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Abstract 
A new proof for stability of delta operator simple adaptive control is presented in terms of a set of 
Linear Matrix Inequalities (LMIs). The paper shows how to design a feedforward gain to satisfy the 
LMIs over a polytope of loss of control effectiveness failures. The MATLAB Robust Control Toolbox 
is used to find the feedforward gain with the smallest norm that satisfies the LMIs. Examples are 
presented of the F/A-18 aircraft and the Innovative Control Effectors (ICE) tailless aircraft that 
show the design of a feedforward gain for a loss of control effectiveness in any one control effector. 
The designs use a fixed eigenstructure assignment controller for an inner loop augmented with 
the simple adaptive controller. Simulations of both aircraft include simultaneous loss of control 
effectiveness failure and lateral wind gust. Simulation results for the F/A-18 aircraft show that the 
adaptive controller achieves almost perfect tracking whereas the nonadaptive controller cannot 
achieve a coordinated turn when an aileron failure occurs. The ICE tailless aircraft uses sideslip, 
washed-out stability axis yaw rate, and stability axis roll rate feedback for both the inner loop ei-
genstructure assignment controller and the simple adaptive controller. However, the adaptive 
controller also uses bank angle feedback. Simulation results for the ICE tailless aircraft show that 
the adaptive controller achieves almost perfect tracking whereas the nonadaptive controller di-
verges when an all moving tip failure occurs. 

 
Keywords 
Simple Adaptive Control, Delta Domain, Parallel Feedforward, Aircraft Control Failure 

 
 

1. Introduction 
Aircraft flight control systems are designed with extensive redundancy to ensure a low probability of failure. 
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During recent years, however, several aircraft have experienced major control system failures. These have 
caused an increased interest in fault tolerant flight control systems. The objective of a fault tolerant flight control 
system is to control and safely land the aircraft in case of severely damaged or inoperable control surfaces. One 
of the approaches to fault tolerant control is active control. An active fault tolerant control system has to either 
reconfigure or adapt the controller in response to the failure. Typical design methods include multiple model, 
switching, and tuning designs; adaptive designs; and fault detection and diagnosis designs. Adaptive failure ac-
commodation designs have simpler control structures and do not rely on knowledge of the actuator failures. Di-
rect adaptive designs use the system response error to achieve desired performance. 

Early results similar to Simple Adaptive Control (SAC) were obtained by Fradkov [1] in Russia as early as 
1974-1976. Independently, Sobel, Kaufman, and Mabius [2] [3] proposed a related approach in the USA in the 
late 1970s. This result was extended and given the name simple adaptive control by Barkana and Kaufman [4] [5] 
who inserted a feedforward compensator around the plant so that the augmented system was Almost Strictly 
Positive Real (ASPR). Kaufman, Barkana, and Sobel [6] summarized stability results which showed that all 
signals in the adaptive system were bounded and that the augmented error was asymptotically vanishing if the 
augmented plant was ASPR. Other results in the design of parallel feedforward compensators which realized an 
ASPR augmented system were developed by Mizumoto, Fukui, Yamanaka, and Shah [7] using the Fictitious 
Reference Iterative Tuning (FRIT) method. 

Many authors have applied SAC to aerospace problems. For example, Mooij [8] has applied SAC to an 
Apollo shaped re-entry vehicle; Rusnak, Weiss, and Barkana [9] have applied SAC to a missile autopilot; and 
Luzi, Peaucelle, Biannic, Pittet, and Mignot [10] add a gain barrier function to SAC with application to attitude 
control of a satellite. Ulrich and Sasiadek [11] have extended SAC by using a decentralized adaptation law with 
application to a rigid joint manipulator. 

Belkharraz and Sobel [12] extended the work of Kaufman, Barkana, and Sobel [6] to include loss of control 
effectiveness failures. The percentage loss of control effectiveness is unknown and may be arbitrarily close to a 
complete loss subject to the satisfaction of the sufficient conditions for stability. A state space approach was in-
troduced for computing the feedforward compensator which guarantees that the augmented plant is ASPR by 
using the MATLAB®LMI and Optimization toolboxes. Belkharraz and Sobel [13] extended this work to include 
bounded input disturbances. It was proven that all signals were bounded for loss of control effectiveness failures 
during a bounded input disturbance. 

Barkana [14] and Ben-Yamin, Yaesh and Shaked [15] extended simple adaptive control to discrete time sys-
tems using a shift operator model. A disadvantage of the shift operator model is that the eigenvalues all ap-
proach unity as the sampling period goes to zero. Belkharraz and Sobel [16] extended simple adaptive control to 
Middleton and Goodwin’s [17] delta domain model. This model is valid for both continuous time and sampled 
data operation of the plant. An important property of the delta domain model is that the discrete time eigenva-
lues approach the continuous time eigenvalues as the sampling period approaches zero. Belkharraz and Sobel 
[16] proved that all signals were bounded for loss of control effectiveness failures during a bounded disturbance. 
The simple adaptive control algorithm was applied to a three input model of the linearized lateral dynamics of 
the F/A-18 aircraft. However, [16] used the feedforward of [13] that was designed for the continuous time model 
of the F/A-18 aircraft. The extension of the feedforward design method [12] to delta operator systems was left as 
an open question. 

In this paper, a new proof for stability of delta operator simple adaptive control is presented in terms of a set 
of Linear Matrix Inequalities (LMIs). The paper shows how to design a feedforward gain to satisfy the LMIs 
over a polytope of loss of control effectiveness failures. The results in this paper are an explicit function of the 
sampling period Δ. The MATLAB Robust Control Toolbox [18] is used to find the feedforward gain with smal-
lest norm that satisfies the LMIs. Barkana, Rusnak, and Weiss [19] have shown that a constant parallel feedfor-
ward gain D can be implemented as part of the adaptive controller. Therefore, nothing is added in parallel with 
the plant in the implementation of our adaptive controller. Examples are presented of the F/A-18 aircraft [12] 
and the Innovative Control Effectors (ICE) tailless aircraft [20] that show the design of a feedforward gain for a 
loss of control effectiveness in any one control effector. Simulations of both aircraft include simultaneous loss of 
control effectiveness failure and lateral wind gust. 

