catalonia. Black dots point 
the four provinces that divide the studied area.  

For these reasons, it will be desirable that public administrations may count on tools which enable them to an-
ticipate the potential risks caused by pollution, helping the management of health, economical and environmen-
tal impacts that may affect the polluted areas of its population. In this sense, models are a very useful tool for 
local administrations for planning and managing production, human resources, activities and emergency proce-
dures; and to introduce improvement plans of air quality urban areas. Nowadays, coupled Eulerian air quality 
models are useful tools to manage air pollution, and they can even complement or replace air quality monitoring 
in terms of what the European Directive establishes. 

Despite years of refinements and improvements, meteorological and air quality models still contain signifi-
cant errors. Several statistical techniques have been designed and applied in the last few years [7]-[12] in order 
to reduce the uncertainty of their forecasts. In this work, we focus on the use of the Model Output Statistics 
(MOS) technique to improve forecasts obtained by an air quality modelling system. MOS has been applied 
usually to meteorological applications [13]-[17] but there are a few applications on air quality [18]-[20]. Air 
quality forecasts have been obtained by a coupled Eulerian air quality modelling system developed by Meteosim 
[21]. This coupled air quality modelling system has been applied and tested successfully in urban (Madrid or 
Barcelona in Spain; Nice in France) and industrial areas (Ponferrada or Tarragona in Spain). This air quality 
modelling system has been evaluated using Maximum Relative Directive Error [22] referred in the European  

 

 
Figure 1. Topographical features of Catalonia. 
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Directive EC/2008/50. Results obtained from this evaluation accomplish the model uncertainty limits according 
to the Directive for the pollutants O3, NO2, PM10, SO2 and CO, having used measurements from more than 120 
stations (urban, suburban and rural locations) during a period of three years. 

The MOS technique has been applied to daily values of NO2 and PM10, maximum 1-h daily values of NO2 
and O3 and maximum 8-h daily values of O3 forecasted over Catalonia (Spain). Air quality measurement data 
have been provided by the Air Quality Network that belongs to the Territory and Sustainability Department of 
the Catalonian Government. The study includes a numerical deterministic evaluation that shows the accuracy of 
the air quality modelling outputs with and without the MOS technique. 

Description of the model output statistics technique and the uncertainty evaluation methodology are presented 
in section 2; a detailed analysis of the results obtained is presented in section 3; and finally, some conclusions 
are reported in section 4. 

2. Methodology 
2.1. Model Output Statistics 
The technique Model Output Statistics (MOS) computes regression equations between observed and model fo-
recasted variables. These equations are later applied to the raw model output to get a modified and statistically 
corrected output. 

This technique requires a set of variables from the modelling system to be corrected and a set of observed va-
riables. These datasets cover a time period known as training period. Its length is variable but it is advisable to 
have the longest possible period to include potential cycles. In this work we have used the period comprised 
between the 24th of October 2012 and the 31st of August 2013, which includes 720,000 hourly values. 

Within the MOS correlation equations we distinguish between predictands and predictors. The predictant is 
the dependent variable to be forecasted or corrected. In developing our MOS, the predictants will be the statis-
tics described in the introduction: maximum 1-h value and daily values for NO2, daily value for PM10 and max-
imum 1-h and 8-h values for O3. 

The predictors are the independent variables of the regression equations. In this work, we have used the con-
centration values forecasted by the modelling system. Since we have only used one predictor, we will omit the 
discussion about predictor-selection algorithms [23]-[27]. It is worth mentioning that in a preliminary phase we 
did test the viability of using more predictors, such as hourly data and its derived statistics, as well as past ob-
servational data. However, we finally found out that the use of the statistics of each pollutant as obtained by the 
modelling system produced the best results. 

Often, the datasets employed in the regression equations are grouped in order to optimize the forecasting rela-
tionships and improve the precision of the MOS technique. This grouping is usually referred to as data stratifica-
tion. 

2.2. Error Statistics 
In order to evaluate the potential improvements of the MOS technique on the modelling system, we will use a 
numerical validation. Several statistics will be used for the error measurement of the differences between results 
obtained with and without MOS. Most of them are typical statistics employed in error evaluation in meteorolog-
ical models [22] [28] and, in particular, in air quality models [29]-[31]. Reference [32] draws some recommen-
dations on the maximum thresholds for some of these statistics in the analysis and forecast of pollutant concen-
trations1 that we will use in this work. 

