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Abstract 
 
Finite element method (FEM) and differential quadrature method (DQM) are among important numerical 
techniques used in engineering analyses. Usually elements are sub-divided uniformly in FEM (conventional 
FEM, CFEM) to obtain temperature distribution behavior in a fin or plate. Hence, extra computational com-
plexity is needed to obtain a fair solution with required accuracy. In this paper, non-uniform sub-elements 
are considered for FEM (efficient FEM, EFEM) solution to reduce the computational complexity. Then this 
EFEM is applied for the solution of one-dimensional heat transfer problem in a rectangular thin fin. The ob-
tained results are compared with CFEM and efficient DQM (EDQM), with non-uniform mesh generation). It 
is found that the EFEM exhibit more accurate results than CFEM and EDQM showing its potentiality. 
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1. Introduction  
 
Presently there are many numerical solution techniques 
known to the computational mechanics community. FEM 
is one of those numerical solution techniques to solve 
structural, mechanical, heat transfer, and fluid dynamics 
which arise in problems of engineering and physical sci-
ences [1–5]. Here, conventional FEM (CFEM) means the 
used elements are of same size and uniformly distributed. 
In its application to the solution of engineering problems, 
the finite element discretization has been implemented 
almost to the spatial problems. For dynamic or time de-
pendent problems whose solutions as functions of time 
are of interest, a step by step procedure of finite differ-
ence is usually employed with computational complexity. 

For heat transfer problems, rapid changes of 
heat/temperature distributions take place near the ele-
ment boundary (and at the boundary). It is very impor-
tant to know these temperature change behavior of an 
element prior to its use. Hence, to get an actual picture 
using FEM, the element is usually subdivided into very 
small sub-elements uniformly (conventional FEM, 
CFEM), which leads to huge amount of complexity, 
memory consumption and computational time [6]. Oth-
erwise, error flow occurs with unreliable results [1,2,6].  

On the other hand, to get a clear picture about the tem-
perature changes near (and at) the element boundary, 

better to subdivide the elements into very small sub- 
elements at the boundary only, followed by relatively 
bigger elements gradually towards the mid-point of the 
element non-uniformly (efficient FEM, EFEM). This 
may serve the intended purpose without any additional 
burden and this is highlighted in this paper with im-
proved accuracy (approximately 65%) compared to 
CFEM. Hence, here, focus is given to develop and apply 
efficient (non-uniform mesh density) nodal points distri-
bution algorithm for automatic mesh (elements) genera-
tion to optimize CFEM solution. 

DQM is another numerical solution technique to solve 
above mentioned problems efficiently [7–13]. The es-
sence of the DQM is that the partial derivative of a func-
tion is approximated by a weighted linear sum of the 
function values at given discrete points. Bellman and 
Casti [7,8] developed this numerical solution technique 
in the early 1970s and since then, the technique has been 
successfully employed in a variety of problems in engi-
neering and physical sciences. To make the DQM more 
efficient with less computational complexity, efficient 
DQM (EDQM) was proposed in [11–13] with non-uni- 
formly distributed mesh points.  

Hence, in this paper, one-dimensional (1-D) heat con-
duction problems in a thin rectangular fin are solved us-
ing EFEM by means of the accurate discretization and 
solver (code) and then the results are compared with  
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CFEM and EDQM to verify EFEM efficiency. 
The paper is organized as follows. Section II presents 

the governing equation with efficient FEM rules, fol-
lowed by simulation set-up and assumptions, results and 
discussions, and finally conclusion of the paper. 

 
2. The One-Dimensional Efficient Finite  

Element Method 
 
Here, the considered one dimensional (1-D) heat conduc-
tion problem is [2,3,14–18] 

0
d dT

k Q
dx dx

    
 

              (1) 

with the boundary conditions 
00
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
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  )  as shown in Figure 1. Here, heat flux 

dt
q k

dx
  . Figure 1 shows the 1-D element discretiza-

tion in the x-direction. The temperature T  at various 
nodal points are the unknowns except at node 1, where, 
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An one-dimensional thin rectangular fin as shown in 
Figure 2 is considered here. Heat is transmitted along its 
length by conduction and dissipated from its lateral sur-
faces to the surroundings by convection. The governing 
equation for the temperature in the fin is given in Equa-
tion (1). 

