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Abstract 
The Software Defined Network (SDN) is a concept based on a decoupling 
between the control plan and the data plan of a network. Thus, the network 
becomes programmable and can be coupled to the business applications of 
the users. The study that is discussed in this article looks at load planning and 
balancing in distributed controllers. To do this, a model and theoretical me-
thods of performance evaluation related to appropriate software tools, to pre-
dict and control the quality of service offered to users is exposed. This paper 
exposed also a distributed architecture of controllers and then a module 
based on an adaptive load balancing algorithm that is fault tolerant and fluc-
tuates controller loads. The experiments show a significant gain in efficiency 
of our solution. 
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1. Introduction 

Software programmed by network [1] [2] and [3], Software-Defined Networking 
(SDN) based on OpenFlow [4] are currently considered as one of the most 
promising paradigms of Internet’s future. According to the Open Network Fun-
dation (ONF), a consortium of nonprofit companies founded in 2011 to pro-
mote SDN and standardize its protocols, the SDN is an architecture that sepa-
rates the control plan from the data plan, and unifies control in an external con-
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trol software called controller, to manage several elements of the data plan via 
APIs (Application Programming Interface). In [4], ONF offers the typical archi-
tecture of SDN. 

One of the advantages of SDNs is network abstraction, which means that the 
control plan provides an abstract view of the applications. This allows the net-
work to be unified and simplifies configuration and management. In addition, 
the use of the SDN concept in the network can provide innovative services, in-
cluding multicast routing, security, access control, bandwidth management, traf-
fic engineering, QoS energy efficiency and various forms of strategy manage-
ment.  

The SDN thus has several advantages, but the fact of concentrating all the in-
telligence of the network in the control plan raises concerns about the perfor-
mance and scalability of this plan. These concerns arise more for the initial SDN 
architecture which proposes to use a single controller [5] and [6], which then 
becomes a single point of failure (SPOF) and raises the lack of scalability and 
performance. Therefore, the need to use multiple controllers becomes a necessity 
to overcome the SPOF problem and improve performance. 

Indeed, the centralized controller imposes potential problems of overload, 
scalability and availability. As a result, the architecture of logically distributed 
controllers has been proposed. A cluster-based distributed controller runs on 
multiple physical controllers as a single logical controller to control multiple 
network switches. 

Compared to conventional centralized controllers, cluster-based distributed 
controllers provide better scalability and fault tolerance [7] and [8]. These tech-
nologies allow SDNs to operate reliably when traffic increases beyond the levels 
initially forecast. By deploying an SDN with these technologies over an extensive 
network, the infrastructure can quickly recover from disasters or other network 
failures while performing regular network operations.  

To our knowledge, there are very few performance studies of SDN/OpenFlow 
networks on the analytical model. Our objective throughout this article is to 
study and evaluate controllers' loads and establish a load balancing if necessary. 

Our approach, is totally based on the distributed architecture of the control-
lers. With the help of our algorithm, each controller collects its own loads, and is 
informed about the topology and loads of other controllers. In this way, the con-
troller can make decisions by making sensible choices in the direction of high 
fault-tolerant, fluctuating load availability. 

In the second part of this article we present the centralized and distributed 
architecture of the SDN. We expose their modes of operation. The third part is 
devoted to the presentation of our model of analysis and load balancing. Finally, 
an evaluation of our solution is presented followed by a conclusion. 

2. Centralized and Distributed Architecture of SDN Network  

Two categories of control plan architectures have been proposed in the literature 
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[9] and [10]. The first category uses a logically centralized control plan, where all 
the controllers work together to function as a single centralized controller with 
boosters within a super-controller. Thus, the super-controller has a global view 
of all controllers. However, this approach may have limitations. The perfor-
mance of a centralized node is limited by memory, processor power, and band-
width. In addition, a centralized node collects load information periodically and 
exchanges many messages frequently with other controllers, which will lead to 
reduced performance of the entire system [11]. In addition, if the central node 
collapses, the entire load balancing strategy falls. 

