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Abstract 
 
In power systems, the Hopf bifurcation (HB) can occur before the saddle-node bifurcation (SNB) and be-
comes one of main reasons of voltage instability and collapse, so the bifurcation control for HB has impor-
tant significance in improving power system voltage stability. In this paper, the numerical bifurcation analy-
sis software MATCONT was used to study bifurcation behavior of a single-machine dynamic-load (SMDL) 
system with SVC, and the simulation analysis results show that a unstable Hopf bifurcation (UHB) point oc-
curring before SNB point and engendering potential harm to voltage stability. To delay or eliminate the UHB 
phenomenon and enhance voltage stability of the SMDL system with SVC, we designed a sliding mode 
variable structure controller. The switching function and control variables of the controller are clearly de-
scribed and the derivations are directly provided in detail in this paper. The MATLAB simulation results 
prove that the designed controller can eliminate the UHB point effectively and ensure safe and stable opera-
tion of the system. 
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1. Introduction 
 
With many voltage instability and collapse accidents 
occurred in the last 30 years, voltage stability problem 
has been drawn extensive attention and become a hot 
spot in power system research. Power systems are com-
plex nonlinear dynamic systems in essence, therefore, the 
bifurcation theory of nonlinear dynamics has been 
widely used for studying power system voltage stability 
problem. Now, saddle-node bifurcation (SNB), limit in-
duced bifurcation (LIB), Hopf bifurcation (HB) and sin-
gularity induced bifurcation (SIB) are generally consid-
ered to be the main bifurcation types that cause voltage 
instability and collapse in power systems. HB is one of 
the typical dynamic bifurcations, when it occurs, the 
system will produce periodic oscillations which lead to 
voltage collapse finally. The past researches show that 
the HB can occur before the SNB and becomes one of 
main reasons that lead to voltage instability and collapse 
in power systems [1-5]. Obviously, the bifurcation con-

trol aiming at the HB has important significance in im-
proving voltage stability. 

Sliding mode variable structure control (SMVSC) is a 
kind of nonlinear variable structure control strategy, it 
can act purposefully in the dynamic process according to 
the current state of the system (such as state variable 
deviation and its derivative, etc.), which forces the sys-
tem moving according to the state trajectory of the ex-
pected ‘sliding mode’. There is no need to design an ac-
curacy object model and online identification system for 
SMVSC, and with the advantages of fast response and 
being physically implemented easily, when the system 
comes into sliding mode motion, it is almost unacted on 
parameters change and external disturbances. Therefore, 
SMVSC has a good adaptability and robustness [6,7]. 

In power system bifurcation analysis, when the HB 
occurs, the power system has to take a short time to os-
cillate before the voltage collapse occurs, and at the same 
time, SMVSC can make the trajectory of the system 
reach the designed manifold quickly, and slid the stable 
equilibrium point. Based on the above analysis, we can 
realize the control aiming at the HB by using SMVSC 
method in power systems. 
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2. System Model and Bifurcation Analysis 
 
2.1. Power System Model 
 
A classical single-machine dynamic-load (SMDL) sys-
tem model was proposed to study voltage stability prob-
lem in [8,9]. To delay saddle-node bifurcation and im-
prove voltage stability, Reference [10,11] added a static 
var compensator (SVC) to the load bus in the SMDL 
system, as shown in Figure 1. 

This system in Figure 1 can be described by the fol-
lowing differential state equations [10]: 
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Where δ is the generator power angle; ω is the gen-
erator rotor angle speed; X is the line reactance; E is the 
generator potential; D is the generator damping coeffi-
cient; M is the generator moment of inertia; τ is the time 
constant of PQ dynamic load; P is the system active 
power demand; V is the load bus voltage; k is a scalar 
representing constant power factor of the PQ dynamic 
load; B is the compensation susceptance of SVC; T is the 
control time constant of SVC; Vref is the reference volt-
age value of load bus. The SVC controller is modeled as 
a first order pure integrator. 

The research results of [10] show that the SVC control 
can delay SNB point effectively, but also induces a new 
bifurcation phenomenon — HB in the system. 
 
2.2. Bifurcation Analysis 
 
We can use MATCONT, a MATLAB package for nu-
merical bifurcation analysis of ordinary differential 
equations (ODEs), to analyze bifurcation phenomena of 
the simple system shown in Figure 1. 

The system parameters appearing in (1) are: 
D = 0.1 p.u., M = 0.1 s, X = 0.5 p.u., E = 1 p.u., k = 0.5, 

τ = 0.001 s, T = 0.01 s, Vref = 1 p.u. 
The MATCONT bifurcation analysis result for the 

SMDL system with SVC is depicted in Figure 2. Ac-
cording to Figure 2, a HB point (H) occurs before SNB 
point (LP) in the system.  

Bifurcation parameter of the HB point (H) is: 
(δ, ω, V, B, P) = (0.785469, 0, 1, 1.293043, 1.414314). 
First Lyapunov coefficient is 6.406133e + 002 (> 0),  

 

Figure 1. The SMDL system with SVC. 
 

 

Figure 2. P-δ curve (based on MATCONT). 
 
so the HB point is a subcritical Hopf bifurcation (namely 
unstable Hopf bifurcation, UHB), it is harmful to the 
system voltage stability. 