The parameter, M is given by 2

C

hp
M

kA
 , where, p is 

the fin perimeter (meter) and Ac is the cross sectional 
area of the fin [meter2]. Fin length, width and thickness 
are ,  and t respectively. L w

In this case,   dT
q h T T k

dx    ,  2p w t  , 

CA w t   and 
 2 2

C

w tp

A w t t





 . The convection 

heat loss in the fin is equivalent to negative heat source 
and can be expressed as follows:  

   
( )

C C

p dx h T T ph
Q T

A dx A





    T  

Now Equation (1) becomes  

  0
C

d dT ph
k T T

dx dx A 
     
 

            (2) 

 
Figure 1. Boundary conditions for 1-D heat conduction. 

 

 
Figure 2. Thin rectangular fin. 

To calculate the approximate solution T, the mathe-
matical formulation using Galerkin’s approach [2,3] is 

 
0

0
L

C

d dT ph
k T T dx

dx dx A
 

  
  

   
         (3) 

where   is a test function constructed from the same 

basis functions as those of T, with .  0 0 
Integrating by parts Equation (3) becomes,  

 
0 0 0

0
L L L

C

dT d dT ph
k k dx T T dx

dx dx dx A
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The 1st term of Equation (4) is, 
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Since  0 0   and      L
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q k L L h T T

dx     , 

we get,    
0

L

L

dT
k L h T

dx
    T  

Equation (4) becomes 

     
0 0

0
L L

L
C

d dT ph
L h T T k dx T T dx

dx dx A
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           (6) 

A global virtual temperature vector is defined as 

 then within each element, th   1 2 3, , , ...,
T

L     
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test function becomes 
According to Reference [2], e

T

dT

dx
 B T , we have 

T

d

dx

  B  

( ) i ii N                 (7) 

Here, is the element shape function and N 1LN  at 

the element boundary [2] (Figure 1). Therefore Equation 
(7) gives For matrix multiplication validity, we have 

 
T

T T ei
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The element conductivity matrix is The element heat rate vector due to the heat source is 

1
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where,   varies from  to 1 1  and 
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Now, Equation (2) can be transformed into 
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 or 

T L L LhT hT   T Tψ K T ψ R        (12) 

where, global matrices KT , R, and T are respec-
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This equation needs to be solved to obtain the 1-D 
FEM numerical temperature distribution in the consid-
ered rectangular fin. 
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  (14) 
Using Equations (11-16) and the efficient FEM 

(EFEM) algorithm, the approximate solution T has been 
obtained. The 1-D EFEM algorithm (rule) is depicted in 
terms of self-explanatory flow chart in Figure 3. The 
non-uniform and uniform mesh distribution scenarios are 
shown in Figures 4 and 5 respectively. 
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2.1. Example Problem 1: 1-D Insulated Tip Thin 

Rectangular Fin            (15) 
 

and  with constant.  1 2 3 ... LT T T T T
T 1 0T T  When the base of the fin is held at constant temperature, 

T0 and the tip of the fin is insulated, the boundary condi-
tions are then given by 

Finally, the global matrix is formed and the Equation 
(12) becomes 
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 Start and Initialization 

 

 

 Input: Fin Length: L, no. of element: 
N, error threshold: eh  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3. Efficient discretization and solution rule for 1-D FEM
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No. nodal point: 
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1
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Element length.  
i = 1 to N 

le(i) = x(i+1) – x(i) 

Non-uniform ? 

No nodal points: 
Z=N+1.Element 
length:  le = L

Mesh distribution calcula-
tion  

i = 1 to z,  

x(i) = (i – 1)  le  

Numerical solution and 
error calculation 

Max.  

|Tn – Texact| 
≤eh? 

Set N=N+2 

 Discretization and Stiff-
ness matrix  

calculation using  

Galerkin approach 

Set N=N+2 

END 
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0T T                at  0x 

0q   at x L , where L is the length of the fin. 

In this case, the final form of the global matrix in 
Equation (16) becomes 

22 23 2 21 02 2
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Example of non-uniform and uniform mesh distribu-
tions and element lengths are depicted in Figures 4 and 5 
respectively. 
 
2.2. Example Problem 2: 1-D Convection Tip Thin 

Rectangular Fin 
 

When the base of the fin is held at a constant temperature, 
T0 and the tip of the fin is a convection surface, then the 
boundary conditions are T=T0         at x=0 

 Lq h T T        at x=L  

And the final global matrix shown in Equation (16) 
becomes 
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...

L

L

L L LL L L L

A A A A TT R

A A A T R A T

A A A h T R hT A T





 

    
    
         
             

  

         (18) 

 
3. Simulation Set-up and Assumptions 

 
Table 1 shows the considered parameters and their cor-
responding values used to obtain simulation results using 
FORTRAN 90 software. We used these values to obtain 
the temperature distribution for EFEM, CFEM, EDQM 
and exact methods. 

 
 

 

 

Figure 4: Example 1-D efficient mesh distribution and ele-
ment lengths. 

