

A Re-Evaluation of Allometric Relationships for Circulating Concentrations of Glucose in Mammals

Colin G. Scanes

Department of Biological Science, University of Wisconsin Milwaukee, Milwaukee, WI, USA Email: Scanes@uwm.edu

Received 10 August 2015; accepted 19 April 2016; published 22 April 2016

Copyright © 2016 by author and Scientific Research Publishing Inc. This work is licensed under the Creative Commons Attribution International License (CC BY). <u>http://creativecommons.org/licenses/by/4.0/</u>

😨 🛈 Open Access

Abstract

Purpose: The present study examined the putative relationship between circulating concentrations of glucose and log_{10} body weight in a large sample size (270) of wild species but with domesticated animals excluded from the analyses. Methods: A data-set of plasma/serum concentration of glucose and body weight in mammalian species was developed from the literature. Allometric relationships were examined. Results: In contrast to previous reports, no overall relationship for circulating concentrations of glucose was observed across 270 species of mammals (for log_{10} glucose concentration adjusted $R^2 = -0.003$; for glucose concentration adjusted $R^2 = -0.003$). In contrast, a strong allometric relationship was observed for circulating concentrations of glucose in *Primates* (for log_{10} glucose concentration adjusted $R^2 = 0.511$; for glucose concentration adjusted $R^2 = 0.480$). Conclusion: The absence of an allometric relationship for circulating concentrations of glucose was unexpected. A strong allometric relationship was seen in Primates.

Keywords

Glucose, Allometric, Mammals, Primates

1. Introduction

Glucose in the blood is the principal energy source for brain functioning and but glucose can be used as the energy source for multiple other tissues. A relationship between metabolic rate and circulating concentration of glucose has been reported [1] with higher blood concentration of glucose with increasing metabolic rates in across vertebrates. Moreover, there is a negative relationship between blood concentrations of glucose and body weight (log) in mammals (blood: [2]; serum: [3]). In birds, an allometric relationship for circulating concentration

tions of glucose was reported in one study (blood: [4]) but not in another (plasma/serum: [5]). This leads us to question whether an allometric relation for circulating concentrations of glucose, in fact, exists in mammals. The presence of such a relationship would be consistent with the relationship between basal metabolic rate being proportional to either the body weight to the power two thirds (2/3) (reviewed: [6]) or three quarters (3/4) [7] [8].

What is not clear is whether the supposed relationship between circulating concentrations of glucose and log body weight is real reflecting a true allometric relationship (and reduced needs for energy in larger animals) or represents an artifact of species included in previous analyses and the inclusion of domesticated animals in the analyses. Domesticated animals have been selected for growth and larger body size and consequently lower circulating concentrations of glucose [9]. There are also marked phylogenic differences in circulating concentrations of glucose and body weight in mammals with a large sample size (270) of wild species but with domesticated animals excluded from the analyses.

2. Materials and Methods

2.1. Databases

A database was assembled for serum/plasma concentrations of glucose in wild species of mammals using the published or calculated mean for the species based on rigorous and systematic series of searches of the literature [10] together with body weights principally from the Animal Diversity Web. This is presented in **Table 1**.

	SI	pecies	
		Glucose (mM)	Log B.Wt
Platypus	Ornithorhynchus anatinus	4.3	3.217
Short-beaked Echida	Tachyglossus aculeatus	4.2	3.653
Western Quoll	Dasyurus geoffroii	6.2	3.041
American Woolly Opossum	Caluromys derbianus	5	2.489
Grayshort-tailed Opossum	Monodelphis domestica	5.3	2.088
Common Opossum	Didelphis marsupialis	5.1	3.185
Virginia Opossum	Didelphis virginiana	4.8	3.597
Common Wallaroo	Macropus robustus	4.8	4.477
Red Kangaroo	Macropus rufus	4.7	4.954
Tammar Wallaby	Macropus eugenii	5.2	3.878
Brush-tailed Rock-Wallaby	Petrogale penicillata	6.2	3.872
Quokka	Setonix brachyurus	4.3	3.538
Tasmanian Pademelon	Thylogale billardierii	4.5	3.86
Common Brush-tail Possum	Trichosurus vulpecula	7.62	3.455
Mountain Brushtail Possum	Trichosurus cunninghami	6.8	3.544
Gilbert's Potoroo	Potorous gilbertii	9.1	3.296
Sugar Glider	Petaurus breviceps	4.2	2.041
Northern Hairy-nosed Wombat	Lasiorhinus krefftii	8	4.512
Southern Hairy-nosed Wombat	Lasiorhinus latifrons	6.2	4.407
Lesser Hedgehog tenrec	Echinops telfairi	4.4	2.301
Rock Hyrax	Procavia capensis	3.7	3.58
African Elephant	Loxadonta africana	4.6	6.638
Asian Elephant	Elephas maximus	5.55	6.602
West Indian Manatee	Trichechus manatus	4.55	5.681
Aardvark	Orycteropus afer	5.1	4.785

Table 1. Database of plasma/serum concentrations of glucose (from [11]) and log body weight).