Figure 3 shows the time domain simulation result for 
a change in P from 1.414314 p.u. to 1.42 p.u. (a small 
disturbance) at the UHB point. From figure 3 we can 
know when the UHB occurs, the load bus voltage will 
lose its stability with the increasing oscillation phe-
nomenon and lead to collapse finally, which can be a 
mechanism to explain voltage oscillation and instability. 
Hence, SNB point couldn’t be the reference standard of 
voltage instability, and UHB point can be seen the start-
ing point of voltage instability in power systems. 
 
3. Design of SMVSC 
 
It’s undoubtedly of great significance to delay or elimi-
nate UHB phenomena in power systems which can im-
prove load limits and enhance voltage stability. Refer-
ences [12,13] designed some new types of SVC control-
lers based on SMVSC so that the load bus voltage turns 
more stable. In this section, we will use the SMVSC 
method to design a SVC controller in the SMDL system, 
with the purpose of regulating reactive power output of 
SVC and eliminating or delaying UHB phenomenon. 
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Figure 3. t-V curve (based on MATCONT). 
 

The differential equations describing the system with 
SMVSC are: 
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Where u is the control input to the SVC. 
Set    1 2 3 4, , , , , ,x x x x x V B  

 x
, take  

y h    as the output. Change the nonlinear sys-
tem to the linear system directly: 
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Namely 
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Suppose    4z x x   u , and make a nonlinear 
transformation as   v x 

2

1u x  . After deriva-
tion calculus to (4), the original system can be translated 
into the following standard system: 
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In the new coordinates, suppose the switching function 
of the new system: 

  1 1 2 2 3 3 4S Z C z C z C z z              (6) 

where  1 2 3 4, , ,Z z z z z . 
When the system goes into the sliding mode, S = 0, i.e., 

 4 1 1 2 2 3z C z C z C z    3 . Therefore, the sliding mode 
equations can be given as follows: 
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The eigenvalue equation of (7) is: 
3 2

3 2 1 0C C C                  (8) 

Supply the poles  1 2 3, ,k k k , which enable the sliding 
mode Equations (7) to be stable in advance, then 
 1 2 3, ,C C C  are derived: 
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Substitute the nonlinear transfer equations Z = T(x) 
(namely (4)) for the switching function S(Z), then the 
switching function of the system in the original coordi-
nates can be derived. 

Let  equal the exponential reaching law: S

sgnS S                     (10) 

Where ε > 0 and l > 0, then 
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So  sgnv CZ S lS    ,  1 2 30, , ,C C C C , and 
now u can be derived as follows: 
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Now we have finished designing the switching function 
and the law of the SMVSC. In the next section, the simu-
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lation analyses about control effect of the designed con-
troller will be introduced. 

SMVSC is very complex and it keeps regulating the load 
bus voltage. However, the swing amplitudes are very 
small, and the voltage can remain in the qualified area.  
 4. Time Domain Simulation 
5. Conclusions  
 To observe and study control effect of the designed 

variable structure controller, a MATLAB-procedure was 
written and executed for the time domain simulation 
analyses. The flow chart of extracting the control vari-
able u is depicted in Figure 4. 

In this paper, a simple but meaningful and representative 
power system model, the single-machine dynamic-load 
system with SVC, was used to analyze Hopf bifurcation 
and voltage stability. We also used the SMVSC method 
to design a controller to stabilize the load bus voltage 
and control UHB phenomenon of the simple system by 
controlling the reactive power output of the SVC. Simu- 

According to the previous analyses based on MAT-
CONT, we can know that in the SMDL system with SVC, 
the UHB occurs when bifurcation parameter is: (δ, ω, V, 
B, P) = (0.785469, 0, 1, 1.293043, 1.414314).  

Make the UHB point be the initial state of the SMDL 
system with SVC, when the system is subjected to a 
small disturbance (P is from 1.414314p.u. to 1.42p.u.), 
the time domain simulation results without SMVSC and 
with SMVSC are depicted in Figure 5 and Figure 6 re-
spectively. According to Figures 5-6, conclusions below 
can be got: 

Linearization for 
system model

Determining the 
switching function

Choosing the 
exponential
reaching law 

Determining the 
sliding mode 

equations

Extracting the 
variable v

Extracting the 
variable u

 

1) When the system without SMVSC operates at the 
HB point, after the small disturbance occurs, the load bus 
voltage will have a sudden drop at about 0.57s after the 
increasing oscillation, and at the same time, the generator 
power angle also loses its stability.  

2) When the system with SMVSC operates at the HB 
point, after the small disturbance occurs, the load bus 
voltage won’t have an oscillation and keeps stable, and at 
the same time, the generator power angle also keeps its 
stability.  

3) The load bus voltage after variable structure control 
has a little erratic swing at all time, this is because the  Figure 4. Flow chart of extracting the variable u. 
 

   

Figure 5. Time domain simulation results without SMVSC. 
 

   

Figure 6. Time domain simulation results with SMVSC. 



Q. W. DU  ET  AL. 
  

Copyright © 2011 SciRes.                                                                                  EPE 

28 

lation results show that the UHB of the original system 
can be eliminated effectively and the voltage stability 
margin is improved. 

The SMVSC method can eliminate the UHB, but also 
bring some new problems. For example, we can derive 
the voltage stability index and the voltage stability mar-
gin of the original system by the methods that have been 
found in [14,15], but there is no method for the system 
with SMVSC at present. In addition, the structure of the 
SMVSC is very complex, and it’s very difficult to 
change the controller into a practical product now. These 
problems will take a long time to be studied. Therefore, 
the SMVSC method in many areas including power sys-
tems is still in the stage of theoretical research. There is 
an urgent need to solve above problems depending on a 
variety of advanced automatic control technologies. 
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