

Energy Audit of a Brewery—A Case Study of Vitamalt Nig. Plc, Agbara

Olugbenga Olanrewaju Noah¹, Albert Imuentinyan Obanor², Mohammed Luqman Audu³

¹Department of Mechanical Engineering, University of Lagos, Lagos, Nigeria ²Department of Mechanical Engineering, University of Benin, Benin, Nigeria ³Department of Mechanical Engineering, Auchi Polytechnic, Benin, Nigeria Email: noaholugbenga@gmail.com, {aiobanor, auduluqman}@yahoo.com

Received May 15, 2011; revised June 17, 2011; accepted July 2, 2011

ABSTRACT

The efficient use of energy is of prime importance in all sector of the economy. Energy cost is a significant factor in economic activity on par with factors of production like capital, land and labor [1]. The imperative of an energy shortage situation calls for energy conservation measure, which essentially means using less energy for the same level of activity. A comprehensive energy audit of Vitamalt Nigeria Plc, Agbara was carried out using portable thermal and electrical instruments with the objective of studying the present pattern of energy consumption and identifying the possibilities of saving energy in the plant. Collected, was a five year (2000-2004) data on energy consumption of Vitamalt Nig. Plc. The data were evaluated and analyzed to determine the present energy performance level of the firm. A complete energy balance of the factory was carried out to relate energy input, conversion efficiency with production output in order to identify areas of energy wastages/losses and savings that can be achieved. Energy performance parameters such as Energy intensity, Energy productivity and Normalized performance indicator (NPI) were used as a measure of assessing the energy performance of the plant. The NPI calculated over the span of five years gave an average of 1.2 GJ/m² indicating a FAIR range in energy performance level classification (1.0 - 1.2) while significant savings and improvement in energy usage is achievable. Maximizing efficiency of existing system, optimizing energy input requirement and significant capital investment in procuring new energy conserving equipment must be made for the energy performance level to fall into a good range classification (less than 0.8).

Keywords: Efficiency; Energy Intensity; Energy Productivity; Cost of Energy Input

1. Introduction

The advent of high crude oil prices resulted in a global energy crisis leading to huge cost in generating power, running of boilers and internal combustion engines, necessitating a need for energy management by industrial sector for efficient energy use, maximization of profit and enhanced competitive position [2].

Energy audit concept is a measure of the efficiency of energy utilization in a manufacturing process, thus leading to interest in energy performance of machines and plants directly associated with production process [3]. It is important to account for total consumption, cost and how energy is used for each commodity such as steam, water, air and natural gas. Attention is focused by Energy managers on how to reduce energy consumption per unit of production. To obtain best possible savings, good audit and survey must be carried out. An energy audit helps in energy cost optimization, pollution control, safety aspects and suggests the methods to improve the operating and maintenance practices of the system. Energy Audit attempts to balance the total energy inputs with its use and serves to identify all the energy streams in the systems and quantifies energy usages according to its discrete function [4]. Proper maintenance helps conserve energy by keeping operational efficiencies at their best level.

Energy Surveys and audit are carried out to investigate ways employees can save energy and to identify areas that require high level of energy efficiency. Data were collected for a period of five years (2000-2004) on energy performance of Vitamalt Nig. Plc, Agbara and the analysis has been carried out.

2. Materials and Method

The factory has a total floor area $19,146 \text{ m}^2$ and a treated floor area of 12813.57 m^2 . The Company's primary source of power supply is the Power Holding Company of Nigeria (PHCN) and 2 giant generating sets as back-up. It has two fire-tube (shell) boilers that uses gas and black oil (low pour fuel oil) as its source of energy, some equip-

ment/machines e.g. pumps, motors, and compressor that uses electricity as their source of energy. Portable test equipment like the flow meter, infrared thermocouple, manometer and multimeter were used in determining flow rates, temperature and electrical readings. The following data were collected:

- Electricity, diesel, and gas consumed per month over a 5 years period;
- Production rate of the Company per month over a 5 years period;

- Number of working hour per day;
- Number of occupancy (shift) per day;
- Floor area of the factory;
- Power rating of all machines/equipment powered by electricity.

All data were presented in tabular and graphical forms as seen in **Tables 1-5** and **Figures 1-5**.

Percentage Energy of Electricity and Fuel (diesel, black oil and gas) consumption were obtained for the 5 years period which can be seen in **Table 8**.

