
Engineering, 2018, 10, 863-875
http://www.scirp.org/journal/eng

ISSN Online: 1947-394X
ISSN Print: 1947-3931

DOI: 10.4236/eng.2018.1012060 Dec. 28, 2018 863 Engineering

Analytical Load Balancing Model in Distributed
Open Flow Controller System

Traoré Issa1, Zamblé Raoul2, Adama Konaté2,3, Joël Christian Adepo3,4, Bernard Cousin5,
Asseu Olivier2,3

1Felix Houphouet-Boigny University, Abidjan, Cote d’Ivoire
2African Higher School of ICT Abidjan, Abidjan, Cote d’Ivoire
3National Polytechnic Institute Felix Houphouet-Boigny, Yamoussoukro, Cote d’Ivoire
4Virtual University of Cote d’Ivoire, Abidjan, Cote d’Ivoire
5Research Institute of Computer Science and Random Systems, University of Rennes 1, Rennes, France

Abstract
The Software Defined Network (SDN) is a concept based on a decoupling
between the control plan and the data plan of a network. Thus, the network
becomes programmable and can be coupled to the business applications of
the users. The study that is discussed in this article looks at load planning and
balancing in distributed controllers. To do this, a model and theoretical me-
thods of performance evaluation related to appropriate software tools, to pre-
dict and control the quality of service offered to users is exposed. This paper
exposed also a distributed architecture of controllers and then a module
based on an adaptive load balancing algorithm that is fault tolerant and fluc-
tuates controller loads. The experiments show a significant gain in efficiency
of our solution.

Keywords
Open Flow, Load Balancing, Decision Distributed, Software
Defined Network, Analysis, Architecture

1. Introduction

Software programmed by network [1] [2] and [3], Software-Defined Networking
(SDN) based on OpenFlow [4] are currently considered as one of the most
promising paradigms of Internet’s future. According to the Open Network Fun-
dation (ONF), a consortium of nonprofit companies founded in 2011 to pro-
mote SDN and standardize its protocols, the SDN is an architecture that sepa-
rates the control plan from the data plan, and unifies control in an external con-

How to cite this paper: Issa, T., Raoul, Z.,
Konaté, A., Adepo, J.C., Cousin, B. and
Olivier, A. (2018) Analytical Load Balanc-
ing Model in Distributed Open Flow Con-
troller System. Engineering, 10, 863-875.
https://doi.org/10.4236/eng.2018.1012060

Received: October 29, 2018
Accepted: December 25, 2018
Published: December 28, 2018

Copyright © 2018 by authors and
Scientific Research Publishing Inc.
This work is licensed under the Creative
Commons Attribution International
License (CC BY 4.0).
http://creativecommons.org/licenses/by/4.0/

Open Access

http://www.scirp.org/journal/eng
https://doi.org/10.4236/eng.2018.1012060
http://www.scirp.org
https://doi.org/10.4236/eng.2018.1012060
http://creativecommons.org/licenses/by/4.0/

T. Issa et al.

DOI: 10.4236/eng.2018.1012060 864 Engineering

trol software called controller, to manage several elements of the data plan via
APIs (Application Programming Interface). In [4], ONF offers the typical archi-
tecture of SDN.

One of the advantages of SDNs is network abstraction, which means that the
control plan provides an abstract view of the applications. This allows the net-
work to be unified and simplifies configuration and management. In addition,
the use of the SDN concept in the network can provide innovative services, in-
cluding multicast routing, security, access control, bandwidth management, traf-
fic engineering, QoS energy efficiency and various forms of strategy manage-
ment.

The SDN thus has several advantages, but the fact of concentrating all the in-
telligence of the network in the control plan raises concerns about the perfor-
mance and scalability of this plan. These concerns arise more for the initial SDN
architecture which proposes to use a single controller [5] and [6], which then
becomes a single point of failure (SPOF) and raises the lack of scalability and
performance. Therefore, the need to use multiple controllers becomes a necessity
to overcome the SPOF problem and improve performance.

Indeed, the centralized controller imposes potential problems of overload,
scalability and availability. As a result, the architecture of logically distributed
controllers has been proposed. A cluster-based distributed controller runs on
multiple physical controllers as a single logical controller to control multiple
network switches.