Continued 3.4 Nine-banded armadillo Dasypus novemcinctus Three-Banded armadillo Tolypeutes matacus 4.8 Gilbert's Potoroo Potorous gilbertii 9.1 Sugar Glider Petaurus breviceps 4.2 8 Northern Hairy-nosed Wombat Lasiorhinus krefftii Southern Hairy-nosed Wombat Lasiorhinus latifrons 6.2 Lesser Hedgehog tenrec Echinops telfairi 4.4 Rock Hyrax Procavia capensis 3.7 African Elephant Loxadonta africana 4.6 Asian Elephant Elephas maximus 5.55 West Indian Manatee Trichechus manatus 4.55 Aardvark 5.1 Orycteropus afer Nine-banded armadillo Dasypus novemcinctus 3.4 Three-Banded armadillo Tolypeutes matacus 4.8 Brown-throated Three-toed Sloth Bradypus variegatus 5.5 Hoffmann's Two-Toed Sloths Choloepus hoffmanni 3 Southern Two -toed Sloth Choloepus didactylus 1.2 Giant Anteater Myrmecophaga tridactyla 4.6 European Hedgehog Erinaceous europaeus 6 Four-toed Hedgehog Atelerix albiventris 5.1 South African Hedgehog Atelerix frontalis 7.4 Japanese Shrew Mole Urotrichus talpoide 8.7 Least Shrew Cryptotis parva 7.1 Old World Mole 9.1 Talpa europaea Pallas's Mastiff Bat Molossus molossus 5.8 Great Fruit-eating Bat Artibeus lituratus 6.9 Common Vampire Bat Desmodus rotundus 4.9 Malaysian Flying-fox Pteropus vampyrus 6.65 Rodriguez Island Flying-fox Pteropus rodricensis 6.5 Egyptian Fruit-bat Rousettus aegyptiacus 6 5.2 Wahlberg's Epauletted Fruit-bat Epomophorus wahlbergi Small Flying-fox Pteropus hypomelanus 6.9 Red Panda Ailurus fulgens 6.4 Striped Skunk Mephitis mephitis 13.3 Raccoon Procyon lotor 3.6 Kinkajou Potos flavus 5.5 Ringtail Bassariscus astutus 6.3