MONTH ELECTRICITY (NEPA)		GEN. SET FUE	EL (DIESEL)	BOILER	R (LPFO)	PRODCTION	
MONTH	kwh	GJ	vol. (ltr)	GJ	vol. (ltr)	GJ	CARTONS
JAN	86.930	312.948	20.920	847	192.050	7854.845	157.693
FEB	83.690	301.284	37.520	1.520	270.321	11056.129	164.496
MAR	91.920	330.912	23.012	932	249.520	10205.368	175.983
APR	88.690	319.284	31.205	1.264	189.206	7738.5254	140.114
MAY	89.120	320.832	28.084	1.137	215.221	8802.5389	180.391
JUN	87.690	315.684	35.665	1.444	188.765	7720.4885	170.281
JUL	91.260	328.536	20.803	843	179.510	7341.959	152.228
AUG	71.520	257.472	53.337	2.160	271.020	11084.718	165.396
SEP	75.265	270.954	60.611	2.455	257.150	10517.435	160.754
OCT	76.030	273.708	51.123	2.070	290.210	11869.589	146.162
NOV	108.540	390.744	48.564	1.967	263.821	10790.279	180.379
DEC	74.540	268.344	32.760	1.327	261.590	10699.031	175.211
TOTAL	1025.195	3690.702	443.604	17.966	2828.384	115680.91	1969.088

Table 1. Energy consumption and production output (2000).

Table 2. Energy	consumption	and production	output (2001).
			L (/

MONTH	ELECTRIC	ITY (NEPA)	GEN. SET FUI	EL(DIESEL)	BOILEI	R (LPFO)	PRODUCTION
MONTH -	kwh	GJ	vol. (ltr)	GJ	vol. (ltr)	GJ	ctns
JAN	110.284	397.0224	40.845	1.654	311.250	12730.125	141.539
FEB	74.180	267.048	37.520	1.520	223.930	9158.737	138.472
MAR	108.300	389.88	63.273	2.563	232.240	9498.616	136.911
APR	81.220	292.392	60.730	2.460	251.135	10271.422	140.124
MAY	104.420	375.912	67.045	2.715	263.480	10776.332	141.672
JUN	104.260	375.336	55.300	2.240	281.891	11529.342	142.390
JUL	95.010	342.036	57.005	2.309	215.120	8798.408	139.643
AUG	90.920	327.312	29.765	1.205	172.510	7055.659	135.098
SEP	92.200	331.92	32.990	1.336	172.510	7055.659	139.641
OCT	118.220	425.592	32.940	1.334	188.867	7724.6603	142.421
NOV	116.140	418.104	11.224	455	193.201	7901.9209	145.007
DEC	118.731	427.4316	34.636	1.403	260.410	10650.769	155.550
TOTAL	1213.885	4369.986	523.273	21.193	2766.544	113151.65	1698.468

Table 3. Energy consumption and production output 2002.

MONTH	ELECTRICITY (NEPA)		GEN. SET FU	EL(DIESEL)	BOILE	BOILER (LPFO) PRO	
MONTH	kwh	GJ	vol. (ltr)	GJ	vol. (ltr)	GJ	ctns
JAN	116.924	420.9264	4.250	172	30.873	1262.7057	100.75
FEB	119.600	430.56	30.130	1.220	207.038	8467.8542	136.764
MAR	118.630	427.068	26.580	1.076	175.425	7174.8825	134.631
APR	121.280	436.608	44.219	1.791	179.602	7345.7218	135.125
MAY	119.350	429.66	45.000	1.823	220.245	9008.0205	138.113
JUN	112.680	405.648	8.010	324	194.836	7968.7924	129.843
JUL	129.610	466.596	9.270	375	72.457	2963.4913	110.536
AUG	139.870	503.532	985	40	126.770	5184.893	132.590
SEP	116.100	417.96	8.600	348	109.629	4483.8261	128.319
OCT	262.922	946.5192	49.077	1.988	193.300	7905.97	133.354
NOV	332.671	1197.6156	49.197	1.992	125.271	5123.5839	141.109
DEC	277.220	997.992	43.128	1.747	191.936	7850.1824	132.764
TOTAL	1966.857	7080.6852	318.446	12.897	1827.382	74739.924	1319.927