Compared to conventional centralized controllers, cluster-based distributed
controllers provide better scalability and fault tolerance [7] and [8]. These tech-
nologies allow SDNs to operate reliably when traffic increases beyond the levels
initially forecast. By deploying an SDN with these technologies over an extensive
network, the infrastructure can quickly recover from disasters or other network
failures while performing regular network operations.

To our knowledge, there are very few performance studies of SDN/OpenFlow
networks on the analytical model. Our objective throughout this article is to
study and evaluate controllers' loads and establish a load balancing if necessary.

Our approach, is totally based on the distributed architecture of the control-
lers. With the help of our algorithm, each controller collects its own loads, and is
informed about the topology and loads of other controllers. In this way, the con-
troller can make decisions by making sensible choices in the direction of high
fault-tolerant, fluctuating load availability.

In the second part of this article we present the centralized and distributed
architecture of the SDN. We expose their modes of operation. The third part is
devoted to the presentation of our model of analysis and load balancing. Finally,
an evaluation of our solution is presented followed by a conclusion.

2. Centralized and Distributed Architecture of SDN Network

Two categories of control plan architectures have been proposed in the literature

https://doi.org/10.4236/eng.2018.1012060

T. Issa et al.

DOI: 10.4236/eng.2018.1012060 865 Engineering

[9] and [10]. The first category uses a logically centralized control plan, where all
the controllers work together to function as a single centralized controller with
boosters within a super-controller. Thus, the super-controller has a global view
of all controllers. However, this approach may have limitations. The perfor-
mance of a centralized node is limited by memory, processor power, and band-
width. In addition, a centralized node collects load information periodically and
exchanges many messages frequently with other controllers, which will lead to
reduced performance of the entire system [11]. In addition, if the central node
collapses, the entire load balancing strategy falls.

The second category consists in using logically distributed controllers for
where each controller has only one view of the domain for which it is responsi-
ble for and shares the necessary information with the other controllers [12]. In
this case a controller is not only an ordinary controller but also a super-controller.
In the rest of this article, we will study the performance and expose an analytical
method of load balancing in the case of an architecture having distributed con-
trollers.

Logically Distributed SDN Control Plan Architecture

In this context, the second category of logically distributed control plan is pro-
posed to extend SDN on large multi-domain networks such as WAN networks.
It allows each controller to have a view of the domain for which it is responsible
for. It can make decisions for this area and communicate its information to oth-
er controllers. As WANs are characterized by high cost and latency due to the
complexity of the infrastructure and protocol that handle traffic (BGP and
MPLS), communication between controllers is of paramount importance in
SDN. Several implementations have been dedicated to this category and its dep-
loyment is certainly beneficial for load balancing, fault tolerance, security, per-
formance and scalability.

In the SDN with a distributed architecture, the controller mainly exchanges
with the application plan (NorthBound), between controllers (Wests and East
bound) and the data plan (Southbound). These exchanges generate queues that
it is important to analyze in the consideration of load balancing. This system can
be seen as a multi-class and uni-controller queue, each class of requests corres-
ponding to one of the n possible assignments.

We focus our work on queries exchanged between APIs, controllers and
switches. The goal is to evaluate the load of a controller.

We propose the service mode as the communication mode used between the
controllers. The service mode allows the synchronization of information about
flow tables, metric tables, link bandwidth, link status, and rules applied to other
controllers. It is beneficial for applications that require a global view of the entire
network and a certain quality of transmission. This mode is intended to improve
the quality of service, security, routing, etc.

The orchestration and coordination of the control plan are provided by the

https://doi.org/10.4236/eng.2018.1012060

T. Issa et al.

DOI: 10.4236/eng.2018.1012060 866 Engineering

API Jgroups [13] and Zookeeper APIs [14]. Indeed, JGroups is a perfect support
for remote procedure call (RPC) between controller nodes, while ZooKeeper is a
centralized service for managing configuration information, names, distributed
synchronization, and service provisioning.