3.752

3.176

3.296

2.041

4.512

4.407

2.301

3.58

6.638

6.602

5.681

4.785

3.752

3.176

3.6375

3.778

3.778

4.548

3

2.778

2.547

1.083

0.653

2

1.079

1.813

1.477

3.929

2.512

2.097

1.903

2.717

3.695

3.544

3.7853

3.5185

3.0338

3.6532

3.6021

3.8293

3.9778

4.4698

4.3802

3.677

5.6

5.4

5.6

5.9

6.9

5.6

13

Nasua nasua

Nasua narica

Lutra lutra

Lontra Canadensis

Enhydra lutris

Pteronura brasiliensis

Martes Canadensi

South American Coati

White-nosed Coati

Eurasian otter

North American river otter

Sea Otter

Giant Otter

American Marten

Continued

tinued			
American Mink	Mustela vison	6.9	3.061
European Badger	Meles meles	6.1	4.066
European Polecat	Mustela putorius	9.3	2.9811
Walrus	Odobenus rosmarus	5.4	6.0212
Australian Sea Lion	Neophoca cinerea	4.3	5.3064
California Seal Lion	Zalophus californianus	7.5	5.2844
Northern Fur Seal	Callorhinus ursinus	5.8	5.23
Harbor Seal	Phoca vitulina	10.5	5.061
Harp Seal	Phoca groenlandica	9.8	5.105
Hooded Seal	Cystophora cristata	7.1	5.362
Northern Elephant Seal	Mirounga angustirostris	5.8	6.161
American Black Bear	Ursus americanus	4	5.35
Brown Bear	Ursus arctos	6.65	5.531
Malayan Sun Bear	Helarctos malayanus	5.2	4.663
Giant Panda	Ailuropoda melanoleuca	5.1	5.011
Sloth Bear	Melursus Ursinus	5.1	4.989
Spectacled Bear	Tremarctos Ornatus	5.7	5.114
Polar Bear	Ursus aritimus	6.2	5.677
Binturong	Arctictis binturong	7.1	4.161
Canada Lynx	Lynx canadensis	7.6	4.037
Eurasian Lynx	Lynx lynx	7.4	4.431
European Wildcat	Felis silvestris	9.3	3.628
Sand Cat	Felis margarita	8.2	3.38
Bobcat	Felis rufus	7.2	3.978
Cougar	Felis concolor	8.35	4.872
Iriomote Cat	Felis iriomotensis	9.1	3.568
Jaguar	Panthera onca	4.6	5.009
Tiger	Panthera tigris	7.1	5.41
Cheetah	Acinonyx jubatus	6.5	4.667
Egyptian Mongoose	Herpestes ichneumon	9.7	3.458
Slender-tailed Meerkat	Suricata suricatta	6.8	2.86
Dwarf mongoose	Helogale parvula	7.6	2.439
Aardwolf	Proteles cristata	6	4.041
Spotted Hyena	Crocuta crocuta	7.2	4.796
Striped Hyena	Hyaena hyaena	6.1	4.544
Hunting Dog	Lycaon pictus	6.8	4.431
Grey Wolf	Canis lupus	5.6	4.712
Coyote	<i>Canis latrans</i>	8.2	4.14
Golden Jackal	Canis aureus	6.6	3.954
Maned Wolf	Chrysocyon brachyurus	5.9	2.86
Crab-eating Fox	Cerdocyon thous	13.7	2.439
Ranch Gray Fox	Urocyon cinereoargenteus	7.6	4.041
Raccoon Dog	Nyctereutes procyonoides	3.3	3.845
Kit Fox	Vulpes macrotis	7.2	3.342

Continued

Swift Fox	Vulpes velox	5.6	3.398
Red Fox	Vulpes fulva	7.6	4.045
Fossa	Cryptoprocta ferox	7.8	4.796
African Wild Ass	Equus africanus	4.1	4.544
Grevy's Zebra	Equus grevyi	6	4.431
Mountain Zebra	Equus zebra	6.9	4.712
Ongar	Equus hemionus	9	4.14
Przewalski horse	Equus przewalski	7.2	3.954
Plains Zebra	Equus quagga	8.8	5.439
Black Rhinoceros	Diceros bicornis	4.9	6.041
Indian Rhinoceros	Rhinoceros unicornis	4.6	6.243
Sumatran Rhinoceros	Dicerorhinus sumatrensis	4.2	6.146
White Rhinoceros	Ceratotherium simum	4.7	6.401
Baird's Tapir	Tapirus bairdii	4.8	5.352
Brazilian Tapir	Tapirus terrestris	4.3	5.301
Malayan Tapir	Tapirus indicus	5.6	5.597
Mountain Tapir	Tapirus pinchaque	6.4	5.201
Barking Deer	Muntiacus muntjak	5.2	4.407
Eld's Deer	Panolia eldii	6.62	5
Elk	Cervus canadensis	8.7	5.45
Red Deer	Cervus elaphus	9.71	5.204
Fallow Deer	Dama dama	7.02	4.74
Chital deer	Axis axis	7.4	4.72
Moose	Alces alces	7.8	5.716
White-tailed Deer	Odocoileus virginianus	10.1	4.987
Père David's Deer	Elaphus davidianus	11.2	5.271
Pudú	Pudu pudu	5.7	5
Caribou	Rangifer tarandus	8.3	5.271
Roe Deer	Capreolus capreolus	10	4.414
Rusa Deer	Cervus timorensis	4.5	5.061
Sambar Deer	Cervus unicolor	8.5	5.234
Pronghorn	Antilocapra americana	13.2	4.767
Impala	Aepyceros melampus	7.55	4.72
Cuvier's Gazelle	Gazella cuvieri	4.5	4.544
Dama Gazelle	Gazella dama	6.4	4.74
Dorcas Gazelle	Gazella dorcas	7	4.243
Goitered Gazelle	Gazella subgutturosa	5	4.481
Grant's Gazelle	Gazella granti	10.2	4.746
Springbok	Antidorcas marsupialis	8.4	4.597
Brindled Wildebeest	Connochaetes taurinus	7.35	5.288
Black Wildebeest	Connochaetes gnou	9.3	5.161
Bontebok	Damaliscus dorcas	6.5	4.829
Bongo	Tragelaphus eurycerus	6.2	5.488
Common Eland	Taurotragus oryx	10.3	5.813