In the next definitions, n is the sample size, oi and fi the observed and forecasted values, where i ∈ [1, n]: 
Mean normalized error: 

1

1MNBE 100
i n

i i

i i

f o
n o

=

=

−
= ×∑                                 (1) 

Reference [32] recommendation: MNBE < ±15%. 
Mean normalized gross error: 

 

 

1Although [33] states that a rigid criterion to accept or reject a model would be inadequate, according to [33] a range of values could be used 
as indicators of the goodness of a model. 
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Reference [32] recommendation: MNGE < 35%. 
Index of agreement: 
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This is a statistic to evaluate with a single value the goodness of fit of a modelling system with respect to the 
observations. As close as one is the value, the best is the fit; and it worsens as it approaches to zero. 

2.3. Forecast Evaluation 
Table 1 shows a summary of the errors of the modelling system in the training period using the above described 
statistics. 

As can be seen, most of the statistics fall within [32] recommendations, with the exception of the values of the 
PM10 pollutant. The presence of these errors, however, justifies the need of developing a MOS. 

2.4. Description of the Proposed MOS Categories 
From the observed and modelled data, we have proposed two kinds of stratifications: 
• A seasonal stratification. The analysis of observed concentration exhibits a dependency on temperature, es-

pecially remarkable for ozone, which suggests splitting the training stage in 4 different periods. At first 
glance one could think that a natural division would involve climatologically seasons, but the study of mean 
temperature and concentration of the considered pollutants show that this division is not appropriate. We 
have finally chosen a division in training periods in which the values of temperature and pollutants change 
significantly from one to another (Figure 2 and Table 2).These periods turned to be 23 Oct 2012 to 02 
March 2013 (defined as Period 1), 03 March 2012 to 01 May 2013 (defined as Period 2), 02 May 2013 to 06 
July 2013 (defined as Period 3) and 07 July 2013 to 31 August 2013 (defined as Period 4).Stratification ac-
cording to the measurement station in order to identify systematic errors and biases of each measurement 
point. 

• Stratification according to the measurement station in order to identify systematic errors and biases of each 
measurement point.  

 
Table 1. Summary of the errors of modelling system in the training period. 

Pollutant Description MNBE MNGE IOA 

NO2 
Maximum 1-h value 11.7% 29.5% 0.863 

Daily value 11.8% 24.9% 0.912 
PM10 Daily value −24.5% 32.1% 0.751 

O3 
Maximum 1-h value 2.5% 21.3% 0.618 
Maximum 8-h value 7.6% 25.9% 0.678 

 
Table 2. Average maximum hourly and daily values of NO2, daily value of PM10 and maximum hourly and 8-hourly values 
of O3 within each period. 

Pollutant Statistic 
Observed Mean (µgm-3) 

Period 1 Period 2 Period 3 Period 4 

NO2 
Maximum 1-h value 68 58 53 53 

Daily value 37 28 27 27 
PM10 Daily value 18 14 17 18 

O3 
Maximum 1-h value 66 95 100 120 
Maximum 8-h value 59 87 91 108 
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(a) 

 
(b) 

 
(c) 

Figure 2. Average daily time evolution of concentration values of 
NO2 (a) PM10 (b) and O3 (c) for the considered periods. 
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A total of 2 × 2 separations have been done, yielding to 4 different categories. Table 3 shows a summary of 
the categories and the nomenclature that will be used. 

3. Results 
In this section we analyze the errors resulting from applying a period-specific trained MOS on the modelling 
output system. We use the deterministic numerical validation, the comparison between mean daily evolutions, 
and the comparison of the frequency histograms of the average errors of each category as well as the parameters 
of a Gaussian fit. This will allow us to choose the best MOS for each pollutant and statistics. 

3.1. NO2 

Table 4 shows the error analysis statistics of the different categories after having been applied to the modelling 
system of the NO2 pollutant. Figure 3 shows a comparison between normalized mean absolute errors in each 
category. 

Table 4 and Figure 3 show that MOS E C produces the best results for both the maximum hourly value and 
the daily value. Notice that MOS 0 and MOS C do not improve the modelling system.  