3. OpenFlow Controllers Operation
3.1. Message Flow Management between Switch and Controller

The architecture of the flow control model that we propose is illustrated in Fig-
ure 1. In this architecture, the relationship between controllers and switches is
multiple, which is supported by OpenFlow 1.5.1. The switch has multiple in-
put/output ports and multiple ports providing control communication with
multiple SDN controllers.

Figure 2 illustrates the flow input structure on a switch. The data flows con-
sist of IP packet flows. It may be necessary for the routing table to define inputs
based on higher layer protocol header fields, such as: TCP, UDP, SCTP, or ap-
plication protocol.

3.2. Entry of a Switch Flow Tables

The switch flow tables contain a set of stream entries that show the rules and
packet routing actions dictated by the controller. A feed entry is composed
among others of:
- match fields: match fields that define the packet flow model through the in-

stantiation of the header fields from the Ethernet layer to the Transport layer;
- counters: updated when packets are matched and counters on packets.;
- priority: matching precedence of the flow entry;
- cookie: opaque data value chosen by the controller. May be used by the con-

troller to filter flow entries affected by flow statistics, flow modification and
flow deletion requests. Not used when processing packets.

Counters can be maintained for each flow table, stream entry, port, queue

Figure 1. Distributed controller architecture.

Figure 2. Main components of a flow entry in a flow table.

https://doi.org/10.4236/eng.2018.1012060

T. Issa et al.

DOI: 10.4236/eng.2018.1012060 867 Engineering

Wait. The description of the counters field gives the number of packets trans-
mitted on this queue (Transmit Packets), the number of bytes transmitted on
this queue (Transmit Bytes), the number of packets transmitted on this queue
and those rejected for lack of memory on the queue (Transmit Overrun Errors).

When a counter reaches its maximum value, it returns to 0 without further
indication. If a counter is not available, its value must be set to (−1).

OpenFlow1.3 introduces counters into the OpenFlow protocol. The counters
complete the queue framework already in place in OpenFlow by allowing the
monitoring of the input rate of data processed by the controller. Specifically,
with counters, we can monitor the traffic input rate as defined by the Figure 2
structure. Flows can direct packets to a counter using the OpenFlow goto-meter
statement.

3.3. Message Flux Management between Controllers

Flux management is shown schematically in Figure 3. We propose an analytical
flow model based on the mathematical notion of queue M/M/1/K. J Groups
comes with a large number of protocols including FIFO (First In First Out), To-
tal Order and Flow Control to prevent slow receivers from being overloaded by
fast senders. We will use the Zookeeper API [14] to coordinate load balancing
operations and then check if the migration has been successful with corollary
load balancing.

The proposed load balancing mechanism is a module implemented at each
SDN controller. It is called load balancing module. This module has four com-
ponents:

1) load measurement: measures the loads and judges if the controller load ex-
ceeds the threshold. Note and respectively the load and the predefined load
threshold of a controller;

2) the equilibrium decision: makes load balancing decisions or not based on
the result of the load measurement;

3) the load information collector: receives and then organizes information on
its load and sends it to other controllers;

4) switch migration: is responsible for putting one switch under control to

Figure 3. Model of queue between controller and switch.

https://doi.org/10.4236/eng.2018.1012060

T. Issa et al.

DOI: 10.4236/eng.2018.1012060 868 Engineering

another less loaded controller to balance the load.
The load balancing modules of the controllers cooperate with each other to

ensure load balancing by coordinating the activities of the components. Thus,
the measurement of the load periodically measures the loads of the controllers.
There are three types of information that are collected locally and disclosed to
other controllers:

- Normal load (max
1
2 k seuilΓ < Γ < Γ): packet transmissions are done correctly.

However,
- the controller is not able to receive switch migration the value of its decision

is (0);

- under load (max
1
2kΓ < Γ): the packet transmissions are done correctly and is

able
To receive a switch migration. The value of it decision is (1);

- Overload (k seuilΓ ≥ Γ): packet transmissions may be disturbed shortly. The
probability of rejection of packets in the queue is high. The value of the deci-
sion is (−1).

In the following section, we propose an analytical method of the load balanc-
ing described above. This assumption also allows the use of aggregation and di-
vision of Poisson processes to determine the intensity of the arrival packets on
each node. Finally, it is assumed that the controller has a complete knowledge of
the network topology, and can therefore, configure the nodes for optimal packet
transfer.