Nilgai	Boselaphus tragocamelus	7.9	5.25
Greater Kudu	Tragelaphus strepsiceros	9.2	5.337
Water Buffalo	Bubalus bubalis	3.2	5.628
American Bison	Bison bison	8.4	5.787
European Bison	Bison bonasus	6.8	5.954
Bushbuck	Tragelaphus scriptus	5.1	4.721
Lesser Kudu	Ammelaphus imberbis	10	4.916
Barbary Sheep	Ammotragus lervia	10.3	5.021
Spanish Ibex	Capra pyrenaica	10.3	4.76
Southern Chamois	Rupicapra pyrenaica	6.8	4.568
Rocky Mountain Bighorn Sheep	Ovis Canadensis	8.7	4.954
Stone Sheep	Ovis dalli	11.7	4.9
Mouflon	Ovis orientalis	8.9	4.628
Maxwell's Duiker	Philantomba maxwellii	7.1	3.778
Adax Antelope	Addax nasomaclatus	5.2	4.996
Gemsbok Oryx	Oryx gazella	10.7	5.322
Scimitar-horned Oryx	Oryx dammah	14	5.301
Roan Antelope	Hippotragus equinus	11.3	5.419
Sable Antelope	Hippotragus niger	8.7	5.36
Waterbuck	Kobus ellipsiprymnus	10.45	5.362
Lechwe	<i>Kobus leche</i>	10.3	4.977
Mountain Reedbuck	Redunca fulvorufula	9.6	4.477
Mrs Gray's Waterbuck	Kobus megaceros	7.2	4.954
Guanaco	Lama guanicoe	7.6	5.061
Giraffe	Giraffa camelopardalis	9	6.192
Okapi	Okapia johnstoni	8	5.398
Hippopotamus	Hippopotamus amphibius	7.5	6.462
Pygmy Hippopotamus	Choeropsis liberiensis	8.6	4.337
Buru babirusa	Babyrousa babyrussa	6	4.854
Red River Hog	Potamochoerus porcus	4.5	4.944
Warthog	Phacochoerus africanus	4.5	5
Wild Boar	Sus scrofa	9.3	5.228
Collared Peccary	Tayassu tajacu	6.1	4.301
Chacoan Peccary	Catagonus wagneri	6.1	4.591
Bryde's Whale	Balaenoptera edeni	8.4	7.162
Bowhead Whale	Balaena mysticetus	5.3	7.9
Dall Porpoise	Phocoenoides dalli	7.7	5.243
Finless Porpoise	Neophocaena phocaenoides	7.85	4.845
Gray Whale	Eschrzchtzus robustus	5.4	7.161
Amazon River Dolphin	Inia geoffrensis	6.7	5.151
Commerson's Dolphin	Cephalorhynchus commersonii	5.5	4.699
Bottlenose Dolphin	Tursiops truncatus	6.3	5.58
Common Dolphin	Delphinus delphius	5.8	5.072
False Killer Whale	Pseudorca crassidens	6.3	6.482

Continued

Killer Whale	Orcinus orca	8.95	6.857
Pacific White-sided Dolphin	Lagenorhynchus obliquidens		5.013
Pilot Whale	Globicephala macrorhynchus	8.1	6.342
Spotted Dolphin	Stenella attenuata	7.7	4.954
Beluga whale	Delphinapterus leucas	6.4	6.154
Brazilian Porcupine	Coendou prehensilis	5.5	3.7
Black-tailed Hairy Dwarf Porcupine	Coendou melanurus	3.95	3.279
Соури	Myocastor coypus	8.9	3.875
Greater Cane Rat	Thryonomys swinderianus	5.15	3.374
Dusky-footed Wood Rat	Neotoma fuscipes	6.4	2.366
Meadow Vole	Microtus pennsylvanicus	5.7	1.69
Pine Vole	Microtus pinetorum	5.6	1.407
Norwegian Lemming	Lemmus lemmus	7.3	1.875
Muskrat	Ondatra zibethicus	13.4	2.945
Central Rock-rat	Zyzomys pedunculatus	3.8	1.978
House Mouse	Mus musculus domesticus	5.05	1.322
Libyan Jird	Meriones libycus	6.4	1.929
Persian Jird	Meriones persicus	6.7	2.061
Short-tailed Bandicoot Rat	Nesokia indica	6.7	2.456
Indian Gerbil	Tatera indica	5.9	2
Norway Rat	Rattus norvegicus	6.3	2.505
Sand Rat	Psammomys obesus	4.3	1.574
Kangaroo Rat	Dipodomys merriami	14.3	1.653
Gray squirrel	Sciurus carolinensis	7.7	2.736
Thirteen-lined ground squirrel	Spermophilus tridecemlineatus	9	2.097
White-Tailed Prairie Dog	Cynomys leucurus	8	3.075
Guinea Pig	Cavia porcellus	6.7	2.954
Long-tailed Chinchilla	Chinchilla lanigera	7	2.813
Tuco-tuco	Ctenomys talarum	5.2	2.140
Bank Vole	Myodes glareolus	3.95	1.267
Deer mice	Peromyscus maniculatus	5.6	1.23
Golden or Syrian Hamster	Mesocricetus auratus	5.8	2.051
Northern red-backed Vole	Myodes rutilus	4.4	1.477
Fat-tailed Jird	Pachyuromys duprasi	12.2	1.562
Gerbil	Meriones unguiculatus	4.3	1.960
Libyan jird	Meriones libycus	6.4	1.906
Short-tailed Bandicoot Rat	Nesokia indica	6.7	2.458
Spiny mice	Acomys cahirinus	8.8	1.699
Blind Subterranean Mole Rat	Spalax judaei	8.61	2.51
Black-tailed Jackrabbit	Lepus californicus	8.7	3.312
European Brown Hare	Lepus europaeus	12.9	3.67
Eastern Cottontail Rabbit	Sylvilagus floridanus	12.9	3.066
Riparian Brush Rabbit	Sylvilagus bachmani	6.3	2.845
Black Lemur	Eulemur macaco	4.9	3.254