O. O. NOAH ET AL.

Ta	abl	e 4 .	Energy	consumption	and	production	output	(2003).
			·					< /

	ELECTRICITY (NEPA)		GEN SET FUE	FL (DIESEL)	BOIL FR	(IPEO/GAS)	PRODUCTION
MONTH -	LEECINIC		OEN: DETTO		DOILLER		пкорестной
	kwh	GJ	vol. (ltr)	GJ	vol. (ltr)	GJ	cartons
JAN	364,677	1312.8372	51,430	2083	145,822	5294.65	301,486
FEB	263,461	948.4596	45,777	1854	42,442	1681.76	295,723
MAR	277,188	997.8768	24,400	988	106,613	4125.9231	288,946
APR	310,311	1117.1196	6570	266	78,347	3032.0289	290,110
MAY	301,817	1086.5412	19,465	788	95,547	3697.6689	320,228
JUN	310,116	1116.4176	30,355	1229	74,373	2878.2351	319,520
JUL	261,449	941.2164	24,540	994	81,091	3138.2217	305,054
AUG	226,369	814.9284	40,900	1656	86,931	3364.2297	298,760
SEP	271,425	977.13	24,540	994	65,851	2548.4337	299,459
OCT	216,497	779.3892	60,825	2463	96,150	3721.005	302,428
NOV	317,885	1144.386	32,775	1327	96,456	3732.8472	318,230
DEC	251,872	906.7392	63,210	2560	110,264	4267.2168	310,734
TOTAL	3,373,067	12143.041	424,787	17,204		41482.22	3,650,678

Table 5. Energy consumption and production output (2004).

MONTH	ELECTRIC	ITY (NEPA)	GEN. SET FUI	EL(DIESEL)	BOILE	R (GAS)	PRODUCTION
MONTH	kwh	GJ	vol. (ltr)	GJ	vol. (ltr)	GJ	ctns
JAN	310,987	1119.5532	83,455	3,380	122,935	4757.5845	284,741
FEB	193,810	697.716	36,850	1,492	50,332	1947.8484	283,670
MAR	184,436	663.9696	29,960	1,213	47,372	1833.2964	287,532
APR	218,332	785.9952	40,196	1,628	84,329	3263.5323	288,753
MAY	196,476	707.3136	58,162	2,356	144,988	5611.0356	286,470
JUN	190,764	686.7504	42,370	1,716	80,536	3116.7432	261,985
JUL	183,147	659.3292	44,300	1,794	38,676	1496.7612	279,553
AUG	189,241	681.2676	39,159	1,586	87,610	3390.507	284,043
SEP	254,016	914.4576	40,297	1,632	82,230	3182.301	288,411
OCT	240,683	866.4588	41,011	1,661	93,735	3627.5445	286,023
NOV	209,169	753.0084	40,985	1,660	98,858	3825.8046	289,642
DEC	302,039	1087.3404	51,279	2,077	145,560	5633.172	280,649
TOTAL	2,673,100	9623.16	548,024	22,195	1,077,161	41686.131	3,401,472

15000 Consumption [GJ] 10000 Boiler(diesel) Gen.Set(dies 5000 0 JUN JUL AUG SEP OCT NOV DEC JAN FEE MAR APR MAY Month (a) 3% 15% Electricity Gen. Set 6 82% (b)

Figure 1. (a) Monthly energy consumption (2000); (b) Total energy inputs (2000).

Figure 2. (a) Monthly energy consumption (2001); (b) Total energy inputs (2001).

Figure 3. (a) Monthly energy consumption (2002); (b) Total energy inputs (2002).

Figure 4. (a) Monthly energy consumption (2003); (b) Total energy inputs (2003).

Figure 5. (a) Monthly energy consumption (2004); (b) Total energy inputs (2004).

Energy performance parameters such as Energy intensity, Energy productivity and Normalized performance indicator (NPI) are useful yardstick to assess the energy performance level of the company [5].

2.1. Energy Intensity

This is the ratio of the energy consumed per year in GJ to the floor area of the Factory in square meters.

Intensity of Energy $(GJ/m^2) = \frac{\text{Total Energy Consumed}(GJ)}{\text{Treated Floor Area}(m^2)}$

This was calculated for a 5 years period (2000-2004) and a summary presented in **Table 6**. Average Energy Intensity over the 5 years (2000-2004) was 7.852 GJ/m².

2.2. Energy Productivity

This is the total energy consumed per unit of production.

 $Energy Productivity(MJ/ctn) = \frac{Total Energy Consumed(MJ)}{Output or unit of production(ctn)}$

Average Energy Productivity for the 5 years period (2000-2004) was 52.14 MJ/ctn (See **Table 6**).

2.3. Cost of Energy Input into Unit Production

This is the cost of energy to produce a unit product.

Cost of Energy Input = $\frac{\text{Total Energy Cost}}{\text{Total Energy}} \times \text{Energy Productivity}$

Cost of Energy for different energy sources utilized in the plant were summed together to obtain the Total Energy cost. Values of Cost of Energy input for the five years (2000-2004) are given in **Table 6**. Average Cost of Energy input/Product was N34.72/carton for the five year period.