In [15] the authors presents a method for efficient adjustment of traffic flows
to achieve load balance among multiple controllers using three modules com-
prising a load collector, a load balancer, and switch migrater. We propose in our
approach, a fourth module that of the decision of balancing and migration of
switches. This makes it possible to control migrations without overloading the
less loaded controllers during the migration.

4. Load Balancing Model Description
4.1. Data Plan Level Model

The data plan system model is considered to be an open Jackson network of J
switches, 1,2, ,j J= � and a single controller as shown in Figure 3. In addi-
tion, we assume that the rate of arrival in the data plan with a parameter λj and
the probability that a packet goes from switch j to the controller Ck is ρjk. The
probability of routing the switch r to the switch j is ρrj. In addition, the service
rate in the switch j is μj, while it is μk for the controller. According to Jackson’s
theorem for open queuing networks, all queues of switches behave locally like

queues M/M/1/K with load j
j

j

γ
ρ

µ
= .

At controllers level, the arrival in the queue is:
1

K

k jk j
j

p
=

Γ = Γ∑ the load of the

https://doi.org/10.4236/eng.2018.1012060

T. Issa et al.

DOI: 10.4236/eng.2018.1012060 869 Engineering

controller is therefore k
k

kµ
Γ

∆ = .

The balancing equation of the M/M/1/K system under the FIFO discipline is
given by the formula for the input γj to node j we have in [16]:

() ()
1,

1
K

j j b ik i mj m j
j j m

P p pγ λ ξ λ
= ≠

 
∆ = + − + 

 
∑ (1)

The knowledge of Pb (packet blocking capacity), E(Nc) (the average number of
packets in the controller) and E(Tc) (the waiting time of the packet in the queue)
allows to calculate Δj.

4.2. Model at Controller Plan Level

The model defined in the control plan consists of several controllers, where each
would be responsible for a portion of the network. However, each switch is ma-
naged by only one controller. In its operation the controllers detect the neigh-
boring controllers and also the edge switches which are located at the edge of a
network portion as shown in Figure 1.

The purpose of this section is to evaluate the load of a controller and decide to
migrate one or more switches to other less loaded controllers. We consider a
simple controller system identical to the queue M/M/1/K whose capacity of the
queue is finished. When a packet arrives in the system when there are already K
packets in the queue it is rejected and lost and has no influence on the system
(“lost customer cleared”), which explains why there is no a priori hypothesis on
the load ρ = λT. Clients are served according to the FIFO discipline, the service
life being constant and equal to T units of time and controller load Ck is:

1k
k

k

λ
ρ

µ
= < when 1,2, ,k K= �

The distribution of the number of Ck controller packets is given by the Equa-
tion (2):

() () 1

1
1

nk
k k kK

k

P n P X n
ρ

ρ
ρ +

−
= = =

−
 (2)

The average number of packets in the controller Ck is given by the Equation
(3):

() ()
1

1
0

1
11

KK
K

k k K
k

E N kP k Kρ ρ ρ
ρρ

+

+
=

 −
Γ = = = − −−  

∑ (3)

and the probability of blocking, therefore the rejection is given by the formula
(4) below :

() 1

1
1

Kk
b kK

k

P n
ρ

ρ
ρ +

−
=

−
 (4)

Our approach corresponds to the scenario where the buffer space in the con-
troller is limited to at most K packets in the queue. Applying the formula of Lit-
tle expressing the residence time of the packet in the queue of the controller we

https://doi.org/10.4236/eng.2018.1012060

T. Issa et al.

DOI: 10.4236/eng.2018.1012060 870 Engineering

have the equation:

() ()
()1

k
k

k b

E N
E T

P
=
Γ −

 (5)

There is rejection if and only if the queue with limited capacity is full. We can
express K according to ρ and Pk :

()

ln
1

ln

b

b

P
P

K
ρ ρ
ρ

 
 − + ⋅ = (6)

Formula (6) gives the capacity of the controller queue. Indeed, it makes it
possible to evaluate the maximum number of packets in the queue according to
the probability of blocking and the rate of charge.