In case of the maximum hourly value, MOS E C reduces MNBE from 11.7% to 9.5% of the modelling system, 
reduces MNGE from 29.5% to 24.3%, and increases IOA from 0.86 to 0.91. 

For the daily value, MOS E reduces MNBE from 11.8% to −0.9%, thus correcting the overestimation of the 
modelling system, reduces MNGE from 24.9% to 18.1%, and increases IOA from 0.91 to 0.95. 

The frequency histograms of Figure 4(a) and Figure 4(b) have been created to better analyze the improve-
ments of the different categories. These histograms display the error distributions of the modelling system and of  

 
Table 3. Summary of the proposed MOS categories. 

 No stratification by measurement stations With stratification by measurement stations 

No stratification by periods MOS 0 MOS E 

With stratification by periods MOS C MOS E C 

 
Table 4. Errors of all MOS categories as well as NO2 forecasting system. 

 
Maximum 1-h value Daily value 

Observed 
mean (µg∙m−3) 

Modelled 
mean (µg∙m−3) 

MNBE 
(%) 

MNGE 
(%) IOA Observed 

mean (µg∙m−3) 
Modelled 

mean (µg∙m−3) 
MNBE 

(%) 
MNGE  

(%) IOA 

SIAM 62 65 11.7 29.5 0.863 33 35 11.8 24.9 0.912 

MOS 0 62 62 20.4 37.3 0.847 33 33 1.1 32.0 0.913 

MOS E 62 62 10.4 26.2 0.887 33 33 6.7 20.1 0.943 

MOS C 62 62 −12.0 37.5 0.853 33 33 −4.1 30.6 0.917 

MOS E C 62 62 9.5 24.3 0.905 33 33 −0.9 18.1 0.953 

 

 
Figure 3. Comparison of MNGE and MNBE between the different MOS categories and the NO2 modelling 
system for maximum 1-h value [left] and daily value [right]. 
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(a) 

 
(b) 

Figure 4. Histograms of error distributions in the evaluation of the modelling system 
and the MOS categories for maximum hourly values (a) and daily values (b) of NO2. 

 
maximum hourly values and daily values for each MOS category. Obviously, better results are associated to 
centred and peaked distributions. 

As can be seen, the error distributions of both MOS E and MOS E C are the sharpest and narrowest and so the 
best. For daily values, the best results are attained by MOS E C but closely followed by the rest. 

Through a Gaussian fit, we have calculated the width (twice the standard deviation) and displacement of the 
distributions with respect to the origin. The results are presented in Table 5. MOS E features a near zero shift 
and the narrowest width and MOS E C features the smallest displacement and width for daily values among all 
categories. 

Figure 5(a) let us compare the time evolution of the mean daily values of observed maximum hourly values 
of NO2 with those forecasted by the modelling system and those corrected by MOS E C. And Figure 5(b) shows 
the same comparison for daily values. 

Paying attention at the behaviour of the errors on measurement stations we see that, in general, the improve-
ment introduced by MOS E C is quite apparent in the maximum 1-h values, exhibiting generalized reductions in 
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MNBE and MNGE and increases in IOA. MOS E C reduces MNBE in 78% of the measurement stations and 88% 
exceed [32] acceptance criteria for both MNBE and MNGE, which turned out to be only 69% and 75%, respec-
tively, with the raw modelling system. On the other hand, the improvement produced by MOS E C over the 
modelling system in daily values is also very clear, reducing MNBE in 88% of measurement stations. Moreover, 
all stations exceed [32] acceptance criteria while 69% and 89% did, respectively, with the raw modelling system. 

 
Table 5. Parameters of the Gaussian fit of the different MOS categories with respect to the maximum hourly value and daily 
value of NO2. 

Parameter 
Maximum 1-h value Daily value 

Displacement (μ) 
(µg∙m−3) 

Width (2σ) 
(µg∙m−3) 

Displacement (μ) 
(µg∙m−3) 

Width (2σ) 
(µg∙m−3) 

SIAM 2.67 39.80 2.82 19.51 

MOS 0 0.03 38.45 0.01 17.92 

MOS E 0.12 17.20 0.06 15.09 

MOS C −0.12 37.90 −0.04 17.57 

MOS E C 0.19 32.13 −0.01 13.79 

 

 
(a) 

 
(b) 

Figure 5. Time evolution of mean daily values of observed maximum hourly values of NO2 (a) and observed daily values (b) 
forecasted by the modelling system and corrected by MOS E C in the training period. 
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3.2. PM10 
Table 6 shows the error analysis statistics of the different categories applied to the output of the modelling sys-
tem of pollutant PM10. Figure 6 displays the comparison between normalized mean absolute errors. 

