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ABSTRACT 
The paper demonstrates the possibility to enhance the damping of inter-area oscillations using Wide Area Measurement 
(WAM) based adaptive supervisory controller (ASC) which considers the wide-area signal transmission delays. The 
paper uses an LMI-based iterative nonlinear optimization algorithm to establish a method of designing state-feedback 
controllers for power systems with a time-varying delay. This method is based on the delay-dependent stabilization 
conditions obtained by the improved free weighting matrix (IFWM) approach. In the stabilization conditions, the upper 
bound of feedback signal’s transmission delays is taken into consideration. Combining theories of state feedback con-
trol and state observer, the ASC is designed and time-delay output feedback robust controller is realized for power sys-
tem. The ASC uses the input information from Phase Measurement Units (PMUs) in the system and dispatches supple-
mentary control signals to the available local controllers. The design of the ASC is explained in detail and its perfor-
mance validated by time domain simulations on a New England test power system (NETPS). 
 
Keywords: Adaptive Supervisory Controller (ASC); Delay-dependent Damping Control; Power Oscillation; IFWM; 
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1. Introduction 
WITH the deregulation of power systems, many tie lines 
between control areas are driven to operate near their 
maximum capacity, especially those serving heavy load 
centers. Stressed operating conditions can increase the 
inter-area oscillation between different control areas and 
can even break up the system. The incidents of system 
outage resulting from these oscillations are of growing 
concern. 

Over the past few decades, attention has been focused 
on designing controllers to dampen inter-area oscillations. 
The traditional method of damping inter-area oscillations 
is via the installation of power system stabilizers (PSS) 
which provide control action through the excitation con-
trol of generators[1]. Local PSSs are usually tuned based 
on several typical operating conditions of corresponding 
generators. z An inappropriate coordination among the 
local controllers may cause serious problems [2].  

It has been suggested that centralized controllers using 
wide-area signals rely on the PMUs technology[3]. 

PMUs are used to capture the power system’s dynamic 
data (e.g., voltages, currents, angles and frequency.) 
through synchronized measurements enabled by the GPS 
satellites. It has been shown that by using the remote 
signals the controller can enhance the damping of inter 
area oscillations and improve the overall dynamic per-
formance of the power system[4]. A new PSS using two 
signals, the first to dampen the local mode in the area and 
the second, global signal, to dampen inter-area modes, is 
proposed in [5].  

Application of techniques for designing robust power 
system damping controllers has been reported in the lite-
rature [6-9]. The solution to the control design problem 
based on the method of Riccati equations usually pro-
duces a controller that suffers from pole-zero cancella-
tions between the system plant and the controller [10].  

The application of the linear matrix inequality (LMI) 
approach as an alternative for damping controller design 
for PSS has been reported in [11,12]. A mixed-sensitivity 
based LMI approach has been applied to inter-area 
damping control design in [6,9]. In [9], FACTs are em-
ployed to damp inter-area oscillations. However, the cost 
of FACTs devices is quite high so that it currently re-
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stricts their wide use in power systems.  
In the controller design, signal transmission delays 

should be considered [7,8]. The delays can typically be in 
the range of 0.3 - 1.0 second[8]. As the delays are com-
parable to the time period of some of the critical in-
ter-area modes, it should be accounted for in the design 
stage to ensure satisfactory control action. 

In this paper, a wide-area adaptive supervisory con-
troller (ASC) for robust stabilization of multi-machine 
power systems is proposed. Based on the IFWM ap-
proach and networked control system (NCS) theory [13- 
16], the ASC is designed by delay-dependent stabiliza-
tion condition. In the stabilization conditions, the upper 
bound of feedback signal’s transmission delays is taken 
into consideration. The controller uses the input informa-
tion (e.g. frequency, active power) provided by conve-
niently located PMUs and dispatches control signals to 
available local controllers. A particular feature of this 
controller is that it operates in addition to existing con-
ventional PSSs and provides appropriate supplementary 
control signals only if and when needed. The perfor-
mance and robustness of the controller are validated on a 
4-generator 2-area test system. 

2. Strategy of Adaptive Supervisory Control 
A New England test power system (NETPS) is used as 
the example to analysis strategy of adaptive supervisory 
control. The model of the AVR with supplementary 
WAM signals is shown in Figure 1. In this figure, VASCi 
is the output signal of the ASC[17,18] which is added to 
the AVR of each generator together with the output sig-
nal of four generators’ local PSS. The structure of the 
ASC is shown in Figure 2. 