An example is presented of the F/A-18 aircraft [12] that shows the design of a feedforward gain for a loss of 
control effectiveness in any one control effector of either 92% trailing edge flap, 99% aileron, or 80% rudder. 
The design uses a fixed eigenstructure assignment controller for an inner loop augmented with the simple adap-
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tive controller. Both loops use sideslip, washed-out yaw rate, and roll rate feedback sampled at 200 Hz. Simula-
tion results show that the adaptive controller achieves almost perfect tracking whereas the nonadaptive control-
ler cannot achieve a coordinated turn when an aileron failure occurs. A second example is presented of the ICE 
tailless aircraft [20] that shows the design of a feedforward gain for a loss of control effectiveness in any one 
control effector of either 50% elevon, 50% all moving tips, or 50% yaw thrust vectoring. Here both the inner 
loop eigenstructure assignment controller and the adaptive controller use sideslip, washed-out stability axis yaw 
rate, and stability axis roll rate feedback. However, the adaptive controller also uses bank angle feedback. Both 
loops use a sampling rate of 1 kHz. Simulation results show the adaptive controller achieves almost perfect 
tracking whereas the nonadaptive controller diverges when an all moving tip failure occurs. 

A preliminary version of this paper [21] was presented at the AIAA Guidance, Navigation and Control Con-
ference. This revised version includes 1) an extended explanation of the feedforward gain design method, 2) an 
extended discussion of almost strictly positive real and its relationship to minimum phase for delta operator sys-
tems, 3) the addition of a lateral wind gust to the ICE aircraft example, and 4) new time responses that are con-
sistent for both examples with a control effectiveness failure at 5 sec and a lateral wind gust at 10 sec with a du-
ration of 10 sec. The addition of a lateral wind gust to the ICE aircraft resulted in a more difficult problem. This 
problem was solved with the novel idea of adding bank angle feedback to the adaptive controller, but not the in-
ner loop eigenstructure assignment controller, in order to achieve excellent tracking during a simultaneous loss 
of control effectiveness failure and lateral wind gust.    

2. Problem Statement 
Let ( )1,i iT T + , 00,1, ,i q=  , with 0q  finite and 0 0T = , be the time intervals on which the control surface 
failure pattern is fixed. That is, control surfaces only fail at time iT , 01, ,i q=  . Then, the plant on the interval
( )1,i iT T + , 00,1, ,i q=   is described by 

( ) ( ) ( ) ( )
( ) ( )

:
i

p p p p p d
i

p p p

x t A x t B u t B d t
P

y t C x t

 = + +


=



                           (1) 

where ( ) pn
px t ∈  is the plant state vector, ( ) m

pu t ∈  is the control input, ( ) dnd t ∈  is a bounded input 
disturbance, ( ) m

py t ∈  is the plant output, and matrices 0, , , , , ,i i
p p d p p p p pA B B C B B B Bα= ≡  are of the ap-

propriate dimensions. 

{ }1 2 0 diag , , , ; 1, 2, ,

; 0 

i i i
mi i q

I i

α α α
α

 == 
=

 

                          (2) 

0 1, if control surface fails, 1, ,
1, if surface does not fail, 1, ,

i th
k

i th
k

k k m
k k m

α
α
 < < =


= =





 

Here the failure times are 0, 1, ,iT i q=  ; which control surfaces fail at iT , 01, ,i q=   is unknown; the 
amount of the loss of effectiveness at iT  given by iα , where ( )0,1i

kα ∈  is unknown. Furthermore, once a 
control surface fails it may fail again later with a different amount of loss of effectiveness. 

The unified state space model proposed by Middleton and Goodwin [17] is valid for both the discrete and 
continuous time cases simultaneously. This unified model, which is assumed to be a minimal realization, is de-
scribed by [21]: 

( ) ( ) ( ) ( )
( ) ( )

:
i

p p p p p d
i

p p p

x t A x t B u t B d t
P

y t C x t

ρ ρ ρ
ρ ρ = + +


=

                        (3) 

The plant in Equation (3) is augmented with a fixed feedforward gain matrix D and becomes 

( ) ( ) ( ) ( )
( ) ( ) ( )

:
i

a p p p p p d
i a

p p p p

x t A x t B u t B d t
P

y t C x t Du t

ρ ρ ρ
ρ ρ = + +


= +

                       (4) 

so that ( )a
py t  is the output to be controlled and where D is square and nonsingular. We remark that in aug-
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menting the plant Equation (3) to obtain Equation (4) we are not physically modifying the system, instead we 
are just defining a metasystem that will allow us to use the simple adaptive control SAC methodology. 

The control objective is to design an adaptive control signal ( )pu t  such that all signals in the closed loop 
system are bounded and the augmented plant output ( )a

py t  tracks the output of a reference model given by 
[21]: 

( ) ( ) ( )m m m m mx t A x t B u tρ ρρ = +                                 (5) 

( ) ( )m m my t C x t=                                      (6) 

We remark that the order of the plant may be much greater than the order of the reference model. That is, 
.m pn n  

3. The General Tracking Problem 
We summarize the general tracking problem for a known plant. These results have appeared in Kaufman, Bar-
kana, and Sobel [6] and Barkana [5]. Let the input command ( )mu t  be the output of an unknown command 
generating systems of the form 

( ) ( )m v mv t A v tρ =                                      (7) 

( ) ( )m v mu t C v t=                                      (8) 

Define the ideal trajectories ( )px t∗ , such that, if the augmented plant could reach and move along them, its 
output would perfectly track the output of the reference model. That is, the ideal trajectories are targets that the 
augmented plant tries to reach or at least be close to, in order to have bounded tracking errors. Mathematically,  

( ) ( ) ( ) ( ) ( ) ,a
p p p p m m my t C x t Du t C x t y t
∗ ∗ ∗= + = =                         (9) 

where the ideal trajectories are defined as 

( ) ( ) ( )11 12p m mx t X x t X u t∗ = +                               (10) 

and the ideal control signal is defined as 

( ) ( ) ( ).p x m u mu t K x t K u t∗ = +                                (11) 

Substituting ( )px t∗  from Equation (10) into Equation (9), and using ( )mu t  from Equation (8), gives a con-
dition for the existence of the ideal target trajectories: 

( ) ( ) ( ) ( ) ( )11 12p m p v m x m u v m m mC X x t C X C v t DK x t DK C v t C x t+ + + =                 (12) 

or 

11

12 0
p x m

p v u

C X DK C

C X C DK

=

=

 +


+





                                 (13) 

Since the number ( )pn  of equations is smaller than the number ( )( )p m mn n m× +  of variables, the solu-
tions for 11

p mn nX ×∈  and 12
p mn mX ×∈  in Equation (13) are guaranteed. This implies the existence of some 

bounded trajectories in the ( )a
px t  space that the plant needs to attain perfect tracking. To see this, define

( )1
11x m pK D C C X−= −  and 1

12u pK D C X−= − . Then substituting Equation (11) into the ideal augmented plant 
given by 

( ) ( ) ( )
( ) ( ) ( )

:
i

p p p p p
i a

p p p p

x t A x t B u t
P

y t C x t Du t

ρ ρ
ρ

ρ∗

∗

∗ ∗ ∗

∗ ∗

 = +


= +
                           (14) 

we obtain 

( ) ( ).a
p my t y t
∗

=                                     (15) 