The second category consists in using logically distributed controllers for 
where each controller has only one view of the domain for which it is responsi-
ble for and shares the necessary information with the other controllers [12]. In 
this case a controller is not only an ordinary controller but also a super-controller. 
In the rest of this article, we will study the performance and expose an analytical 
method of load balancing in the case of an architecture having distributed con-
trollers. 

Logically Distributed SDN Control Plan Architecture  

In this context, the second category of logically distributed control plan is pro-
posed to extend SDN on large multi-domain networks such as WAN networks. 
It allows each controller to have a view of the domain for which it is responsible 
for. It can make decisions for this area and communicate its information to oth-
er controllers. As WANs are characterized by high cost and latency due to the 
complexity of the infrastructure and protocol that handle traffic (BGP and 
MPLS), communication between controllers is of paramount importance in 
SDN. Several implementations have been dedicated to this category and its dep-
loyment is certainly beneficial for load balancing, fault tolerance, security, per-
formance and scalability. 

In the SDN with a distributed architecture, the controller mainly exchanges 
with the application plan (NorthBound), between controllers (Wests and East 
bound) and the data plan (Southbound). These exchanges generate queues that 
it is important to analyze in the consideration of load balancing. This system can 
be seen as a multi-class and uni-controller queue, each class of requests corres-
ponding to one of the n possible assignments.  

We focus our work on queries exchanged between APIs, controllers and 
switches. The goal is to evaluate the load of a controller.      

We propose the service mode as the communication mode used between the 
controllers. The service mode allows the synchronization of information about 
flow tables, metric tables, link bandwidth, link status, and rules applied to other 
controllers. It is beneficial for applications that require a global view of the entire 
network and a certain quality of transmission. This mode is intended to improve 
the quality of service, security, routing, etc. 

The orchestration and coordination of the control plan are provided by the 
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API Jgroups [13] and Zookeeper APIs [14]. Indeed, JGroups is a perfect support 
for remote procedure call (RPC) between controller nodes, while ZooKeeper is a 
centralized service for managing configuration information, names, distributed 
synchronization, and service provisioning. 

3. OpenFlow Controllers Operation  
3.1. Message Flow Management between Switch and Controller 

The architecture of the flow control model that we propose is illustrated in Fig-
ure 1. In this architecture, the relationship between controllers and switches is 
multiple, which is supported by OpenFlow 1.5.1. The switch has multiple in-
put/output ports and multiple ports providing control communication with 
multiple SDN controllers.  

Figure 2 illustrates the flow input structure on a switch. The data flows con-
sist of IP packet flows. It may be necessary for the routing table to define inputs 
based on higher layer protocol header fields, such as: TCP, UDP, SCTP, or ap-
plication protocol. 

3.2. Entry of a Switch Flow Tables  

The switch flow tables contain a set of stream entries that show the rules and 
packet routing actions dictated by the controller. A feed entry is composed 
among others of: 
- match fields: match fields that define the packet flow model through the in-

stantiation of the header fields from the Ethernet layer to the Transport layer; 
- counters: updated when packets are matched and counters on packets.; 
- priority: matching precedence of the flow entry; 
- cookie: opaque data value chosen by the controller. May be used by the con-

troller to filter flow entries affected by flow statistics, flow modification and 
flow deletion requests. Not used when processing packets. 

Counters can be maintained for each flow table, stream entry, port, queue  
 

 
Figure 1. Distributed controller architecture. 
 

 
Figure 2. Main components of a flow entry in a flow table. 
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Wait. The description of the counters field gives the number of packets trans-
mitted on this queue (Transmit Packets), the number of bytes transmitted on 
this queue (Transmit Bytes), the number of packets transmitted on this queue 
and those rejected for lack of memory on the queue (Transmit Overrun Errors).  

When a counter reaches its maximum value, it returns to 0 without further 
indication. If a counter is not available, its value must be set to (−1). 

OpenFlow1.3 introduces counters into the OpenFlow protocol. The counters 
complete the queue framework already in place in OpenFlow by allowing the 
monitoring of the input rate of data processed by the controller. Specifically, 
with counters, we can monitor the traffic input rate as defined by the Figure 2 
structure. Flows can direct packets to a counter using the OpenFlow goto-meter 
statement. 