Figure 6 gives the K capacity of a controller when the probability of rejection
is less than -n10 . It has been assumed that the messages form a fish traffic of va-
riable load ρ. The assignment of tasks to the machines is decided during the ex-
ecution phase, acdepending on the information that is collected on the state of
charge of the system. This makes it possible to improve the execution perfor-
mance of the tasks but at the cost of a complexity in the implementation of this
strategy. It is necessary to know the load of the switch to be migrated, then select
the controller whose load would be below the threshold after the migration. It is
assumed that the maximum load of a controller is maxΓ . We note the threshold

load between max
1
2
Γ and maxΓ . Thus in algorithm 1 of Figure 4, the load

balancing module makes decisions against a controller based on its average load.
The load measurement component returns to values 0, 1 or (−1) according to

the received load measurements. The decision component of the controller k,
decides to alert the other controllers in the event that the Status Controller (k)
returns to value (−1). The Migration function (),k

i jω of switch i of the con-
troller k towards controller j is facilitated by the classification of the load of the
switches.

Collection function ()k∆ Controller k collects load information and ranks it

Figure 4. Algorithm 1: Controller load measurement.

https://doi.org/10.4236/eng.2018.1012060

T. Issa et al.

DOI: 10.4236/eng.2018.1012060 871 Engineering

in ascending order. Thus, () { }{ }
1

Collecte ,
m

k k k
k k l r s

k
ω ω ω

=

∆ = Γ < < <�∪ gives

information about the total load of the switch k and the load of the switches of
its stored area in ascending order. Below is the switch migration algorithm. Al-
gorithm 1 can execute with a linear time complexity, i.e., in O(n) time.

It is important to note that the selection of switches to migrate is delicate be-
cause other overloads and oscillations between switches and controllers must be
avoided. To avoid that, the load collector with the controller's load information
identifies the candidate controllers to receive a migration.

Then, algorithm 2 of Figure 5, refines the choice by determining the appro-
priate switch. If the switch has migrated to the target controller (successful mi-
gration process) Zookeeper will return 1. Otherwise, it will raise an exception.

Finally, after completing the migration, the controller updates its load infor-
mation and informs the other controllers via the load information component.
Finally, after completing the migration, the controller updates its load informa-
tion and informs the others. With the help of Zookeeper, we can change the role
of the master node and the slave node. To ensure high availability and lossless
message delivery during migration, we use Highly Available TCP (HA-TCP).
The migrating switch module is assisted in its task by Zookeeper. After com-
pleting the migration, the controller updates its load information and reports to
the other controllers via the load information component. We can note than, the
time complexity of algorithm 2 is O (n2). In the following section we evaluate
our queueing model with different parameters by numerical analysis. Suppose
packets arrive at all the switches with same rate λ, the rate at which the switches
forward packets to the controller and output ports is 32 K packets per second
and 64 K packets per second.

Figure 5. Algorithm 2: load balancing.

https://doi.org/10.4236/eng.2018.1012060

T. Issa et al.

DOI: 10.4236/eng.2018.1012060 872 Engineering

5. Results Analysis

The implementation of the balancing prototype is based on the Floodlight con-
troller [17]. It is a Java based OpenFlow controller of the Beacon SDN controller
developed by Stanford. That controller is an open-source software manufactured
by Apache, supported by a community of software developers. It offers a mod-
ular architecture, easy to expand and improve. We add the TCP-HA protocol
and the storage module for the synchronous state fault detection.

Figure 6 shows that the number of switch supported by a controller depends
on its load ρ. Cbench application is a performance measurement tool designed
to compare packages processed by OpenFlow controllers. It can simulate packets
from OpenFlow controllers. Mininet is an OpenSources tool for emulating SDN
networks. The mapping table has been stored on the Zookeeper servers. It can
support, store services with strong consistency so that the result of the choices of
switch to migrate is consistent with the expected results. During the experiment
were used three distributed Floodlight controllers likewise having a charge rate ρ
of 0, 8. The modules for load measurement, load collection, decision and switch
migration are implemented on each controller. All controllers are implemented
so that as soon as they reach 80% of their maximum load, an alert is issued by
the decision component of the load balancing module.