It can be seen that the best results are obtained with MOS E C. It decreases the underestimation produced by 
the modelling system, reducing MNBE from −24.2% to 5.9%, MNGE from 32.1 to 19.3% and increases IOA 
from 0.75 to 0.91. 

Figure 7 displays frequency histograms of the mean error distributions in forecasting daily values for differ-
ent MOS categories and the modelling system. Table 7 shows the parameters of the Gaussian fit. 

The results are very similar for categories MOS E and MOS E C for which the curves are narrower and cen-
tred. 

To further show the improvement introduced by MOS E C, Figure 8 shows the comparison between the time 
evolution of daily PM10 values observed, forecasted by the raw modelling system and corrected by MOS E C. 

Focusing on the impact of MOS E C at the measurement stations, it can be seen that MOS E C diminishes 
MNGE in all of them. Moreover, all measurement stations exceed [32] acceptance criteria for MNBE and 
MNGE, which is a very good achievement since only 21% and 58%, respectively, of the stations, satisfied the 
criteria with just the modelling system. 

 
Table 6. Errors of all MOS categories as well as PM10 forecasting system. 

 
Daily value 

Observed mean (µg∙m−3) Modelled mean (µg∙m−3) MNBE (%) MNGE (%) IOA 

SIAM 17 13 −24.2 32.1 0.751 

MOS 0 17 17 12.2 28.8 0.796 

MOS E 17 17 6.9 21.7 0.884 

MOS C 17 17 11.5 27.3 0.812 

MOS E C 17 17 5.9 19.3 0.907 

 
Table 7. Parameters of the Gaussian fit of the different MOS categories with respect to the daily value of PM10. 

Parameter 
Daily value 

Displacement (μ) (µg∙m−3) Width (2σ) (µg∙m−3) 

SIAM 4.46 10.87 
MOS 0 0 10.56 
MOS E −0.07 6.03 
MOS C 0.03 10.29 

MOS E C −0.01 7.97 

 

 
Figure 6. Comparison of MNGE and MNBE between the different MOS categories and the PM10 modelling system. 



V. A. Pérez et al. 
 

 
18 

 
Figure 7. Histogram of error distributions in the evaluation of the modelling system and the MOS categories for daily values 
of PM10. 

 

 
Figure 8. Time evolution of daily PM10 values observed, forecasted by the modelling system and corrected by MOS E C in 
the training period. 

3.3. O3 
Table 8 shows the error analysis statistics of this pollutant for the different categories and Figure 9 the compar-
ison among the mean normalized errors. 

As can be seen, MOS E C gets the best results, both in the maximum hourly value and maximum 8-hourly. 
In the maximum hourly value, MOS E C slightly increases the MNBE of the modelling system from 1.8% to 

2.8%, reduces MNGE from 20.8% to 13.2%, and increases IOA from 0.62 to 0.91. 
For the maximum 8-h value, MOS E C reduces the MNBE of the modelling system from 7.0% to 3.9%, 

MNGE from 25.3% to 15.5%, and increases IOA from 0.68 to 0.92. 
Figure 10 displays the mean error distributions of the forecasts of the values for every MOS category and the 

modelling system and Table 9 summarizes the errors of the Gaussian fit. 
The best results are attained by MOS C and MOS E C, especially the former, for the maximum hourly value. 

MOS C produces the narrowest curve followed by MOS E C, though they are not quite centred. For the maxi-
mum 8-hourly value, the best results are attained by MOS E C followed by MOS C. MOS E C has the smallest 
width but is not the best centred. 
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Table 8. Errors of all MOS categories as well as O3 forecasting system. 