2.4. Normalized Performance Indicator (NPI)

Performance Indicators are values of energy consumption which can be used to indicate whether the actual consumption is low or high relative to similar typical building. It is expressed as the total annual site energy consumption for a building per unit treated floor area and multiplied by the hour of use factor. Value obtained is compared with standard NPI value quoted by the Energy Efficiency Office [6,7] for such factory. If a building is rated as "good", then a further investigation may be required unless there are no obvious areas of improvement.

$$NPI = \frac{\text{Total Energy Consumed}}{\text{Total Floor Area}(m^2)} \times \text{ hours of use factor}$$

Average Normalizes Performance Indicator over 5 years period (2000-2004) was 1.2 GJ/m² which is rated as fair for the factory size. NPI values calculated for the five years are summarized in **Table 6**.

EPE

A line graph was used to express the trend and also to compare the different energy efficiency performance Parameters for the 5 years period as can be seen in **Figure 6**.

3. Discussion of Result

Results obtained from analysis were based on data provided by the company and those taken using measuring equipment. Total energy consumed per annum was on a decline from 137.4 GJ in year 2000 to 71.4 GJ in 2003 and a slight increase in 2004. This decline is attributed to change in boiler fuel. Total energy cost per annum which was expected to drop due to decline in energy consumed was on the contrary as there was an increase from N60.1 million in year 2000 to N96.9 million in 2004. This energy cost increase was due to yearly increase in electricity unit charge by the main power supplier PHCN. A summary of total energy consumed, percentages and cost are presented in **Tables 7-10** and **Figure 7**.

Table 6. Energy efficiency performance result of the factory.

ENERGY PERAMETERS	2000	2001	2002	2003	2004	Average
Total Energy Consumed (GJ)	137337.61	125983.22	94717.61	71441.19	73504.29	100596.78
Production Output (Mctn)	1.969	2.351	2.196	3.651	3.401	2.71
Energy Intensity (GJ/m2)	10.72	9.83	7.39	5.58	5.74	7.852
Energy Productivity MJ/ctn	67.75	80	71.76	19.57	21.61	52.14
Cost of Energy Input/Product (ctn) (N)	29.64	44.12	49.47	21.99	28.48	34.74
Normalized Performance Indicator GJ/m2	1.36	1.37	1.29	1.04	1	1.2

Table 7. Summary	' of	total	energy	consumed.	•
------------------	------	-------	--------	-----------	---

Year/Energy	2000 (GJ)	2001 (GJ)	2002 (GJ)	2003 (GJ)	2004 (GJ)
Electricity	3690.702	4369.986	7080.69	12143.041	9623.16
LPFO	115680.91	102880.23	74739.92	5294.65	-
AGO	17,966	18,733	12,897	17,204	22,195
Gas	-	-	-	36188.36	41686.131
Total	137337.612	125983.22	94717.61	71441.191	73504.29

Table 8. Summary of percentage energy consumption.

	ENERGY CONSUMPTION						
YEAK	Electricity (%)	LPFO/Natural Gas (%)	AGO (%)				
2000	2.69	84.23	13.08				
2001	3.47	81.66	14.87				
2002	7.48	78.90	13.62				
2003	17.00	8.27/50.65	24.08				
2004	13.09	56.71	30.20				
Avg. (2000-2004)	8.75	72.08	19.17				

Table 9. Energy cost.

Year	Electricity (N)	LPFO (N)	AGO (N)	Natural Gas	Total
2000	7,135,805	39,597,376	13352480.40		60,085,662
2001	8111212.02	44,264,704	17111027.10		69486943.12
2002	19513241.38	32,892,876	12897063.00		65303180.38
2003	32581623.99	2,624,796	24212859.00	20848971.31	80268250.30
2004	25,394,450		33977488.00	37485544.31	96,857,482
Average	18,547,267	38,918,319	20310183.50	29167257.81	74,400,304

Table 10. Summary of percentage energy cost.

YEAR	ENERGY COST		
	Electricity (%)	LPFO/Natural Gas (%)	AGO (%)
2000	12.88	61.90	25.22
2001	12.67	59.70	27.63
2002	30.88	46.37	22.75
2003	41.59	25.24	33.17
2004	26.63	35.64	37.73
Avg. (2000-2004)	24.93	44.77	29.3

Figure 7. Percentage energy cost (2000-2004).

In the year 2004, the Company's boilers were completely fired by natural gas and the use of LPFO was phased out due high cost of the product. Consumption information for the year 2004 is presented in a Sankey diagram as illustrated in **Figure 8**.