3. Controller Design Considering Signals 
Transmission Delay 

3.1. Modeling of NCS-Based Power system with 
Network-Induced Delay 

Consider the following linear system: 
( ) ( ) ( )x t Ax t Bu t= +               (1) 

where ( ) nx t R∈  is the state vector; ( ) mu t R∈  is the 
controlled input vector; and A and B are constant ma-
trices with appropriate dimensions. 

For convenience, we make the following assumptions 
[19]. 

Assumption 1 The NCS consists of a time-driven 
sensor, an event-driven controller, and an event-driven 
actuator, all of which are connected to a control network. 
The calculated delay is viewed as part of the net-
work-induced delay between the controller and the actu-
ator. 

Assumption 2 The controller always uses the most 

recent data and discards old data. When old data arrive at 
the controller, they are treated as packed loss. 

Assumption 3 The actual input obtained in (1) with a 
zero-order hold is piecewise constant function. 

The control network itself induces transmission delays 
and dropped data that degrade the control performance of 
the NCSs-based power system. Based on these three as-
sumptions, we can formulate a closed-loop power system 
with a memoryless state-feedback controller: 

{ }* *

( ) ( ) ( )

( ) ( ), , 1, 2,...,k k k

x t Ax t Bu t
u t Kx t t i h kτ τ

= +
 = − ∈ + =


  (2) 

 where h  is the sampling period; 1, 2,3,...k =  are the 
sequence numbers of the most recent data available to the 
controller, which are assumed not to change until new 
data arrive; ki  is an integer denoting the sequence 
number of the sampling times of the sensor 
{ } { }1 2 3, , ,... 1, 2, 3,...i i i ⊆ ; and kτ  is the delay from the 
instant ki h , when a sensor node samples the sensor data 
from the plant, to the instant when the actuator transfers 
the data to the plant. Clearly,  
         [ ) [ )1 1 1 0, ,k k k k ki h i h tτ τ∞

= + ++ + = ∞ . 
From Assumption 2, 1k ki i+ >  is always true. The 

number of data packets lost or discarded is 1 1k ki i+ − − . 
When { } { }1 2 3, , ,... 1, 2, 3, ...i i i = , no packets are dropped. 
I f  1 1k ki i+ = + ,  then 1k kh τ τ++ > ,  which include 
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Figure 1. The designed model of ith exciter using the WAMs 
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0kτ τ=  and k hτ <  as special cases. So, system (2) 
represents an NCS-based power system and takes the 
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effects of both a network-induced delay and dropped data 
packets into account. 

Below, we assume that ( ) 0u t =  before the first con-
trol signal reaches the plant, and that a constant 0η >  
exists that 

1 1( ) , 1, 2, ...k k ki i h kτ η+ +− + ≤ =        (3) 

Based on this inequality, we can rewrite NCS (2) as 

[ )

0

1 1

( )
0

( ) ( ) ( ), , ,
            1, 2, ... ,

( ) ( ) ( ),

k k k k k

A t t

x t Ax t BKx i h t i h i h
k

x t x t e tη

τ τ

η φ

+ +

− +

 = + ∈ + +


=
 = − =



 (4) 

where the initial condition function, ( )tφ , of the system 
is continuously differentiable and vector-valued. 

3.2. Delay-dependent Stability Analysis 
This section first present a new stability criterion for 
NCS (4), assuming the gain, K , is given. 

Theorem 1. Consider NCS (4), given a scalar 0η > , 
the system is asymptotically stable if there exist matrices 

0, 0, 0,P Q Z> ≥ >  and 11 12

13

0
*

X X
X

X
 

= ≥ 
 

, and any 

appropriately dimensioned matrices 1

2

N
N

N
 

=  
 

 and 

1 2

TT TM M M =    such that the following matrix in-
equalities hold: 

11 12 1

22 2* 0,
* * 0
* * *

T

T T

M A Z

M K B Z
Q

Z

φ φ η

φ ηφ

η

 −
 

− = < − 
 − 

      (5) 

1 0,
*
X N

Z
 

Ψ = ≥ 
 

              (6) 

2 0,
*
X M

Z
 

Ψ = ≥ 
 

              (7) 

where 
11 1 1 11

12 1 2 1 12

13 2 2 2 2 22

,

,

.