Therefore, the ideal control in Equation (11) and the ideal augmented plant in Equation (14) allow for perfect 
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tracking. We now establish a necessary condition for perfect tracking in the following lemma. 
Lemma 1: Perfect tracking is possible only if the augmented plant is ASPR and ( ) 0d t = .  
Proof: We can rewrite ( ) ( )a

p my t y t=  as ( ) ( ) ( )p p a p mC x t D u t y t+ = . Then after solving for ( )pu t  and 
substituting into the augmented plant in Equation (4) with ( ) 0d t =  we obtain 

( ) ( ) ( ) ( )1 1i i

p p p a p p p a mx t A B D C x t B D y tρ ρ ρρ − −= − +                         (16) 

Thus, since the reference model is stable, we only require that ( )1i

p p pA B D Cρ ρ −−  be stable, which is only 
true when the augmented plant given by ( ), , ,

i

p p pA B C Dρ ρ  is ASPR ([6], pp. 50-51).                      
In general, when the augmented plant does not satisfy the perfect tracking conditions due to a non-zero input 

disturbance ( )d t , we look for a controller such as that proposed by Ben-Yamin, Yaesh, and Shaked [15]: 

( ) ( ) ( ) ,pu t Kr t u t= −

                                  (17) 

with 

, ,e x uK K K K =  
     

( ) ( )( ) ( ) ( )
TT T T, ,a

y m mr t e t x t u t =   
 

where ( ) ( ) ( )a a
y m pe t y t y t= −  is the error between the reference model output and the augmented plant output, 

m m
eK ×∈  , mm n

xK ×∈  , and mm m
uK ×∈   are stabilizing and bounded gains (since the reference model is sta-

ble and ( )mu t  is bounded) and where ( )u t  is an auxiliary input signal. The control in Equation (17), howev-
er, requires calculations of 11X  and 12X  and also explicit knowledge of the system dynamics. As an alterna-
tive, the direct adaptive control algorithm known as Simple Adaptive Control (SAC) is used to calculate the 
gains which enable the plant to get bounded tracking errors. Note that SAC only requires that the plant outputs 
be available for measurement. 

4. Adaptive Control 
Algorithm 
The unified form of the adaptive algorithm is as follows 

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) .a
p e m p x m u mu t K t y t y t K t x t K t u t = − + +   

The adaptive gains are concatenated into matrix ( )K t  defined as 

( ) ( ) ( ) ( ), ,e x uK t K t K t K t=     

The concatenated gain ( )K t  is defined as the sum of a proportional gain ( )pK t  and an integral gain 
( )IK t , each of which is adapted as follows 

( ) ( ) ( )p IK t K t K t= +                                  (18) 

( ) ( ) ( )Ta
p yK t e t r t T=                                  (19) 

( ) ( ) ( ) ( )Ta
I y IK t e t r t T K tρ σ= −                             (20) 

( ) ( )( ) ( ) ( )
TT T T, ,a

y m mr t e t x t u t =   
                            (21) 

( ) ( ) ( )a a
y m pe t y t y t= −                                  (22) 

where 

( ) ( )
( )

in continuous time
in discrete time

I
I

I

K t
K t

K t
ρ

δ
= 




                         (23) 

and T and T  are time invariant weighting matrices. The σ  term in Equation (20) was originally proposed by 
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Ioannou and Kokotovic [22] and it is used to avoid divergence of the integral gains in the presence of bounded 
disturbances. 

5. Almost Strictly Positive Real and Minimum-Phase Concepts 
The following development shows sufficient conditions for a system to be ASPR in the delta domain. 

Lemma 2: The unified system described by the minimal realization in Equation (4), with ( ) 0d t = , is SPR if 
and only if there exists a positive-definite symmetric matrix P that satisfies the following LMI 

( ) ( ) ( )
T T T T

T T T
T

0.

i i

i i i i

p p p p p p p p

p p p p p p

A P PA A PA PB C A PB
L

B P C B PA D D B PB

ρ ρ ρ ρ ρ ρ ρ

ρ ρ ρ ρ ρ

 + + ∆ − + ∆
 = < − + ∆ − − + ∆  

                 (24) 

Proof: The result follows trivially from Proposition 4 in Collins, Haddad, Chellaboina, and Song [23] and the 
observation that as 0∆ → , Equation (24) approaches the continuous time result given by Lemma 4 in Kottens-
tette and Antsaklis [24].                                                                       

Note that the SPR property for the unified model requires not only T 0D D+ >  (i.e. positive-definite D), as  

in the continuous time result, but also that ( )T
T i i

p pD D B PBρ ρ+ > ∆  for a positive-definite symmetric matrix P  

that satisfies the LMI in Equation (24). Furthermore, the SPR property implies the unified model is asymptoti-
cally stable. 

Since most systems are not inherently SPR, consider the stabilizing constant output feedback gain eK  in the 
control signal given by 

( ) ( ) ( ) ,a
p e p pu t K y t v t= − +                                (25) 

where ( )pv t  is an auxiliary input command to the closed loop. Substituting ( )a
py t  from Equation (4) into 

Equation (25) yields the following algebraic loop 

( ) ( ) ( ) ( )p e p p e p pu t K C x t K Du t v t= − − +  

or 

( ) ( ) ( ) ( )e p e p p pI K D u t K C x t v t+ = − +  

Assuming that ( ) 1
eI K D −+  exists, we obtain that 

( ) ( ) ( ) ( ) ( )1 1 .p e e p p e pu t I K D K C x t I K D v t− −= − + + +  

Now we make the following definition 

( ) 1
ec e eK I K D K−+                                   (26) 

and note that ( ) 1
e ecI K D I K D−+ = − . Thus the algebraic loop becomes 

( ) ( ) ( ) ( ).p ec p p ec pu t K C x t I K D v t= − + −                           (27) 

Substituting Equation (27) into Equation (4), with ( ) 0d t = , we obtain 

( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( )
, :

i i

p

p p p ec p p p ec p p
i v

a
p ec p p ec p

x t A B K C x t B I K D v t
P

y t I DK C x t D I K D v t

ρ ρ ρ
ρ

ρ = − + −

 = − + −

                 (28) 

Letting ( ) 11i i

c p p ec p p p e pA A B K C A B K D Cρ ρ ρ ρ −−= − = − + , ( )i

c p ecB B I K Dρ= − , ( )c ec pC I DK C= −  and 

( )c ecD D I K D= −  we obtain the closed loop system 

( ) ( ) ( )
( ) ( ) ( ), :

p

p c p c p
i v a

p c p c p

x t A x t B v t
P

y t C x t D v t
ρ

ρ = +


= +
                              (29) 
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Using Lemma 1 we have that Equation (29) is SPR (or Equation (4) is ASPR) if and only if there exists a pos-
itive-definite symmetric matrix P such that 