Continued			
Black-and-white ruffed Lemur	Varecia variegata	6.7	3.544
Eastern Lesser Bamboo Lemur	Hapalemur griseus	6.4	2.85
White-Fronted Brown Lemur	Eulemur fulvus	3	3.447
Red ruffed Lemur	Varecia rubra	5.5	3.641
Ring-tailed Lemur	Lemur catta	7.5	3.362
Verreaux's Sifaka	Propithecus verreauxi Strepsirhini	6.6	3.58
Bushbaby	Galago crassicaudatus Strepsirhini	5.4	3.176
Slender Loris	Loris tardigradus	7.5	2.279
Three-striped Night Monkey	Aotus trivirgatus	9.1	3.086
Cotton-Top Tamarin	Saguinus oedipus	14.7	2.505
Common Marmoset	Callithrix jacchus	10.6	2.491
White-Footed Tamarin	Saguinus leucopus	9.4	2.699
Goeldi's Monkey	Callimico goeldii	8.9	2.563
Tufted Capuchin	Cebus apella	7.2	3.491
Common Squirrel Monkey	Saimiri sciureus	5.53	2.82
De Brazza's Monkey	Cercopithecus neglectus	4.3	3.76
Hamadryas Baboon	Papio hamadryas	4.3	4.365
Lion-tailed Macaque	Macaca silenus	5.8	3.771
Bonobo	Pan paniscus	4.1	4.592
Chimpanzee	Pan troglodytes	4.6	4.61
Gorilla	Gorilla gorilla	3.81	5.13
Orangutan	Pongo pygmaeus	4.3	4.94
Rhesus Monkey	Macaca mulatta	3.83	3.813
Stump-tailed Macaque	Macaca arctoides	4.3	3.947
Three-striped Night Monkey	Aotus trivirgatus	9.1	3.097
Brown Woolly Monkey	Lagothrix lagotricha	5.9	3.845
Owl Monkey	Aotus nancymaae	6.5	3.097
Red howler Monkey	Alouatta seniculus	5.7	3.785
Black-capped or Bolivian squirrel monkey	Saimiri boliviensis	7.8	2.888
Central American squirrel or Colombian monkey	Saimiri oerstedii	6.4	2.888
Tonkean Macaque	Macaca tonkeana	3.4	4.099
Sooty Mangabey	Cercocebus atys	4.8	3.895
Northern Plains Gray Langur	Semnopithecus entellus	5.9	4.14
Chacma or Cape baboon	Papio ursinus	5.4	4.362
Celebes black Macaque	Macaca nigra	4	4.061
Crab-eating or Cynomolgus Macaque	Macaca fascicularis	5.89	3.699
Grivet or African Green monkey	Chlorocebus aethiops	5.87	3.602

2.2. Statistics

Allometric relationships (comparing both serum/plasma concentrations of glucose and log10 serum/plasma concentrations of glucose with log₁₀ body weight) across the Class Mammalia were analyzed by linear regression (Microsoft Excel). The data were also analysed separately for major groups of mammals including Marsupial mammals, Eutherian mammals, for taxa within the Eutherian mammals, namely Glires, Euarchonta, Laurasiatheria, Afrotheria and Xenarthra (following the relationships advanced in [11]-[13]) together with Orders and sub-orders within the Laurasiatheria and Euarchonta where there is sufficient data for analysis.