3.3. Message Flux Management between Controllers 

Flux management is shown schematically in Figure 3. We propose an analytical 
flow model based on the mathematical notion of queue M/M/1/K. J Groups 
comes with a large number of protocols including FIFO (First In First Out), To-
tal Order and Flow Control to prevent slow receivers from being overloaded by 
fast senders. We will use the Zookeeper API [14] to coordinate load balancing 
operations and then check if the migration has been successful with corollary 
load balancing. 

The proposed load balancing mechanism is a module implemented at each 
SDN controller. It is called load balancing module. This module has four com-
ponents:  

1) load measurement: measures the loads and judges if the controller load ex-
ceeds the threshold. Note and respectively the load and the predefined load 
threshold of a controller;   

2) the equilibrium decision: makes load balancing decisions or not based on 
the result of the load measurement; 

3) the load information collector: receives and then organizes information on 
its load and sends it to other controllers; 

4) switch migration: is responsible for putting one switch under control to  
 

 
Figure 3. Model of queue between controller and switch. 
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another less loaded controller to balance the load. 
The load balancing modules of the controllers cooperate with each other to 

ensure load balancing by coordinating the activities of the components. Thus, 
the measurement of the load periodically measures the loads of the controllers. 
There are three types of information that are collected locally and disclosed to 
other controllers: 

- Normal load ( max
1
2 k seuilΓ < Γ < Γ ): packet transmissions are done correctly.  

However,  
- the controller is not able to receive switch migration the value of its decision 

is (0); 

- under load ( max
1
2kΓ < Γ ): the packet transmissions are done correctly and is  

able  
To receive a switch migration. The value of it decision is (1); 

- Overload ( k seuilΓ ≥ Γ ): packet transmissions may be disturbed shortly. The 
probability of rejection of packets in the queue is high. The value of the deci-
sion is (−1).   

In the following section, we propose an analytical method of the load balanc-
ing described above. This assumption also allows the use of aggregation and di-
vision of Poisson processes to determine the intensity of the arrival packets on 
each node. Finally, it is assumed that the controller has a complete knowledge of 
the network topology, and can therefore, configure the nodes for optimal packet 
transfer. 

In [15] the authors presents a method for efficient adjustment of traffic flows 
to achieve load balance among multiple controllers using three modules com-
prising a load collector, a load balancer, and switch migrater. We propose in our 
approach, a fourth module that of the decision of balancing and migration of 
switches. This makes it possible to control migrations without overloading the 
less loaded controllers during the migration. 

4. Load Balancing Model Description 
4.1. Data Plan Level Model 

The data plan system model is considered to be an open Jackson network of J 
switches, 1,2, ,j J= �  and a single controller as shown in Figure 3. In addi-
tion, we assume that the rate of arrival in the data plan with a parameter λj and 
the probability that a packet goes from switch j to the controller Ck is ρjk. The 
probability of routing the switch r to the switch j is ρrj. In addition, the service 
rate in the switch j is μj, while it is μk for the controller. According to Jackson’s 
theorem for open queuing networks, all queues of switches behave locally like  

queues M/M/1/K with load j
j

j

γ
ρ

µ
= . 

At controllers level, the arrival in the queue is: 
1

K

k jk j
j

p
=

Γ = Γ∑  the load of the 
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controller is therefore k
k

kµ
Γ

∆ = . 

The balancing equation of the M/M/1/K system under the FIFO discipline is 
given by the formula for the input γj to node j we have in [16]: 

( ) ( )
1,

1
K

j j b ik i mj m j
j j m

P p pγ λ ξ λ
= ≠

 
∆ = + − + 

 
∑              (1) 

The knowledge of Pb (packet blocking capacity), E(Nc) (the average number of 
packets in the controller) and E(Tc) (the waiting time of the packet in the queue) 
allows to calculate Δj. 