T T T T

1 T T T T 0.c c c c c c c c

c c c c c c c c

A P PA A PA PB C A PB
L

B P C B PA D D B PB
 + + ∆ − + ∆

= < 
− + ∆ − − + ∆ 

                    (30) 

Now we derive necessary conditions for the unified system to be minimum-phase (MP). The zero dynamics 
are obtained from ( )a

py t  of Equation (4) and are given by ( ) ( ) ( )0 p p p py C x ut t tD≡ = + , which yields 

( )1 .p p pu D C x t−= −                                    (31) 

Substituting Equation (31) into the first equation of Equation (4), with ( ) 0d t = , gives the zero-dynamics 
equation 

( ) ( ).p z px t A x tρ =                                     (32) 

where 1i

z p p pA A B D Cρ ρ −= − . If the unified system in Equation (4) is MP then zA  must be asymptotically stable. 
That is, Equation (4) is MP if there exist a positive-definite symmetric matrix P such that 

T T
2 0z z z zL A P PA A PA= + + ∆ <                                (33) 

or, equivalently, all the eigenvalues of zA  must reside inside the circle of radius 1 ∆  centered at 1γ = − ∆  
in the complex plane. We are now in a position to state and prove the following lemma. 

Lemma 3: If the unified system in Equation (4), with D nonsingular and ( ) 0d t = , is MP, then it is ASPR. 
Proof: Assume that the unified model in Equation (4) is MP and D is nonsingular. We want to show that there 

exists a stabilizing, positive-definite symmetric gain eK  sufficiently large that leads to a closed loop system 
that is SPR. To this end, consider the control signal of Equation (25) that leads to a closed loop system in Equa-
tion (28), which, using Equation (26), can be rewritten as 

( ) ( )( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( )

1 11

,
1 1

:

i i

p

p p p e p p p e p
i v

a
p e p p e p

x t A B K D C x t B I K D v t
P

y t I K D C x t D I K D v t

ρ ρ ρ

ρ
ρ

− −−

− −

 = − + + +

 = + + +

            (34) 

Let ( ) ( ) ( )1
p e pv t I K D v t−= +  and ( ) ( ) ( )Ta a

p e py t I K D y t= +  to obtain 

( ) ( ) ( )

( ) ( ) ( ) ( )
, T:

i

p

p p p p
i v a

p p p e p p

x t Ax t B v t
P

y t C x t I K D Dv t

ρ
ρ

ρ = +


= + +

                      (35) 

where ( )( )11i

p p e pA A B K D Cρ ρ −−= − +  and ( ) ( )T 1
p e e pC I K D I K D C−= + + . Applying the left-hand side of  

Lemma 1 to Equation (35), and assuming a positive-definite symmetric matrix P, we have that 

TL
Λ Ψ 

=  Ψ Φ 
                                     (36) 

where 
T T A P PA A PAΛ = + + ∆  

T Ti i

p p pPB C A PBρ ρΨ = − + ∆  

( )T
T T2

i i

e p pD D D K D B PBρ ρΦ = − − − + ∆  

Showing that L < 0 would imply that Equation (35) is SPR and, by noting that ( )( ) ( ) ( )( ) ( )
T Ta a

p p p py t v t y t v t= ,  

that Equation (34) is also SPR or, equivalently, that Equation (4) is ASPR, as desired. Therefore we must show 
that for eK  sufficiently large, 0L < . To this end we use Schur’s complement lemma and note that 0L <  is 
equivalent to 0Λ <  and ( ) T 1Sch 0−Λ Φ −Ψ Λ Ψ <  ([25], p. 38). 
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First note that 0Λ <  follows from the assumption that Equation (4) is MP, since the zeros of the closed loop 
system with a constant output feedback gain eK  are identical to the zeros of the open loop system [26]. 

Next we show that ( )Sch 0Λ < . Consider Φ  in ( )Sch Λ  and note that, since D is nonsingular and  

0eK > , T2 eD K D  is the only positive-definite term in Φ . However, while ( )T
0

i i

p pB PBρ ρ∆ ≥  and ( )TD D+   

is nondefinite, these two terms are bounded and hence we can establish that, for a sufficiently large posi-
tive-defi-nite gain eK , the following inequality can be satisfied 

( )T
T T2 .

i i

p p eD D B PB D K Dρ ρ− − + ∆ <  

Thus we will have 0Φ < , which is a necessary condition for L to be negative-definite. Now consider  

( )( )11i

p p e pA A B K D Cρ ρ −−= − +  and pC , which can be rewritten as ( ) ( )T 11 1 1
p e e e e pC K D K K D K C

−− − −= + + . 

A s  
eK  becomes more positive-definite, A  and pC  approach a limiting bounded matrix and hence Ψ  is 

bounded. Let T 1Q −= −Ψ Λ Ψ . Since 0Λ < , we have that 1 0−Λ < , and since Ψ  is non-definite we have
0Q ≥ . Furthermore, since Q is also bounded, we can similarly establish that, for eK  sufficiently large, the 

following inequality will hold 

( )T
T T2 .

i i

p p eD D B PB Q D K Dρ ρ− − + ∆ + <                         (37) 

Note that as we make eK  more positive-definite, the left-hand side of Equation (37) approaches a limiting 
bounded matrix while the right-hand side becomes more positive-definite so that the inequality can be satisfied. 
Hence ( )Sch 0Λ <  for eK  sufficiently large. This completes the proof.                              

6. Stability Analysis 
Theorem 1: If the unified delta plant to be controlled is ASPR with the adaptive scheme consisting of the aug-
mented plant, the SAC control law and its gain adaptation formula, together with 1σ < ∆ , 0T > , and
( )2 0T T− ∆ > , then the gains and state signals are bounded. 
Proof: See Appendix.                                                                      
The next theorem due to Belkharraz and Sobel [16] describes a sufficient condition for the boundedness of the 

Lyapunov functions at the failure instants. 
Theorem 2: Let ( ) ( ) ( )( ) 0, , 1, 2, ,i i x IV t V e t K t i q≡ =  . The Lyapunov functions at the failure instants given 

by ( ) 0, 1, 2, ,i iV T i q=   are bounded. 

7. Robust Simple Adaptive Control Tracking 
We now extend the results of Theorem 1 to the case where the matrices ,

i

p pA Bρ ρ  are known to reside within a 
given convex hull of matrices, also known as a matrix polytope. The development here is similar to the work of 
Ben-Yamin, Yaesh, and Shaked [15] for shift operator systems. However, the results here for delta operator sys-
tems are explicitly in terms of the sampling period ∆ . 