3. Results

There was not a relationship between circulating concentrations of glucose and \log_{10} body weight in wild mammals (circulating concentrations of glucose: adjusted $R^2 = -0.003$; \log_{10} circulating concentrations of glucose: adjusted $R^2 = -0.003$) (Table 2 and Table 3) (Figure 1). Similarly, there was no allometric relationships when data for marsupial or eutherian mammals were analyzed separately (Table 2 and Table 3) or with major taxa within the *Eutheria*.

However, there was a strong relationship between circulating concentrations of glucose and \log_{10} body weight in some taxa; specifically across species within the Order *Primates* (circulating concentrations of glucose: adjusted $R^2 = 0.480$; p < 0.001; \log_{10} circulating concentrations of glucose: adjusted $R^2 = 0.511 \text{ p} < 0.001$) (**Table** 2 and **Table 3**). Moreover there were moderate allometric relationships in the Orders *Perissodactyla* and *Carnivora* (Adjusted $R^2 = 0.085$; p < 0.05) (**Table 2** and **Table 3**). Within the Order *Primates*, there was an even stronger allometric relationship in the Sub-order *Haplorhini* (New World and Old World monkeys together with Apes) (circulating concentrations of glucose: adjusted $R^2 = 0.597$; p < 0.001; \log_{10} circulating concentrations of glucose: adjusted $R^2 = 0.657$; p < 0.001) (**Figure 2**) but no allometric relationship in in the Sub-order *Strepsirhini*. Within the Order *Carnivora*, the moderate allometric relationship was no longer significant when the data were examined within Sub-orders (circulating concentrations of glucose: Sub-order *Caniformia*-adjusted $R^2 =$ 0.059, p = 0.064; *Feliformia*-adjusted $R^2 = 0.098$, p = 0.128). Despite there being data on circulating concentrations of glucose in a large sample size (76 species) within the Order *Cetartiodactyla*, there was no allometric relationship observed. Moreover, if the data for Cetacean species was analyzed separately, again no allometric relationship was observed (circulating concentrations of glucose: *Cetacea*-adjusted $R^2 = -0.077$, p = 0.948; *Artiodactylia*-adjusted $R^2 = 0.0007$, p = 0.312).

4. Discussion

There was no relationship between circulating concentrations of glucose and log body weight in wild species of

Taxa	Adjusted $R^2 = (n=)$	p =	Slope
Class Mammalia	-0.003 (270)	0.815	
Infra-class Marsupialia	-0.047 (18)	0.629	
Infra-class Eutheria (Placentalia)	-0.004 (250)	0.936	
Vithin Infra-class Eutheria (Placentalia)			
Super-order Afrotheria	0.183 (5)	0.219	
Super-order Euarchonta	0.480 (38)	8.62E-07	-2.33
Super-order Glires	0.049 (38)	0.096	
Super-order Laurasiatheria	-0.006 (163)	0.878	
Super-order Xenoarthra	-0.245 (6)	0.906	
Within Laurasiatheria			
Order Carnivora	0.081 (59)	0.016	-0.74
Order Cetartiodactyla	-0.013 (76)	0.871	
Order Chiroptera	0.209 (8)	0.209	
Order Perissodactyla	0.235 (14)	0.045	-1.12
Within Super-order Glires			
Order Rodentia	-0.018 (34)	0.532	
Within Super-order Euarchonta			
Primates	0.480 (38)	8.62E-07	-2.33
Within Primates			
Sub-order Strepsirhini	0.0075 (9)	0.337	
Sub-order Haplorhini	0.597 (29)	5.56E-07	-2.69

Table 2. Relationship between serum/plasma concentrations of glucose and log body weight in mammalian species.

mammalian taxa.			
Taxa	Adjusted $R^2 = (n=)$	p =	Slope
Class Mammalia	-0.003 (269)	0.686	
Infra-class Marsupialia	-0.044 (17)	0.560	
Infra-class Eutheria (Placentalia)	-0.004 (251)	0.684	
Within Infra-class Eutheria (Placentalia)			
Super-order Afrotheria	0.179 (6)	0.222	
Super-order Euarchonta	0.511 (38)	2.82E-07	-0.153
Super-order Glires	0.068 (38)	0.062	
Super-order Laurasiatheria	-0.006 (163)	0.786	
Super-order Xenoarthra	-0.249 (6)	0.948	
Within Laurasiatheria			
Order Carnivora	0.068 (59)	0.0256	-0.040
Order Cetartiodactyla	-0.013 (76)	0.910	
Order Chiroptera	0.204 (8)	0.146	
Order Perissodactyla	0.242 (14)	0.0425	-0.079
Within Super-order Glires			
Order Rodentia	-0.005 (34)	0368	
Within Super-order Euarchonta			
Primates	0.511 (38)	2.82E-07	-0.153
Within Primates			
Sub-order Strepsirhini	0.022 (9)	0.392	
Sub-order Haplorhini	0.657 (29)	5.95E-08	-0.172

Table 3. Relationship between log_{10} serum/plasma concentrations of glucose and log_{10} body weight across mammals and in mammalian taxa.