 

 

Figure 5. Example 1-D conventional mesh distribution and  
element lengths. 

We considered, 2 1
hP

M
kA

   and the associated assump-

tions (in Table 1) to compare the obtained FEM results 
with DQM [13] and exact solution [18]. Here to mention 
that, to obtain 1-D DQM solutions, element material 
properties, fin-width and fin-thickness are not required 
(which is the shortcoming of the method). The errors in 
FEM and DQM solutions are computed compared to 
exact solution [18]. 

 
4. Results and Discussions 
 
4.1. Results and Discussions of 1-D Insulated Tip 

Thin Rectangular Fin 
 

The results of the present problem, shown in Figure 6, 
contain the maximum absolute percentage errors in the 
FEM and DQM solutions obtained with uniformly (con-
ventional) and non-uniformly (efficient) distributed no- 
dal (mesh) points. It is essential to know, how many 
mesh points (elements) are required to obtain a conver-
gent FEM solution in the solution domain. 

Hence, the comparison of convergence of fin-tem- 
perature in terms of maximum % error versus number of 
nodal (mesh) points for CFEM, EFEM and EDQM solu-
tions is shown in Figure 6. Initially, all the solutions in 
terms of maximum % errors show a monotonic conver-
gence with the increasing number of mesh points (shown 

11 to 104Z  ). It is apparent that EFEM results show 
bit less accuracy for 30Z  and similar accuracy for 

compared to EDQM, but yields result with higher 
accuracy, of one order of magnitude or more with in-
creasing 

30Z 

Z  compared to CFEM. EDQM converge up to 
100Z  and then saturated, whereas the EFEM solutions 

converge smoothly for all N within the solution domain, 
showing best converging result at . On 
the other hand, uniform FEM (CFEM) results converge 
slowly throughout the solution domain and then diverge 
without showing the best results like EFEM. It happens 
due to the mesh point distribution strategy of equally 
spaced and unequally spaced nodal points in the compu-
tational domain and the inherited complexity to compute 
the stiffness matrix for equally spaced nodal points. 
Hence, the efficiency of EFEM results is apparent. 

100 and 101Z 

Figure 7 shows the convergent numerical and exact 
solutions (fin temperature) and the corresponding per-
centage errors for 100N   elements (FEM case) which 
is equivalent to 101Z   mesh points (both FEM and 
DQM cases). These results are obtained at an interval of 
 0.1x   along the fin length, 0 1x  , using cubic
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Table 1. Input parameters and assumptions for 1-d rectangular fin. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
spline interpolation. It is seen that all the solutions are 
very close to exact solutions throughout the length of the 
fin with temperature variations at 0

0 1T C 0x m  to 

 at00.648LT C 1.0x m . 

Figure 8 shows the percentage errors at the base of the 
fin ( ) are 0 for all solutions due to initial tempera-

ture  (Figure 7). The percentages errors remain 

the same with EFEM except little bit increase (with 
maximum error ) at the middle of the fin due 
to nodal point distribution with maximum spacing there. 
Whereas, with CFEM, it increases gradually along the 
length of the fin with the maximum percentage error 

at the fin-tip (x = 1). In other case, the oscilla-
tions (instability) of DQM results appear clearly com-
pared to FEM results. The average percentage error in  

0x 

0 1T 

410

0 C

62.44 10

1.9

CFEM, EDQM [13] and EFEM are 41.2 10 , 

 and  respectively, which shows 
approximately 99% and 49% improvements in EFEM 
results demonstrating its superiority over CFEM and 
EDQM. 

62.24 10 61.12 10

4.2. Results and Discussion of 1-D Convection Tip 
Thin Rectangular Fin  

 
Here the results exhibit the same nature like insulated-tip 
fin but yield results with higher accuracy, of two order of 
magnitude or more with increasing Z  due to different 
material properties and fin-thickness (as the FEM solu-
tion and its accuracy depend on fin dimension, materials 
used and associated boundary conditions).  

In Figure 9, the comparison of convergence versus 
number of mesh points of exact, FEM and DQM solu-
tions for convection-tip fin with uniform and non-uni-
form mesh distributions is shown. It is apparent that for 
all cases, the solutions converge smoothly for all 
Z within the solution domain. The comparison shows 
similar results as in Figure 6 except EFEM yields result 
with higher accuracy, of one order of magnitude or more 
with increasing Z  (for ) compared to that with 
CFEM. Here, EFEM results converge from 

20Z 
80Z   

showing best result at 90 to 101Z  , EDQM [13] shows 

similar results with some oscillations, whereas CFEM 
does not exhibit any best convergence. 