Let iΩ  be the set of the matrices ,
i

p pA Bρ ρ  denoted by: 

{ }ii
p pA Bρ ρΩ =                                   (38) 

such that each iΩ  belongs to the polytope defined as: 

{ }, 1, 2, ,i
kCo k NΩ ∈ Ω =                                (39) 

where the kΩ ’s in Equation (39) represent the vertices of the polytope. Alternatively, Equation (38) can be de-
scribed as 

( )
1 1

, 0,1 , 1
N N

i
k k k k

k k
f f f

= =

Ω = Ω ∀ ∈ =∑ ∑                            (40) 
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Theorem 3: If each vertex kΩ  in the polytope is an ASPR plant, then throughout { }kCo Ω  the adaptive 
scheme consisting of the augmented plant, the SAC control law, and its gain adaptation formula, create bounded 
gains and state signals. 

Proof: See [21].                                                                           

8. Feedforward Gain Design 
We propose a method which uses the MATLABLMI toolbox and the Optimization toolbox to design the feed-
forward gain D. Given the strictly-proper plant in Equation (3), which may not be inherently ASPR, we seek a 
gain D to augment the system and obtain a proper plant in Equation (4) which is ASPR. This will enable us to 
use SAC to generate an adaptive control signal ( )pu t  such that all signals in the closed loop system are 
bounded and the augmented plant output ( )a

py t  tracks the output of a reference model. It follows from Lemma 
3 that if the plant is MP, with D nonsingular, then it is ASPR. Thus we use the MP property, which can be easily 
verified using Equation (33), to obtain a gain D with the smallest norm possible so that 

( ) ( ) ( ) ( )a
p p p py t y t Du t y t= + ≈ . We reiterate that in augmenting the plant we are not physically modifying the 

system, instead we are just realizing a metasystem that is ASPR and which will allow the use of SAC. 
We use a convex matrix polytope whose vertices, defined as LMIs in MATLAB, represent the unfailed plant 

and several failed plants which are augmented with the same feedforward gain D that makes each of them MP. 
Once the vertices of the polytope are MP, then all the possible plants within the polytope are also MP. Note that 
when D is not specified, Equation (33) is no longer an LMI but a bilinear matrix inequality (BMI) in variables

1D−  and P. On the other hand, when D is given, Equation (33) is an LMI in the variable P and is only feasible 
when there exists a 0P >  that satisfies it. Thus our approach consists of using an optimization routine which 
iteratively specifies and substitutes a gain D into Equation (33), and simultaneously minimizes the Frobenius 
norm of D and checks the feasibility of the LMI constraints. We minimize the Frobenius norm of D by using the 
fmincon function from the MATLAB Optimization toolbox [27] which finds the minimum of a multivariate 
function with nonlinear constraints.  

In this paper we consider a single failure in any one control effector. Suppose that the plant has m control ef-
fectors. When considering a single failure in any one control effector we define m polytopes with two vertices 
each; one vertex for the unfailed plant and the other for the failed plant. For the m polytopes we define each of 
the 2m vertices as an instance of the LMI in Equation (33) using the MATLAB LMI Control Toolbox [28]. We 
can, however, define only m vertices for each control effector failure plus a shared vertex for the unfailed plant 
for a total of 1m +  LMIs. Note that although we are allowed to define only 1m +  LMIs in our computer pro-
gram, we still retain the notion that only the unfailed plant and any other vertex representing a failed plant form 
the required convex polytope. Since P has to be positive-definite, we need to define an additional LMI that will 
guarantee that 0P >  for a total of 2m +  LMIs. In order to avoid the ambiguity that results from marginal 
infeasibility of the LMI constraints when P is close to zero, this additional LMI in our program is defined as

310P I−> , instead of 0P > . This will guarantee that P is strictly positive definite. Note that this does not affect 
the LMI constraints since each vertex is homogeneous in P. The definition of the LMI constraints is the first step 
of the design process shown in the flowchart in Figure 1. 

Next, to initialize the optimization, a gain 0D  is obtained using the randn function from MATLAB which 
returns a square matrix of pseudo-random numbers drawn from a normal distribution with a variance of unity. 
We use fmincon to find a D with a small Frobenius norm which is constrained to satisfy an LMI set that 
represents the m polytopes described above. We will perform a specified number of optimization runs with a 
certain number of iterations each. At each iteration, a D is substituted into the set of 2m +  LMIs which is then 
solved for P. We remark that P is the same for every LMI in the set. The feasibility of the LMI is monitored by 
the parameter tmin which must be strictly negative in order to guarantee the feasibility of our LMI set for a giv-
en D.  

It is possible for an optimization run to reach the maximum number of iterations before converging to a final 
gain, or to actually converge to a feedforward gain which we refer to as conD . In the former case, as shown in 
the flowchart in Figure 1, we check if the maximum number of optimization runs has been reached before ob-
taining another initial condition from the random number generator to start a new optimization run. In the latter 
case, however, we check if the norm of conD  is smaller than the norm of the initial gain. That is, if 0conD D< , 
then conD D= ; otherwise, we check if the maximum number of optimization runs has been reached before  
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Figure 1. Flowchart for design of feedforward gain 
using MATLABLMI and Optimization toolboxes.                          

 
moving on to another initial condition and a new optimization run. This process is repeated until the maximum 
number of runs has been reached, at the end of which, D is the gain that makes the plant and the failed plants MP. 
For the examples in the next section we perform 300 optimization runs with 9999 iterations each. 

It is important to note that by considering an LMI set consisting of a single polytope corresponding to a fail-
ure in one control effector, and using the D obtained from the optimization, we can increase the percentage of 
loss of control effectiveness in steps of 0.1 and check if the feasibility of the LMI set is maintained for additional 
percentage failure. Depending on the type of failure, the D may or may not allow more loss of control effective-
ness than the amount that was initially defined for each failure. 

We remark that when searching for a D for plants with a single failure in any one control effector, the LMI set 
in design process can be defined to include only one polytope at a time. This would require, however, finding a 
different D for each type of effector failure and so we would be forced to first identify the failure in order to use 
the appropriate feedforward gain. Furthermore, no claims are made about the convergence rate and optimality of 
the proposed feedforward design process. 

9. Examples 
9.1. F/A-18 Aircraft 
9.1.1. F/A-18 Aircraft and Reference Model 
Consider the linearized lateral dynamics of the F/A-18 aircraft described in [12]. The rigid body states are lateral 
velocity v (ft/s), yaw rate r (deg/s), roll rate p (deg/s), and bank angle φ  (deg). The control surface deflections 
are asymmetric trailing edge flaps teδ  (deg), ailerons aδ  (deg), and rudder rδ  (deg). The deflection limits, 
taken to be the same as those for the F-16 aircraft [29], are 25teflapδ ≤  , 21.5aileronδ ≤  , and 30rudderδ ≤  . 
The deflection rate limits are 60teflapδ ≤  (deg/s), 80aileronδ ≤  (deg/s), and 120rudderδ ≤  (deg/s). The mea-
surements are sideslip angle β  (deg), washed out yaw rate wor  (deg), and roll rate p (deg/s). The unfailed 
aircraft is described by the triple ( )0, ,p p pA B C , where the matrices 0,p pA B  and pC  are shown in [12]. 