Figure 7 shows that there is switch migration at controller level (C1) towards
(C3). In fact from 4.4 ms the curve (C1) decreases while the curve (C3) takes
more load than expected. Some problems may occur during the experiment:

1) all controllers reached the 80% threshold of Γmax;

Figure 6. Average number of packets in the queue.

https://doi.org/10.4236/eng.2018.1012060

T. Issa et al.

DOI: 10.4236/eng.2018.1012060 873 Engineering

Figure 7. Balancing test result.

2) two controllers that reached the 80% max threshold could migrate their
switches to the same controller. This will cause saturation of the target control-
ler.

In case (1), it is assumed that all controllers have reached the fixed threshold.
In this case, it is necessary to anticipate a Floodlight controller without any load
beforehand which will be operational as soon as all the controllers exceed the
80% of their load.

In case (2) we could choose in algorithm 2, the choice to migrate in priority
the switch of the controller with the highest load. Thus, when two controllers
have exceeded the 80% threshold, the one with a maximum load will be priori-
tized for switch migration.

We notice that in our model, the controllers store a lot of information related
to the other SDN controller. However, the above results show the performance
of proposed load balancing algorithm by using analytic model. Thus, we got a
load balanced overall costs of the network.

6. Conclusions

In this article, we propose a load balancing strategy for the SDN controller based
on distributed decision. An analytical queue model that responds to this strategy
is exposed. We describe each component of the SDN architecture, in particular
the load balancing module. The uneven distribution of controllers’ load is an
inevitable problem. We proposed a load balancing algorithm. The results of the
evaluation showed that our mechanism can achieve two objectives: to anticipate
controllers’ overloads on the one hand and to balance the load of the system

https://doi.org/10.4236/eng.2018.1012060

T. Issa et al.

DOI: 10.4236/eng.2018.1012060 874 Engineering

controllers on the other hand.
Our future direction is to compare the results obtained from the proposed

model with hardware implementations which will lead to interesting results.

Conflicts of Interest

The authors declare no conflicts of interest regarding the publication of this pa-
per.

References
[1] Benamrane, F., Ben Mamoun, M. and Benaini, R. (2015) Performances of Open-

flow-Based Sofware Defned Networks: An Overview. Journal of Networks, 10,
329-337. https://doi.org/10.4304/jnw.10.6.329-337

[2] Liu, H.H., Wu, X., Zhang, M., Yuan, L., Wattenhofer, R. and Maltz, D. (2013) Up-
dating Data Center Networks With Zero Loss. ACM SIGCOMM Computer Com-
munication Review, 43, 411-422. https://doi.org/10.1145/2534169.2486005

[3] Mahmood, Chilwan, A., Østerbø, O. and Jarschel, M. (2014) Modelling of Open-
Flow-Based Software Defined Networks: The Multiple Node Case, Kashif. IET
Journal.

[4] Open Networking Foundation (ONF) (2015) OpenFlow Switch Specification; Ver-
sion 1.5.1 (Protocol Version 0x06), ONF TS-025.
https://www.opennetworking.org/wp-content/uploads/2014/10/openflow-switch-v1
.5.1.pdf

[5] Hock, D., Gebert, S. and Hartmann, M. (2014) POCO-Framework for Pare-
to-Optimal Resilient Controller Placement in SDN-Based Core Networks. IEEE
Network Operations and Management Symposium (NOMS), IEEE Xplore, 1-2.

[6] Mattos, D.M.F., Duarte, O.C.M.B. and Pujolle, G. (2016) A Resilient Distributed
Controller for Software Defined Networking, Communications (ICC). IEEE.

[7] Nunes, B.A., Mendonca, M. and Nguyen, X.-N. (2014) A Survey of Sofware-Defned
Networking: Past, Present, and Future of Programmable Networks. IEEE Commu-
nication Survey and Tutorial, 16, 1617-1634.
https://doi.org/10.1109/SURV.2014.012214.00180

[8] Ros, F.J. and Ruiz, P.M. (2016) Reliable Controller Placements in Sofware-Defned
Networks. Computer Communications, Sciencedirect, 77, 41-51.