 

Maximum 1-h value Maximum 8-h value 
Observed 

mean  
(µg∙m−3) 

Modelled 
mean  

(µg∙m−3) 
MNBE (%) MNGE (%) IOA 

Observed 
mean  

(µg∙m−3) 

Modelled mean  
(µg∙m−3) 

MNBE  
(%) 

MNGE  
(%) IOA 

SIAM 91 86 1.8 20.8 0.618 81 79 7.0 25.3 0.678 
MOS 0 91 91 7.6 22.0 0.623 81 81 9.7 25.8 0.702 
MOS E 91 91 6.2 20.1 0.748 81 81 8.1 23.2 0.779 
MOS C 91 90 4.4 16.6 0.845 81 81 6.3 20.1 0.851 

MOS E C 91 91 2.8 13.2 0.910 81 81 3.9 15.5 0.917 
 

Table 9. Parameters of the Gaussian fit of the different MOS categories with respect to the maximum 1-hourly value and 
maximum 8-hourly value of O3. 

Parameter 
Maximum 1-h value Maximum 8-h value 

Displacement (μ) 
(µg∙m−3) 

Width (2σ) 
(µg∙m−3) 

Displacement (μ) 
(µg∙m−3) 

Width (2σ) 
(µg∙m−3) 

SIAM −4.77 44.12 −2.25 42.45 
MOS 0 −0.06 44.10 0.04 42.36 
MOS E 0.17 17.56 0.14 38.82 
MOS C −0.16 34.87 −0.15 33.92 

MOS E C −0.24 28.50 −0.23 27.11 

 

 
Figure 9. Comparison of MNGE and MNBE between the different MOS categories and the O3 modelling system for maxi-
mum 1-h value [left] and maximum 8-h value [right]. 

 

   
(a)                                                        (b) 

Figure 10. Histograms of error distributions in the evaluation of the modelling system and the MOS categories for maximum 
1-hourly values (a) and maximum 8-hourly values (b) of O3. 
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The improvements achieved by MOS E C are further analyzed in Figure 11(a) and Figure 11(b) which com-
pare the evolution of the averaged maximum 1-h and 8-h values of O3 forecasted by the modelling system and 
corrected by MOS E C. 

The analysis of errors by measurement stations show that the improvement introduced by MOS E C over the 
modelling system for maximum hourly values is apparent for most of the stations, with a generalized reduction 
of MNBE and MNGE, and an increase of IOA. MOS E C reduces MNGE in all stations and, moreover, all of 
them end up verifying [32] acceptance criteria for MNBE and MNGE. 

Furthermore, the improvements produced by MOS E C over the modelling system, in case of the maximum 8- 
hourly value, are also generalized, with reductions in both MNBE and MNGE and increases in IOA. MOS E C 
reduces MNBE in all measurement stations and [32] criteria are met in all of them for MNBE and MNGE. This 
compares to 76% and 81%, respectively, of the measurement stations that met the criteria with the raw model-
ling system. 

4. Conclusions 
In this paper, we have applied the well-known MOS methodology in air quality modelling, a field where this tech- 

 

 
(a) 

 
(b) 

Figure 11. Time evolution of averaged maximum 1-hourly values (a) and maximum 8-hourly values (b) of O3 observed, fo-
recasted by the modelling system and corrected by MOS E C in the training period. 
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nique is rarely employed. The output of an Eulerian coupled air quality modelling system feeds 4 MOS catego-
ries for each of these 5 statistics: maximum 1-h daily value and daily values of NO2, daily values of PM10 and 
maximum 1-h and 8-h daily value of O3; this amounts to 20 MOS considered. 

The best results for all statistics have been obtained with the category that stratifies by measurement stations 
and by periods, as expected. The stratification by measurement stations corrects systematic errors of the model-
ling system. The stratification by periods allows for the treatment of the seasonal dependency of concentration 
values. 

In summary, the application of the MOS methodology increases the accuracy of the maximum 1-h daily value 
of NO2 from 71% to 75%, the daily value of NO2 from 75% to 82%, the daily value of PM10 from 68% to 81%, 
the 1-h daily value of O3 from 79% to 87% and the 8-h daily value of O3 from 75% to 85%. 

Our results highlight the improvements achieved by a quite simple mathematical tool with a very low compu-
tational cost. MOS methodology only increases a 2% the total computational cost of the operative air quality 
modeling system, and provides an improvement between 3% and 10% of the air quality forecasts. Nevertheless, 
one cannot forget that the MOS implementation should go in parallel with enhancements in the modelling sys-
tem such as introducing better pollutants emission values to the modelling system. Any changes in the modelling 
system, however, imply the recalculation of the MOS regression coefficients. 
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