The continuous time model ( )0, ,p p pA B C  is converted to the delta model using the c2del function from the 
MATLAB Delta Toolbox with a sampling rate of 200 Hz. Here we use the same output feedback delta domain 
gain matrix eigdK  from [16] shown in Table 1, which was designed using eigenstructure assignment for the 
unfailed aircraft. This constant output feedback gain will be placed around both the aircraft and the reference 
model. Thus, the adaptive algorithm will control the closed loop aircraft. The block diagram of the adaptive 
control system is shown in Figure 2.  

Barkana, Rusnak, and Weiss [19] have shown that a constant parallel feedforward gain D can be implemented 
as part of the adaptive controller. Therefore, nothing is added in parallel with the aircraft in the implementation 
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of the adaptive controller. However, the gain D does create an algebraic loop. Barkana, Rusnak, and Weiss [19] 
eliminate the algebraic loop by using the augmented error ( )a

ye t  to compute the adaptive gain ( )K t  in Equa-
tion (18) and then using its value to obtain the adaptive control signal in the form 

( ) ( ) ( ) ( ) ( )( )1 ,p e e y x m u mu t I DK K e t K x t K u t−= + + +                     (41) 

As shown in Figure 3. The equivalence between Figure 2 and Figure 3 is shown in detail in [19]. Therefore,  
 

Table 1. Eigenstructure assignment gain for the F/A-18 aircraft from Belkharraz and 
Sobel [16].                                                                                                       

 
eigdK  

β  wor  p  

teflapδ  0 0 0 

aileronδ  −1.8674 0.4580 0.1100 

rudderδ  1.6969 −1.1917 −0.0650 

 

 
Figure 2. Block diagram of the simple adaptive controller for accomodation of 
aircraft loss of control effectiveness failures.                                                        

 

 
Figure 3. Block diagram of the implementation of the simple adaptive controller 
without algebraic loop.                                                                                                       
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the computer simulations of the adaptive controllers for the two aircraft examples presented in this paper do not 
add anything in parallel with the aircraft. 

The closed loop unfailed aircraft (plant) in the delta domain is described by the triple  

( )0 0
, ,p p eig p p pA B dK C B Cδ δ δ− . We choose the reference model to be the same triple. Namely,  

0

m p p eig pA A B dK Cδ δ δ= − , 
0

m pB Bδ δ= , and m pC C=  so that, when there are no failures, the reference model is 
exactly the unfailed aircraft with eigenstructure feedback eigdK . The reference model input ( )mu t  is given as 

( )
( )
( )
( )

( )
1,3
2,3
3,3

eig

m eig c

eig

dK
u t dK p t

dK

 
 =  
  

                              (42) 

where ( )cp t  is the pilot roll rate command described by 

( )

0, 0 2
, 2 6

0, 6 10
, 10 14

0, 14 18
, 18 22

0, 22 26
, 26 30

0, 30 35

m

m

c

m

m

t
p t

t
p t

p t t
p t

t
p t

t

≤ <
 ≤ <
 ≤ <

− ≤ <= ≤ <
 ≤ <

≤ <
− ≤ <
 ≤ <

                             (43) 

and mp  is the magnitude of the roll rate pulse in deg/sec. 

9.1.2. Bounded Input Disturbance 
In this example we consider a bounded input disturbance in the form of a lateral gust ( )gv t , which is described 
in [16] and given by 

( ) ( )
0 0

π
1 cos 0

2

 

 

 

j

jm
g j

m j

t T

t Tvv t t T T
T

v t T T

 − <


 −  = − ≤ − ≤    
 − >

                     (44) 

where 0, 0,1, ,jT j m=   are the instants at which the disturbance occurs and where mv  is the lateral gust mag-
nitude. The gust length T is chosen to be to be the inverse of the natural frequency nω  of the closed loop com-
plex eigenvalue pair of the unfailed aircraft. Here the dutch roll eigenvalues are 2 2dr jλ = − ±  so that

1 0.3536nT ω= =  sec. 

9.1.3. Feedforward Gain for the F/A-18 Aircraft 
For the F/A-18 aircraft there are a set of five LMIs. These include 1) an LMI representing the unfailed aircraft, 2) 
an LMI for positive definite P, and 3) three LMIs for the three failure polytopes. Each of the three failure poly-
topes has two vertices with one vertex for the unfailed aircraft and a second vertex for the aircraft with one con-
trol effector failure. So the three failure LMIs represent a) the aircraft with a failure in the trailing edge flaps, b) 
the aircraft with a failure in the ailerons, and c) the aircraft with a rudder failure. Belkharraz and Sobel [16] used 
an 80% effectiveness failure in any one control effector, and so we choose each of the failed vertices for the 
F/A-18 aircraft to be defined with an 80% loss of control effectiveness. Using our proposed method with a sam-
pling rate of 200 Hz, we found the feedforward gain matrix D shown in Table 2 that has a Frobenius norm of 
0.0889. This feedforward gain was obtained by choosing the D with minimum Frobenius norm from among 
those D matrices with positive definite P. Out of the 300 optimization runs, 16 converged to a feasible feedfor-
ward gain; the maximum Frobenius norm was 0.8457.  
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Table 2. Feedforward gain for the F/A-18 aircraft.                                                    

 
D  

β  wor  p  

teflapδ  −0.0025 0.0217 0.0041 

aileronδ  −0.0138 0.0141 −0.0220 

rudderδ  0.0295 −0.0171 −0.0282 

 
Once the gain D was found, we considered each of the three two-vertex polytopes that include the unfailed 

aircraft and the aircraft with one control effector failure. By modifying our LMI program to include only three 
LMI’s (one for the unfailed aircraft, one for the aircraft with one failure, and one for the 310P I−>  constraint) 
we search for a positive definite P with the same feedforward matrix obtained in the previous optimization. 
Clearly, when the effectiveness failure is at most 80%, a feasible solution to the new system of LMI's is guaran-
teed to exist. However, if we keep increasing the effectiveness failure in steps of 0.1 we find that the single 
failed F/A-18 aircraft remains minimum-phase for a 92% trailing edge flap failure, a 99% aileron failure, and a 
80% rudder failure. 