[9] Abdelaziz, A., Fong, A.T. and Gani, A. (2017) Distributed Controller Clustering in
Software Defined Networks. PLOS ONE.
https://doi.org/10.1371/journal.pone.0174715

[10] Gardner, K., Harchol-Balter, M., Scheller-Wolf, A., Velednitsky, M. and Zbarsky, S.
(2017) Redundancy-D: The Power of D Choices for Redundancy. Operations Re-
search. https://doi.org/10.1287/opre.2016.1582

[11] Paris, S., Destounis, A., Maggi, L., Paschos, G. and Leguay, J. (2016) Controlling
Flow Reconfigurations in SDN. The 35th Annual IEEE International Conference on
Computer Communications, San Francisco, 10-14 April 2016.
https://doi.org/10.1109/INFOCOM.2016.7524330

[12] Guo, Z.H., Su, M., Xu, Y., Duan, Z.M., Wang, L., Hui, S.F. and Chao, H.J. (2014)
Improving the Performance TF Load Balancing in Software-Defined Networks
through Load Variance-Based Synchronization. Computer Networks, 68, 95-109.
https://doi.org/10.1016/j.comnet.2013.12.004

https://doi.org/10.4236/eng.2018.1012060
https://doi.org/10.4304/jnw.10.6.329-337
https://doi.org/10.1145/2534169.2486005
https://www.opennetworking.org/wp-content/uploads/2014/10/openflow-switch-v1.5.1.pdf
https://www.opennetworking.org/wp-content/uploads/2014/10/openflow-switch-v1.5.1.pdf
https://doi.org/10.1109/SURV.2014.012214.00180
https://doi.org/10.1371/journal.pone.0174715
https://doi.org/10.1287/opre.2016.1582
https://doi.org/10.1109/INFOCOM.2016.7524330
https://doi.org/10.1016/j.comnet.2013.12.004

T. Issa et al.

DOI: 10.4236/eng.2018.1012060 875 Engineering

[13] Shen, D., Yan, W., Peng, Y., Fu, Y. and Deng, Q. (2018) Congestion Control and
Traffic Scheduling for Collaborative Crowdsourcing in SDN Enabled Mobile Wire-
less Networks. Wireless Communications and Mobile Computing, 2018, Article ID:
9821946. https://doi.org/10.1155/2018/9821946

[14] Yu, J., Wang, Y., Pei, K., Zhang, S. and Li, J. (2016) A Load Balancing Mechanism
for Multiple SDN Controllers Based on Load Informing Strategy. The 18th
Asia-Pacific Network Operations and Management Symposium, Kanazawa, 5-7 Oc-
tober 2016.

[15] Wang, K.-Y., Kao, S.-J. and Kao, M.-T. (2018) An Efficient Load Adjustment for
Balancing Multiple Controllers in Reliable SDN Systems. IEEE International Con-
ference on Applied System Invention, Chiba, 13-17 April 2018, 593-596.

[16] Jackson, J.R. (1957) Networks of Waiting Lines. Operations Research, 5, 518-521.
https://doi.org/10.1287/opre.5.4.518

[17] Bholebawa, I.Z. and Dalal, U.D. (2017) Performance Analysis of SDN/OpenFlow,
Controllers: POX versus Floodlight, Wireless Personal Communications. Springer
Science + Business Media, Berlin.

https://doi.org/10.4236/eng.2018.1012060
https://doi.org/10.1155/2018/9821946
https://doi.org/10.1287/opre.5.4.518

	Analytical Load Balancing Model in Distributed Open Flow Controller System
	Abstract
	Keywords
	1. Introduction
	2. Centralized and Distributed Architecture of SDN Network
	Logically Distributed SDN Control Plan Architecture

	3. OpenFlow Controllers Operation
	3.1. Message Flow Management between Switch and Controller
	3.2. Entry of a Switch Flow Tables
	3.3. Message Flux Management between Controllers

	4. Load Balancing Model Description
	4.1. Data Plan Level Model
	4.2. Model at Controller Plan Level

	5. Results Analysis
	6. Conclusions
	Conflicts of Interest
	References