4.2. Model at Controller Plan Level 

The model defined in the control plan consists of several controllers, where each 
would be responsible for a portion of the network. However, each switch is ma-
naged by only one controller. In its operation the controllers detect the neigh-
boring controllers and also the edge switches which are located at the edge of a 
network portion as shown in Figure 1. 

The purpose of this section is to evaluate the load of a controller and decide to 
migrate one or more switches to other less loaded controllers. We consider a 
simple controller system identical to the queue M/M/1/K whose capacity of the 
queue is finished. When a packet arrives in the system when there are already K 
packets in the queue it is rejected and lost and has no influence on the system 
(“lost customer cleared”), which explains why there is no a priori hypothesis on 
the load ρ = λT. Clients are served according to the FIFO discipline, the service 
life being constant and equal to T units of time and controller load Ck is:  

1k
k

k

λ
ρ

µ
= <  when 1,2, ,k K= �  

The distribution of the number of Ck controller packets is given by the Equa-
tion (2):  

( ) ( ) 1

1
1

nk
k k kK

k

P n P X n
ρ

ρ
ρ +

−
= = =

−
                   (2) 

The average number of packets in the controller Ck is given by the Equation 
(3): 

( ) ( )
1

1
0

1
11

KK
K

k k K
k

E N kP k Kρ ρ ρ
ρρ

+

+
=

 −
Γ = = = − −−  

∑           (3) 

and the probability of blocking, therefore the rejection is given by the formula 
(4) below : 

( ) 1

1
1

Kk
b kK

k

P n
ρ

ρ
ρ +

−
=

−
                        (4) 

Our approach corresponds to the scenario where the buffer space in the con-
troller is limited to at most K packets in the queue. Applying the formula of Lit-
tle expressing the residence time of the packet in the queue of the controller we 
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have the equation: 

( ) ( )
( )1

k
k

k b

E N
E T

P
=
Γ −

                        (5) 

There is rejection if and only if the queue with limited capacity is full. We can 
express K according to ρ and Pk : 

 
( )

ln
1

ln

b

b

P
P

K
ρ ρ
ρ

 
 − + ⋅ =                       (6) 

Formula (6) gives the capacity of the controller queue. Indeed, it makes it 
possible to evaluate the maximum number of packets in the queue according to 
the probability of blocking and the rate of charge. 

Figure 6 gives the K capacity of a controller when the probability of rejection 
is less than -n10 . It has been assumed that the messages form a fish traffic of va-
riable load ρ. The assignment of tasks to the machines is decided during the ex-
ecution phase, acdepending on the information that is collected on the state of 
charge of the system. This makes it possible to improve the execution perfor-
mance of the tasks but at the cost of a complexity in the implementation of this 
strategy. It is necessary to know the load of the switch to be migrated, then select 
the controller whose load would be below the threshold after the migration. It is 
assumed that the maximum load of a controller is maxΓ . We note the threshold  

load between max
1
2
Γ  and maxΓ . Thus in algorithm 1 of Figure 4, the load  

balancing module makes decisions against a controller based on its average load. 
The load measurement component returns to values 0, 1 or (−1) according to 

the received load measurements. The decision component of the controller k, 
decides to alert the other controllers in the event that the Status Controller (k) 
returns to value (−1). The Migration function ( ),k

i jω  of switch i of the con-
troller k towards controller j is facilitated by the classification of the load of the 
switches. 

Collection function ( )k∆  Controller k collects load information and ranks it  
 

 
Figure 4. Algorithm 1: Controller load measurement. 

https://doi.org/10.4236/eng.2018.1012060


T. Issa et al. 
 

 

DOI: 10.4236/eng.2018.1012060 871 Engineering 
 

in ascending order. Thus, ( ) { }{ }
1

Collecte ,
m

k k k
k k l r s

k
ω ω ω

=

∆ = Γ < < <�∪  gives  

information about the total load of the switch k and the load of the switches of 
its stored area in ascending order. Below is the switch migration algorithm. Al-
gorithm 1 can execute with a linear time complexity, i.e., in O(n) time. 

It is important to note that the selection of switches to migrate is delicate be-
cause other overloads and oscillations between switches and controllers must be 
avoided. To avoid that, the load collector with the controller's load information 
identifies the candidate controllers to receive a migration. 