9.1.4. Weighting Matrices for the F/A-18 Aircraft 
We now describe our selection process for the weighting matrices for the F/A-18 aircraft using a computer si-
mulation with the reference model input in Equation (42), but without the lateral gust in Equation (44). In order 
to simplify the approach, we first let T  and T be diagonal matrices and also let T T= . We then take our first 
set of candidates to be 11T T I= = . A computer simulation for this candidate shows no acceptable tracking of 
the reference model for the first 20 seconds of the simulation and so it is rejected. We then choose to make the 
weights for the a

ye ’s (the first three entries in T  and T) larger. That is, we choose our second set of candidates 
as ( )06 06 06diag 1 1 1 11111111T T e e e+ + + = =   . A computer simulation for this candidate shows acceptable track-
ing everywhere except at 2t =  sec where there is an unacceptable jump which results from an unrealistic def-
lection rate in the control signals, and so it is rejected. We now let T T≠  and recall that T  is the weighting 
matrix for the proportional part of the adaptive algorithm. Therefore, we make an effort to have the entries of 
T  be smaller than those of T. This is because we want to avoid having any jumps from appearing in the simu-
lation. To this end we choose our third set of candidates to be ( )08 08 08diag 1 1 1 11111111T e e e+ + + =    and

( )05 05 05diag 1 1 1 11111111T e e e+ + + =   . A computer simulation shows that although its magnitude has been de-
creased, the jump in the response still persists, and so we reject it. Thus we again choose to change the entries of
T  and so our fourth set of candidates is taken to be ( )08 08 08diag 1 1 1 11111111T e e e+ + + =    and 

( )06 05 04diag 1 1 1 11111111T e e e+ + + =   . The computer simulation shows that the jump has almost disappeared but 
not completely. We note that the jump is larger in the roll rate output and so we choose to modify the third entry of 
T, which is the weighting entry for the roll rate measurement. Thus we take ( )08 08 06diag 1 1 1 11111111T e e e+ + + =    
and ( )06 05 04diag 1 1 1 11111111T e e e+ + + =    as our fifth set of candidates. The computer simulation shows the 
best tracking performance of all attempts. However, we see some undesirable high frequency oscillations in the 
measurements. Now that we have a good set of candidates for the weighting matrices, we attempt to eliminate 
the oscillation by modifying the other entries of the matrices. To this end we let  

( )08 08 06 01 01 01 01 01diag 1 1 1 1 1 1 1 1 111T e e e e e e e e+ + + − − − − − =    and ( )06 05 04 01 01 01 01 01diag 1 1 1 1 1 1 1 1 111T e e e e e e e e+ + + − − − − − =    
be our sixth set of candidates. A computer simulation shows that the oscillation is reduced considerably and so 
we proceed again to further decrease the weights for the mx ’s in each matrix until the oscillation completely 
disappears. Thus we arrive at our final choice for T  and T as 

( )08 08 06 04 04 04 04 04diag 1 1 1 1 1 1 1 1 111T e e e e e e e e+ + + − − − − − =    and 

( )06 05 04 04 04 04 04 04diag 1 1 1 1 1 1 1 1 111T e e e e e e e e+ + + − − − − − =   .  

9.1.5. Simulation Results for the F/A-18 Aircraft 
We perform non-adaptive simulations with the fixed gain controller eigdK  for the F/A-18 aircraft with 

10mp = . The single control effector failures occur at 5t =  sec. A wind gust of magnitude 15mv =  (ft/s), as 
described in Equation (44), occurs at 10t =  sec and has a duration of 10sec. The non-adaptive simulation cor-



A. Cano, K. Sobel 
 

 
186 

responds to letting 0, 0,x e uK K K I= = = , and also omitting D. Both reference model and aircraft have zero in-
itial conditions. The non-adaptive time responses are shown on the left side of Figure 4, where the black line 
corresponds to the reference model, the red line corresponds to a 92% trailing edge flap failure, the green line 
corresponds to a 99% aileron failure, and the blue line corresponds to a 80% rudder failure. Observe the unac-
ceptable tracking performance in sideslip angle β , yaw rate r, and roll rate p for each surface failure. Further-
more, the coordinated turn is not achieved when an aileron failure occurs. Recall that here we feed back the 
washed out yaw rate wor  (deg/s), but we plot the true yaw rate r (deg/s).  

Finally, we perform adaptive simulations of the F/A-18 to accommodate the same surface failures and input 
disturbance using the proposed adaptive controller with feedforward matrix D as given in Table 2. The weight-
ing matrices used in the simulation are the same as those obtained above for the unfailed adaptive response. 
Here we let 0.002σ = . The adaptive time responses are shown on the right side of Figure 4. The adaptive con-
trol surface deflections are rate limited. Observe the almost perfect tracking in sideslip angle β , yaw rate r, and 
roll rate p. 

9.2. Tailless Aircraft 
9.2.1. Tailless Aircraft and Reference Model 
We now consider the linearized dynamics of the Innovative Control Effectors (ICE) aircraft which was de-
scribed in Nieto-Wire and Sobel [20]. The state variables are velocity TV  (ft/s), angle of attack α  (rad), pitch 
angle θ  (rad), pitch rate q (rad/s), engine power level, sideslip angle β  (rad), bank angle φ  (rad), roll rate p 
(rad/s), and yaw rate r (rad/s). The control effectors are throttle thδ  (0-1), symmetric pitch flap pflapδ  (deg), 
left elevon elδ  (deg), right elevon erδ  (deg), left all moving tip amtlδ  (deg), right all moving tip amtrδ  (deg), 
pitch thrust vectoring ptvδ  (deg), and yaw thrust vectoring ytvδ  (deg). The deflection limits are 30pflapδ ≤  ,

30elevonδ ≤  , 30 60amtδ− ≤ ≤  , 15ptvδ ≤  , 15ytvδ ≤  . The deflection rate limits are 50pflapδ ≤  deg/s, 
150elevonδ ≤  deg/s, 150amtδ ≤  deg/s, 60ptvδ ≤  deg/s, 60ytvδ ≤  deg/s. 

 

 
Figure 4. FA/18 Aircraft at 200 Hz. Failures at t = 5 sec: 92% trailing edge flap, 99% 
aileron, and 80% rudder failures. 15 fps lateral wind gust disturbance at t = 10 sec 
with duration of 10 sec.                                                                                                       



A. Cano, K. Sobel 
 

 
187 

In this example we consider the linearized lateral dynamics. The lateral control effectors are left elevon elδ  
(deg), right elevon erδ  (deg), left all moving tip amtlδ  (deg), right all moving tip amtrδ  (deg), and yaw thrust 
vectoring ytvδ  (deg). The sensor measurements are sideslip angle β  (deg), roll rate p (deg/s), and yaw rate r 
(deg/s). Nieto-Wire and Sobel [20] transformed the lateral dynamics from body axis to stability axis so that sta-
bility axis roll rate sp  could be decoupled from sideslip angle. For the transformation the value of trim alpha 
used is 0.1569 rad. The states are now sideslip angle β , bank angle φ , stability axis roll rate sp , stability axis 
yaw rate sr , and a washout filter state wox . The lateral feedbacks are chosen to be β , sp , and washed  
out stability axis yaw rate ( )s wo

r .  