T T

T

T T

PA A P Q N N X

PBK N N M X

N N M M X

φ η

φ η

φ η

= + + + + +

= − + + +

= − − + + +

 

Proof. Choose the Lyapunov-Krasovskii functional 
candidate to be: 

0

( ) ( ) ( ) ( ) ( )

           ( ) ( ) ,

tT T
t t

t T
t

V x x t Px t x s Qx s ds

x s Zx s dsd

η

η θ
θ

−

− +

= +

+

∫

∫ ∫  
       (8) 

where 0, 0,P Q> ≥  and 0Z >  are to be determined. 
From the Newton-Leibnitz formula, the following 

equations are true for any matrices 1 2

TT TN N N =    and 

1 2

TT TM M M =    with appropriate dimensions: 

0 2 ( ) ( ) ( ) ( ) ,
k

tT
k i h

t N x t x i h x s d sς  = − −  ∫       (9) 

0 2 ( ) ( ) ( ) ( ) ,ki hT
k t

t M x i h x t x s d s
η

ς η
−

 = − − −  ∫     (10) 

where ( ) ( ), ( )
TT T

kt x t x i hς  =   . On the other hand, for 

any matrix 11 12

22

0,
*
X X

X
X

 
= ≥ 
 

 the following equation 

holds: 
0 ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( )k

k

t tT T
t t

t i hT T T
i h t

t X t ds t X t ds

t X t t X t d s t X t d s

η η

η

ς ς ς ς

ης ς ς ς ς ς

− −

−

= −

= − −

∫ ∫

∫ ∫
 

(11) 
In addition, the following equation is also true 

( ) ( ) ( ) ( ) ( ) ( )k

k

t t i hT T T
t i h t

x s Zx s ds x s Zx s ds x s Zx s ds
η η− −

− = − −∫ ∫ ∫       

(12) 
Calculating the derivative of  ( )tV x  along the solu-

tions of system (4) for [ )1 1,k k k kt i h i hτ τ+ +∈ + + , adding 
the right sides of (9)-(11) to it, and using (12) yield 

( ) 2 ( ) ( ) ( ) ( ) ( ) ( )

           ( ) ( ) ( ) ( )

2 ( ) ( ) ( ) ( ) ( ) ( )

           ( ) ( ) ( ) ( ) ( ) ( )

2

k

k

T T T
t

tT T
t

T T T

t i hT T T
i h t

T

V x x t Px t x t Qx t x t Qx t

x t Zx t x t Zx t ds

x t Px t x t Qx t x t Qx t

x t Zx t x s Zx s ds x s Zx s ds

η

η

η η

η

η η

η

ς

−

−

= + − − −

+ −

= + − − −

+ − −

+

∫

∫ ∫

 

   



     

1 1 2 1 2

2 2 2

( ) ( ) ( ) ( )

2 ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( )

ˆ( ) ( ) ( , ) ( , )

         ( , ) ( , )

k

k

k

k

k

k

t
k i h

i hT
k t

t i hT T T
i h t

tT T
i h

i h T
t

t N x t x i h x s d s

t M x i h x t x s d s

t X t t X t d s t X t d s

t t t s t s d s

t s t s d s

η

η

η

ς η

ης ς ς ς ς ς

ξ φξ ξ ψ ξ

ξ ψ ξ

−

−

−

 − −  
 + − − −  

+ − −

= −

−

∫

∫

∫ ∫

∫





,∫

 

(13) 
where 

11 12 1

22 2

1

2

ˆ * ,
* *

( ) ( ), ( ), ( ) ,

( , ) ( ), ( ) .

T T

T T

TT T T
k

TT T

A ZA A ZBK M

K B ZBK M
Q

t x t x i h x t

t s t x s

φ η φ η

φ φ η

ξ η

ξ ς

 + + −
 

= + − 
 −  

 = − 

 =  

 

Thus, if 0, 1, 2,i iψ ≥ =  and ˆ 0φ < , which is equiva-
lent to (5) by the Schur complement, then ( )tV x <  

2( )x tε−  for a sufficiently small 0ε > , which guaran-
tees that system (4) is asymptotically stable. This com-
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pletes the proof. 
When 0M = and Q Iε=  (where 0ε >  is a suffi-

ciently small scalar), the following corollary readily fol-
lows from Theorem 1. 