The company looses N1.4 million worth of fuel annually to increase in blowdown rate. This was due to inappropriate feed water treatment resulting into high level of TDS present in the feedwater. A saving of N1.2 million will be achieved in fuel cost annually by raising boiler efficiency to 75.3% as calculated if all losses are reduced and an economizer is incorporated. Further saving of N1.6 m worth of fuel can also be made annually if the level of water treatment is improved upon and the proportion of returned condensate is increased thereby reducing the rate of blowdown. An average saving of N0.3 million can be realized if the firm reduces her compressed air discharge pressure by 10% as calculated to meet actual production requirement. Substantial cost in power consumption can be made if obsolete and nonefficient electric motors and pumps are replaced with modern, effective and less energy rated ones.

Figure 8. Sankey diagram for energy account in 2004.

The Normalized Performance Indicator (NPI) values calculated for the five years gave an average of 1.2 GJ/m², this indicated a "fair" range which implies an average performance [8] while significant savings and improvement in energy usage is achievable. There is room for improvement to a satisfactory and good classification range.

4. Conclusions

Based on the energy efficiency study carried out on Vitamalt Nigeria Plc, Agbara, the following conclusions were arrived at:

1) For a treated floor area of 12813.57 m^2 over a fiveyear period (2000-2004), average annual energy consumption was 100596.78 GJ was obtained.

2) This consumption was made up of Electricity-8.75%, LPFO/Natural Gas—72.08% and diesel fuel—19.17% while in terms of energy cost, electricity, LPFO/Gas and diesel accounted for 24.93%, 45.76% and 29.3% respectively.

3) Average annual production output (million cartons) for the five years studied was 2.407 while the NPI (normalized performance Indicator) for the factory in GJ/m^2 was 1.2 which is in the "fair" range indicating that there is still room for improvement [9] in terms of energy utilization and savings.

4) Average Intensity of energy (GJ/m2) was 7.852 while average energy productivity in (MJ/ctn) was 52.14 as seen in **Table 6**.

5) The Average cost of energy input/product was calculated to be N34.74/carton with a lowest value of N21.99/ctn in year 2003.

6) The average cost of annual energy consumption was N74.40 million while an average yearly savings on fuel in boiler, improved feedwater quality, reduction in compressed air pressure and improved boiler efficiency to 75.3% would amount to N4.3 million.

7) Other factors that must be critically looked into are:

- Install electric meters in major production and administrative units tomonitor/curtail power wastages in each unit thereby reducing energy cost on power;
- Improve boiler feedwater quality to eliminate cost incurred in extra blowdown;
- Raise boiler efficiency by reducing flue gas losses and other losses;
- Reduce steam leakages along pipelines and improve lagging of steam pipes;
- Procurement of test equipment for energy monitoring in the factory;
- Good maintenance and control must be put in place in order to improve the energy performance of the factory and rating to "good";
- Motivation for energy conservation among workers;
- Significant capital investment should be made in replacement of inefficient energy consuming equipment to reduce the energy consumption.

5. Acknowledgements

Our acknowledgement goes to the Management and Staff of Vitamalt Nig. Plc for the opportunity given to us to conduct the energy survey research work in their factory.

REFERENCES

[1] Petroleum Conservation Research Association, "What Is

Energy Audit," 2004.

www.pcra.org/english/aboutus/default.htm

- [2] Microsoft Corporation Encarta Premium Suite, 2004. http://encarta.msn.com/
- [3] P. O. Aiyedun and O. B. Ologunye, "Energy Efficiency of a Private Sector with Cadbury Nigeria Plc., Ikeja, Lagos as a Case Study," *Nigeria Society of Engineers Technical Transaction*, Vol. 36, No. 2, 2001, pp. 59-63.
- [4] C. O. Ojo, "Energy Audit of a Refinery—Case Study of Port-Harcourt Refining Company," Master's Thesis, University of Benin, Benin, 1995.
- [5] Chartered Institution of Building Services, "CIBS Building Energy Code Part 4, Measurement of Energy Consumption and Comparison with Targets for Existing Buildings and Services," Chartered Institution of Building Services, London, 1982.
- [6] The Construction Information Service, "Energy Audit for Industries," Building Research Energy Conservation Support Unit, Department of Energy, Watford, 1993.
- [7] The Construction Information Service, "Economic Use of Gas-Fired Boiler Plant," Building Research Energy Conservation Support Unit, Department of Energy, Watford, 1979.
- [8] Chartered Institution of Building Services, "CIBS Building Energy Code Part 2, Measurement of Energy Consumption and Comparison with Targets for Existing Buildings and Services," Chartered Institution of Building Services, London, 1984.
- [9] D. K. Hale, D. Vincent and P. T. Clarke, "The Industrial Energy Thrift Scheme, Department of Industry, Energy Unit," National Physical Laboratory, Middlesex, 1979.