Input Parameters 
Assumed value for Insulated-Tip 

Fin 

Assumed value for Convec-
tion-Tip Fin 

Boundary and other values: 

Initial temperature (T0) 

Ambient temperature (T∞) 

Heat flux (q) 

% Error threshold (eh) 

1 OC 

0 OC 

0 at x = 1 

0 - 0.1  

1 OC 

0 OC 

Variable 

0 - 0.1 

 
Element Type (NNODE): 
Linear (for 1-D) 

 
2 

 
2 

 
Element material properties: 
 
Thermal conductivity (ke = k)  
 
Convective heat transfer coefficient (h)  
 
Heat source (Q) 

 
Variable to make M = 1 

 
9 W/m2 0C 

 
0 W/m3 0C 

 

 
7.03125 W/(m 0C) 

 
9 W/m2 0C 

 
0 W/m3 0C 

 

Element (Fin) dimension: 
 
length (L) along x-axis 
  
width (w) 
 
thickness (t) 
 
Number of elements (N) 

 
1 m 
 
Variable to make M = 1 
 
0.001 m 
 
11 - 104 

 
1 m 
 
Variable to make M = 1 
 
Variable to make M = 1 
 
11 - 104 
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Figure 6. Comparison of convergence of insulated-tip fin-temperature in terms of maximum % error for CFEM, EFEM and 
EDQM solutions ( ). 11 to 104Z 

 
Figure 7. Insulated-tip fin-temperature distribution for exact, EFEM, CFEM and EDQM along with its respective % errors 
( ). Z = 101

Figure 10 depict the comparison of CFEM, EFEM, 
EDQM [13] numerical and exact convection-tip fin tem-
peratures and the corresponding percentage errors for 
conventional (uniform) and efficient (non-uniform) mesh 
point distribution respectively for 100 elements (i.e., 

). Same as Insulated-tip fin, the results are ob-
tained at an interval of   along the fin length, 

101Z 

0
0.1x 

1x  , using cubic spline interpolation. Figure 10 
shows that, all numerical solutions are very close to ex-

act solutions throughout the length of the fin with tem-
perature variations 0 at base of the fin to 

 at the tip of the fin. Here the reduction of 
fin temperature is  more compared to insu-
lated-tip fin (Figure 7) as expected. 

01T 

00.32 C

C
C00.328LT 

FEM versus DQM maximum % error comparison for 

convection-tip fin-temperature are shown in Figure 11. 

The comparison of CFEM, EFEM and EDQM [13] per- 
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Figure 8. Percentage error comparison of EFEM, EDQM and CFEM for  along the fin-length. Z =101

 

Figure 9. Comparison of convergence of convection-tip fin-temperature in terms of maximum % error for CFEM, EFEM 
and EDQM solutions ( ). Z = 11 to 104

 
centage errors for convection-tip fin is shown in Figure 
11. There is no error at the base of the fin and it almost 
remain the same with EFEM and EDQM except negligi-
ble increase at the middle of the fin, whereas, with 
CFEM, it increases gradually along the length of the fin 
with the maximum percentage error at the tip 
(x = 1). In this case the EDQM converges with oscilla-
tions throughout the solution domain. The average % 
error in CFEM, EDQM [13] and EFEM are 

63.31 10

1.69 610 , 

 and  respectively. This shows 
nearly 100% and 99% improvements in EFEM results  

93.08 10 112.24 10

compared to CFEM and EDQM respectively demonstrat- 
 

 
ing its superiority. 

5. Conclusions 
 
Here, the solutions of the temperature distribution in in-
sulated-tip and convection-tip 1-D rectangular fin are 
computed numerically using FEM and the results are 
found to agree very well with the exact solution and 
show the efficiency of the method. Investigating the 
various mesh points distribution for equal and unequal  
spacing, it is found that, for FEM solution, unequally 
spaced mesh points distribution give better and more  
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Figure 10. Convection-tip fin-temperature distribution for exact, EFEM, CFEM and EDQM along with its respective % er-
rors ( Z ). =101

 
Figure 11. Convection-tip fin error comparison of EFEM, EDQM and CFEM for  along the fin-length. Z = 101

 
accurate results than equally spaced and the solution 
converges smoothly as the number of nodal points (or 
elements) is increased. In general, this study has im-
proved the stability and accuracy of EFEM results for 
practical consideration and implementation. 

Finally, the results of EFEM shows remarkable en-
hancement compared to CFEM and agree very well with 
EDQM with very small errors or difference showing its 
potentiality. Hence EFEM is suitable to test the tem-
perature distribution scenario in any thin metal fin prior 
to its design and practical implementation. 
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