Corollary 1 Consider NCS (4), given a scalar 0η > , 
the system is asymptotically stable if there exist matrices  

0, 0,P Z> >  and 11 12

22

0
*
X X

X
X

 
= ≥ 
 

, and any appro-

priately dimensioned matrix 1

2

N
N

N
 

=  
 

 such that ma-

trix inequality (6) and the following one hold: 

11 12

22* 0,
* *

T

T T

A Z

K B Z
Z

η

η
η

 Ξ Ξ
 

Ξ = Ξ < 
 −  

         (14) 

where 
11 1 1 11

12 1 2 12

22 2 2 22

,

,

.

T T

T

T

PA A P N N X

PBK N N X

N N X

η

η

η

Ξ = + + + +

Ξ = − + +

Ξ = − − +

 

3.3. Design of State Feedback Controller 
Theorem 1 is extended to the design of a stabilization 
controller with gain K  for system (4). 

Theorem 2. Consider NCS (4), for a given scalar 
0η > , if there exist matrices 0, 0, 0,L W R> ≥ >  and  

11 12

22

0,
*

Y Y
Y

Y
 

= ≥ 
 

and any appropriately dimensioned 

matrices 1 2 1 2,
T TT T T TS S S T T T   = =    , and V  such 

that the following matrix inequalities hold: 

11 12 1

22 2* 0,
* * 0
* * *

T

T T

T LA

T V B
W

R

η

η

η

 Ξ Ξ −
 

Ξ − Ξ = < − 
 − 

      (15) 

1 1 0,
*

Y S
LR L−

 
Π = ≥ 

 
          (16) 

2 1 0,
*

Y T
LR L−

 
Π = ≥ 

 
          (17 

where 
11 1 1 11

12 1 2 1 12

22 2 2 2 2 22

,

,

.

T T

T

T T

AL LA W S S Y

BV S S T Y

S S T T Y

η

η

η

Ξ = + + + + +

Ξ = − + + +

Ξ = − − + + +

 

then the system is asymptotically stable, and 1K VL−=  
is a stabilizing controller gain. 

Proof. Pre-and post-multiply φ  in (5) by diag 
{ }1 1 1 1, , ,P P P Z− − − − , and pre- and post-multiply 

, 1, 2,i iψ =  in (6) and (7) by diag { }1 1 1, ,P P P− − − . Then, 
make the following changes to the variables: 

{ } { }

1 1

1 1 1 1

, , ,
, , 1, 2,

, , , .
i i i i

L P R Z V KL
S LN L T LM L i

W LQL Y diag P P X diag P P

− −

− − − −

= = =
= = =

= = ⋅ ⋅

 

These manipulations yield matrix inequalities (15)- 
(17). This completes the proof. 

Note that the conditions in Theorem 2 are no longer 
LMI conditions due to the term 1LR L−  in (16) and (17). 
Thus, that cannot use a convex optimization algorithm to 
obtain an appropriate gain matrix, K , for the state- 
feedback controller. This problem can be solved by using 
the idea for solving a cone complementarity problem 

[20]. 
Define a new variable, U, for which 1LR L U− ≥ ; and 

let 1 1, ,P L H U− −= = and 1Z R−= . Now, we convert the 
nonconvex problem into the following LMI-based nonli-
near minimization problem: 

Minimize { }Tr LP UH RZ+ +  
Subject to (15) and 

0, 0, 0,
* * *

0, 0, 0.
* * *

Y S Y T H P
U U Z

L I U I R I
P H Z

     
≥ ≥ ≥     

     

      ≥ ≥ ≥          

     (18) 

We use the ICCL algorithm to obtain maxη  and 
optimalK  for power systems because of its advantages. 
Algorithm. 
 Step1: Choose a sufficiently small initial 0η > , 

such that there exists a feasible solution to (15) and (18). 
Set a specified number of iterations N. 
 Step2:Find a feasible set of values  satisfying (15) 

and (18), 0 0 0 0 0 0( , , , , , , , , , , )P L W S T Y Z R U H V  .Set 
0k =  
 Step3: Solve the following LMI problem for the va-

riables , , , , , , , , , , ,P L W S T Y Z R U H V  and K : 
Minimize { }k k k k k kTr LP L P UH U H RZ R Z+ + + + +  
Subject to (15) and (18). 
Set 1 1 1 1 1, , , , ,k k k k kP P L L U U H H R R+ + + + += = = = =  

and 1kZ Z+ = . 
 Step4: For the K  obtained in step 3, if LMIs (15) 

and (18) are feasible for the variables , , , , ,P Q Z N M  
and X , then set maxη η= , increase η , and return to 
Step 2. If LMIs (5)-(7) are infeasible and without a spe-
cified number of iterations, then exit. Otherwise, set 