Then, algorithm 2 of Figure 5, refines the choice by determining the appro-
priate switch. If the switch has migrated to the target controller (successful mi-
gration process) Zookeeper will return 1. Otherwise, it will raise an exception. 

Finally, after completing the migration, the controller updates its load infor-
mation and informs the other controllers via the load information component. 
Finally, after completing the migration, the controller updates its load informa-
tion and informs the others. With the help of Zookeeper, we can change the role 
of the master node and the slave node. To ensure high availability and lossless 
message delivery during migration, we use Highly Available TCP (HA-TCP). 
The migrating switch module is assisted in its task by Zookeeper. After com-
pleting the migration, the controller updates its load information and reports to 
the other controllers via the load information component. We can note than, the 
time complexity of algorithm 2 is O (n2). In the following section we evaluate 
our queueing model with different parameters by numerical analysis. Suppose 
packets arrive at all the switches with same rate λ, the rate at which the switches 
forward packets to the controller and output ports is 32 K packets per second 
and 64 K packets per second. 
 

 
Figure 5. Algorithm 2: load balancing. 
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5. Results Analysis 

The implementation of the balancing prototype is based on the Floodlight con-
troller [17]. It is a Java based OpenFlow controller of the Beacon SDN controller 
developed by Stanford. That controller is an open-source software manufactured 
by Apache, supported by a community of software developers. It offers a mod-
ular architecture, easy to expand and improve. We add the TCP-HA protocol 
and the storage module for the synchronous state fault detection. 

Figure 6 shows that the number of switch supported by a controller depends 
on its load ρ. Cbench application is a performance measurement tool designed 
to compare packages processed by OpenFlow controllers. It can simulate packets 
from OpenFlow controllers. Mininet is an OpenSources tool for emulating SDN 
networks. The mapping table has been stored on the Zookeeper servers. It can 
support, store services with strong consistency so that the result of the choices of 
switch to migrate is consistent with the expected results. During the experiment 
were used three distributed Floodlight controllers likewise having a charge rate ρ 
of 0, 8. The modules for load measurement, load collection, decision and switch 
migration are implemented on each controller. All controllers are implemented 
so that as soon as they reach 80% of their maximum load, an alert is issued by 
the decision component of the load balancing module. 

Figure 7 shows that there is switch migration at controller level (C1) towards 
(C3). In fact from 4.4 ms the curve (C1) decreases while the curve (C3) takes 
more load than expected. Some problems may occur during the experiment: 

1) all controllers reached the 80% threshold of Γmax; 
 

 
Figure 6. Average number of packets in the queue. 
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Figure 7. Balancing test result. 
 

2) two controllers that reached the 80% max threshold could migrate their 
switches to the same controller. This will cause saturation of the target control-
ler. 

In case (1), it is assumed that all controllers have reached the fixed threshold. 
In this case, it is necessary to anticipate a Floodlight controller without any load 
beforehand which will be operational as soon as all the controllers exceed the 
80% of their load. 

In case (2) we could choose in algorithm 2, the choice to migrate in priority 
the switch of the controller with the highest load. Thus, when two controllers 
have exceeded the 80% threshold, the one with a maximum load will be priori-
tized for switch migration.  

We notice that in our model, the controllers store a lot of information related 
to the other SDN controller. However, the above results show the performance 
of proposed load balancing algorithm by using analytic model. Thus, we got a 
load balanced overall costs of the network. 

6. Conclusions 

In this article, we propose a load balancing strategy for the SDN controller based 
on distributed decision. An analytical queue model that responds to this strategy 
is exposed. We describe each component of the SDN architecture, in particular 
the load balancing module. The uneven distribution of controllers’ load is an 
inevitable problem. We proposed a load balancing algorithm. The results of the 
evaluation showed that our mechanism can achieve two objectives: to anticipate 
controllers’ overloads on the one hand and to balance the load of the system 
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controllers on the other hand. 
Our future direction is to compare the results obtained from the proposed 

model with hardware implementations which will lead to interesting results. 
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