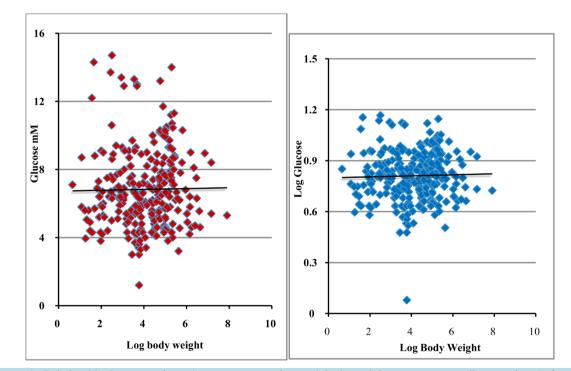


Figure 1. Relationship between plasma/serum concentration and body weight across mammalian species. Left: plasma/serum concentration (mM) and \log_{10} body weight across mammalian species; Right: \log_{10} plasma/serum concentration and \log_{10} body weight across mammalian species (mM).

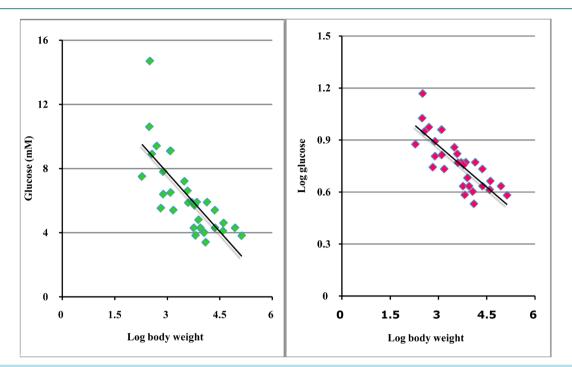


Figure 2. Allometric relationship for plasma/serum concentrations of glucose in Primate species (left glucose, right log glucose concentration).

the Class *Mammalia* or Infra-classes *Eutheria* or (*Placentalia*) (**Table 2** and **Table 3**; **Figure 1**). This is in contrast to previous studies in mammals [2] [3]. The basis for the differences is not clear. The present study employed a much large number of species and deliberately omitted domesticated species. There were similarly no allometric relationships observed across species for many mammalian taxa including marsupials, eutherian mammals, Super-orders *Afrotheria* (e.g. aardvarks, elephants, sea cows), *Glires* (rodents, rabbits and hares), *Laurasiatheria* (e.g. carnivores, large herbivores and whales) and *Xenoarthra* (anteaters, armadillos, sloths) and in Laurasiatherian orders such as *Chiroptera* (bats) and Cetartiodactyla (even toed ungulates such as deer together with whales and dolphins).

There was a very strong allometric relationship between circulating concentrations of glucose and log body weight in species of the Class *Primates* (apes, monkeys and lemurs) (**Table 2** and **Table 3**, **Figure 2**) and, particularly, in the Sub-order *Haplorhini* (New World and Old World monkeys together with the Apes). Body weight accounted for much of the variation in circulating concentrations of glucose in species in the Sub-order *Haplorhini* (New World and Old World monkeys together with the Apes). Body weight accounted for much of the variation in circulating concentrations of glucose in species in the Sub-order *Haplorhini* (>60%) (**Figure 2**). Moreover, there was an allometric relationship with circulating concentrations in species in the Orders *Perissodactyla* (odd toed ungulates such as horses, rhinoceroses and tapirs) and *Carnivora* (**Table 1**). It is suggested that in these taxa that the relationship between circulating concentrations of glucose and body weight is consistent to the reductions in energy requirements per unit weight with increasing body weight. Despite the strong relationship between here was insufficient data on basal metabolic rate or brain weight in primates (or within the *Haplorhini*) [14] for an analysis with sufficient power for significance. Alternatively, circulating concentrations of glucose may play a critical role in determining optimal body weight.

The overall conclusions are that there is no allometric relationship between circulating concentrations of glucose (or \log_{10} circulating concentrations of glucose) and \log_{10} body weight across species of wild mammals. However, there was a strong allometric relationship in primates, particularly in the *Haplorhini* (monkeys and apes).