1k k= +  and go to Step 3. 
Figure 3 shows the flowchart of nonlinear iterative 

optimization algorithm for the state feedback controller 
design. This condition and nonlinear iterative optimiza-
tion algorithm, which has an improved stop condition, 
are used to design a state-feedback networked controller. 
But the operating state variables of wide-area power sys-
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tem cannot be completely observed, it is necessary to use 
measurable states. Here, combining theories of state 
feedback control and state observer, the ASC is designed 
and time-delay output feedback robust control is realized 
for power system[21]. 

4. Study System 
The New England test power system (NETPS) which 
consists of ten synchronous units in the system connected 
by weak tie-lines is shown in Figure 4[22]. This system 
is considered to be one of the benchmark models for 
performing studies on inter-area oscillations because of 
its realistic structure and availability of system parame-
ters.  

To validate the designed robust controller, the follow-
ing disturbances were considered:  

Case 1:  A 2-phase fault at one of the lines between 
buses 6-11 followed by successful auto-reclosing of the 
circuit breaker after 4 cycles; 

Case 2:  A 3-phase fault at one of the lines between 
buses 6-11 followed by successful auto-reclosing of the 
circuit breaker after 4 cycles; 
 

Y

N

{ }k k k k k kTr LP L P UH U H RZ R Z+ + + + +

0η >

0kη η=

0 0 0 0 0 0( , , , , , , , , , , )P L W S T Y Z R U H V

η∆

Minimise 
Subject to  (15) and (18)
Set

Find a feasible set of  values  stasfiying (15) and 
(18) :
and then set k=0

 Input matrix A and B
 Set iteration nunber N and step
 Choose a small initial values

1k k= +

1k kη η η+ = + ∆

Satisfy (15) and (18)? k<=N?

Stop

                      ?

1 1 1 1

1 1

, , , ,

,
k k k k

k k

Set P P L L U U H H
R R and Z Z

+ + + +

+ +

= = = =

= =

Output the required state feedback controller

maxkη η=

Y

Y

N

 
Figure 3. Flowchart of nonlinear iterative optimization al-
gorithm. 

5. Simulation Results 
To validate the performance and robustness of the pro-
posed control scheme involving ASC, simulations were 
carried out corresponding to the probable fault scenarios 
in the test system. If no time delay was considered, the 
simulation results were given in [17,18]. In each of the 
two cases, the total time delay for the feedback signals to 
arrive at the controller, then for the controller to send the 
signals to AVRs is 0.5 seconds. 

5.1. Case 1 
The rotor speed difference responses of multi-machine 
power system following a 2-phase fault are shown in 
Figures 5 and 6. 

5.2. Case 2 
The rotor speed difference responses of multi-machine 
power system following a 3-phase fault are shown in 
Figures 7 and 8. 
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Figure 4. The New England test power system. 
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Figure 5. Rotor speed difference response of G3 and G4 
following a 2-phase fault. 
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Figure 6. Rotor speed difference response of G2 and G3 
following a 2-phase fault. 
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Figure 7. Rotor speed difference response of G3 and G4 
following a 3-phase fault. 
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Figure 8. Rotor speed difference response of G2 and G3 
following a 3-phase fault. 
 

6. Conclusions 
A wide-area adaptive supervisory controller (ASC) for 
the robust stabilization of multi-machine power systems 
accounting for the time delays of feedback signals from 
remote locations is proposed. This paper first uses the 
IFWM approach to establish an improved stability condi-
tion for NCSs-based power system that does not ignore 
any terms in the derivative of the Lyapunov-Krasovskii 

functional, but rather considers the relationships among a 
network-induced delay, its upper bound, and the differ-
ence between them. This condition and an ICCL algo-
rithm, which has an improved stop condition, are used to 
design a state-feedback networked controller. Combining 
theories of state feedback control and state observer, the 
ASC is designed and time-delay output feedback robust 
control is realized for power system. With the control of 
the ASC, the system oscillations reduce considerably. 
Additionally, the ASC ensures system stability even in 
the case of cascading faults. 
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