5. Conclusion

No relationship was observed between circulating concentrations of glucose and log_{10} body weight in a large sample size (270) of wild species but with domesticated animals excluded from the analyses. The absence of an allometric relationship for circulating concentrations of glucose was unexpected. A strong allometric relation-

ship was seen in Primates.

Acknowledgements

The helpful discussions with colleagues are gratefully acknowledged.

References

- Umminger, B.L. (1977) Relation of Whole Blood Sugar Concentrations in Vertebrates to Standard Metabolic Rate. *Comparative Biochemistry and Physiology A*, 56, 457-460. <u>http://dx.doi.org/10.1016/0300-9629(77)90267-5</u>
- [2] Umminger, B.L. (1975) Body Size and Whole Blood Sugar Concentrations in Mammals. *Comparative Biochemistry and Physiology A*, 53, 455-458. <u>http://dx.doi.org/10.1016/S0300-9629(75)80065-X</u>
- [3] Kjeld, M. and Ólafsson, Ö. (2008) Allometric (Scaling) of Blood Components in Mammals: Connection with Economy of Energy. *Canadian Journal of Zoology* 86, 890-899. <u>http://dx.doi.org/10.1139/Z08-061</u>
- Braun, E.J. and Sweazea, K.L. (2008) Glucose Regulation in Birds. *Comparative Biochemistry and Physiology* B, 151, 1-9. <u>http://dx.doi.org/10.1016/j.cbpb.2008.05.007</u>
- [5] Beuchat, C.A. and Chong, C.R. (1998) Hyperglycemia in Hummingbirds and Its Consequences for Hemoglobin Glycation. *Comparative Biochemistry and Physiology* A, **120**, 409-416. <u>http://dx.doi.org/10.1016/S1095-6433(98)10039-9</u>
- [6] White, C.R. and Seymour, R.S. (2005) Allometric Scaling of Mammalian Metabolism. *Journal of Experimental Biology*, 208, 1611-1619. <u>http://dx.doi.org/10.1242/jeb.01501</u>
- [7] Glazier, D.S. (2005) Beyond the "3/4-Power Law": Variation in the Intra- and Interspecific Scaling of Metabolic Rate in Animals. *Biological reviews of the Cambridge Philosophical Society*, 80, 611-662. <u>http://dx.doi.org/10.1017/S1464793105006834</u>
- [8] Glazier, D.S. (2010) A Unifying Explanation for Diverse Metabolic Scaling in Animals and Plants. *Biological Reviews* of the Cambridge Philosophical Society, **85**, 111-138. <u>http://dx.doi.org/10.1111/j.1469-185X.2009.00095.x</u>
- [9] Scanes, C.G. (2014) Comparison of Circulating Concentrations of Glucose in Vertebrate and Invertebrate Taxa: Evolutionary and Physiological Implications. *Trends in Comparative Biochemistry & Physiology*, 18, 15-60.
- [10] Scanes, C.G. (2014) Shifts in Circulating Concentrations of Glucose in Domesticated Mammals: Is There a Consistent Adaptation to Domestication? *Food and Nutrition Science*, **15**, 1652-1659. <u>http://dx.doi.org/10.4236/fns.2014.517178</u>
- [11] Murphy, W.J., Eizirik, E., Johnson, W.E., Zhang, Y.P., Ryder, O.A. and O'Brien, S.J. (2001) Molecular Phylogenetics and the Origins of Placental Mammals. *Nature*, 409, 614-618. <u>http://dx.doi.org/10.1038/35054550</u>
- [12] Huchon, D., Madsen, O., Sibbald, M.J., Ament, K., Stanhope, M.J., Catzeflis, F., de Jong, W.W. and Douzery, E.J. (2002) Rodent Phylogeny and a Timescale for the Evolution of Glires: Evidence from an Extensive Taxon Sampling Using Three Nuclear Genes. *Molecular Biology and Evolution*, **19**, 1053-1065. http://dx.doi.org/10.1093/oxfordjournals.molbev.a004164
- [13] Picone, B., Masters, J., Silvestro, D., Sineo, L. and DelPero, M.A. (2011) Phylogenetic Analysis of Human Syntenies Revealed by Chromosome Painting in Euarchontoglires Orders. *The Journal of Mammalian Evolution*, 18, 131-146. http://dx.doi.org/10.1007/s10914-010-9150-x
- [14] Leonard, W.R., Robertson, M.L., Snodgrass, J.J. and Kuzawa, C.W. (2003) Metabolic Correlates of Hominid Brain Evolution. *Comparative Biochemistry and Physiology A*, 136, 5-15. <u>http://dx.doi.org/10.1016/S1095-6433(03)00132-6</u>