The unfailed continuous time aircraft model is described by the triple ( )0, ,p p pA B C  where the matrices pA , 
0
pB , and pC  are given in [20]. The continuous time model for the ICE aircraft is converted to the delta model 

by using the c2del function from the MATLAB Delta Toolbox with a sampling rate of 1 kHz. We use the me-
thod proposed in [20] to compute the eigenstructure assignment gain 

ICEeigdK  for the unfailed aircraft which is 
shown in Table 3. We assign the desired dutch roll damping ratio ζ , natural frequency nω , and roll subsi-
dence eigenvalues as 0.707ζ = , 3nω = , and 4rollλ = − . This constant output feedback gain 

ICEeigdK  will be 
placed around both the aircraft and the reference model. Thus, the adaptive algorithm will control the closed 
loop aircraft.  

The closed loop unfailed aircraft in the delta domain with eigenstructure assignment is described by the triple 

( )0 0
, ,

ICEp p eig p p pA B dK C B Cδ δ δ− . The reference model is chosen to be the same triple so that 
0

ICEm p p eig pA A B dK Cδ δ δ= − , 
0

m pB Bδ δ= , m pC C= . Thus, when there are no failures the reference model is the air-
craft with eigenstructure assignment gain 

ICEeigdK . The reference model input ( )mu t  is given as 

( )

( )
( )
( )
( )
( )

( )

1, 2

2, 2
4 3, 2
3

4, 2

5, 2

ICE

ICE

ICE

ICE

ICE

eig

eig

eigm c

eig

eig

dK

dK

dKu t p t
dK

dK

 
 
 
 =  
 
 
  

                              (45) 

where ( )cp t  is the pilot roll rate command given in Equation (43). The 4/3 gain in ( )mu t  has been added to 
the pilot stick for the purpose of achieving zero steady-state error to a sp  command. 

9.2.2. Feedforward Gain for the Tailless Aircraft 
In this example we consider loss of control effectiveness failures in any one control effector. Here we add bank 
angle feedback in the implementation of the adaptive controller only. We linearly map the five lateral control 
effectors into four, and use left and right elevons, the all moving tips, and yaw thrust vectoring to yield a total of 
four control surfaces. That is, we map left and right all moving tips into a single control signal as:  

( ) 2amt amtl amtrδ δ δ= − . This is done because our adaptive algorithm requires that the number of inputs equal 
the number of outputs. We also require that the failures be symmetric; otherwise cross coupling effects between 
the lateral and longitudinal axes must be considered.  

 
Table 3. Eigenstructure assignment gain for the tailless aircraft using a sampling rate 
of 1 kHz.                                                                                                       

 
ICEeigdK  

β  sp  ( )s wo
r  

elδ  −11.0122 0.6559 2.9599 

erδ  11.0122 −0.6559 −2.9599 

amtlδ  12.4110 −0.3346 −3.6749 

amtrδ  −12.4110 0.3346 3.6749 

ytvδ  4.7580 −0.1926 −1.3549 
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For the tailless aircraft we define a set of five LMIs. These include 1) an LMI representing the unfailed air-
craft, 2) an LMI for positive definite P, and 3) three LMIs for the three failure polytopes. Each of the three fail-
ure polytopes has two vertices with one vertex for the unfailed aircraft and a second vertex for the aircraft with 
one control effector failure. So the three failure LMIs represent a) the aircraft with a failure in the elevons, b) the 
aircraft with a failure in the all moving tips, and c) the aircraft with a yaw thrust vectoring failure. Since we do 
not know in advance how much loss of control effectiveness can be effectively accommodated by the adaptive 
controller, we choose each of the failed vertices for the tailless aircraft to be defined with a 50% loss of control 
effectiveness. Using our proposed method with a sampling rate of 1 kHz, we found the feedforward gain matrix 
D shown in Table 4 that has a Frobenius norm of 0.0043. This feedforward gain was obtained by choosing the 
D with minimum Frobenius norm from among those D matrices with positive definite P using 300 optimization 
runs. Out of the 300 optimization runs, 29 converged to a feasible feedforward gain; the maximum Frobenius 
norm was 4.3351.  

In this case increasing the percentage of loss of control effectiveness failure for each polytope individually, 
with the D obtained from the optimization, does not yield feasible LMIs beyond 50%.  

9.2.3. Weighting Matrices for the Tailless Aircraft 
An approach similar to that described for obtaining the weights for the adaptive algorithm in the FA-18 aircraft 
example yields the weights ( )08 08 08 08diag 1 1 1 1 111111111T T e e e e+ + + + = =   .  

9.2.4. Simulation Results for the Tailless Aircraft 
We now perform computer simulations using the ICE model for different control effector failures. Consider the 
roll rate pilot command ( )cp t  is given by Equation (43). We first perform non-adaptive simulations with the 
fixed gain controller 

ICEeigdK  for the ICE aircraft with 1mp = . The single control effector failures occur at
5t =  sec. In this simulation we do not include a wind gust disturbance. The non-adaptive simulation corres-

ponds to letting 0, 0,x e uK K K I= = = , and also omitting D. Both reference model and aircraft have zero initial 
conditions. The non-adaptive time responses are shown on the left side of Figure 5, where the black line cor-
responds to the reference model time response, the red line corresponds to a 50% elevon failure, the green line 
corresponds to a 50% all moving tip failure, and the blue line corresponds to a 50% yaw thrust vectoring failure. 
Observe the poor tracking performance in sideslip angle β , stability axis yaw rate sr , and stability axis roll 
rate sp  for each surface failure. Recall that we feed back the washed out stability axis yaw rate ( )s wo

r  (deg/s) 
but here we plot the stability axis yaw rate sr  (deg/s).  

Next we perform adaptive simulations of the ICE aircraft to accommodate the surface failures and input dis-
turbance using the proposed adaptive controller with feedforward matrix D as given in Table 4. We initialize the 
adaptive gains as 0, 0,x e uK K K I= = = , which corresponds to initializing the failed plant with the eigenstruc-
ture assignment feedback which was designed for the unfailed aircraft. Here we combine the five lateral control 
signals from ( )mu t  into four signals that go into the adaptive controls. The adaptive algorithm yields four 
adaptive control signals which are then mapped back into five control signals for the tailless aircraft. The 
amount of failure and weighting matrices used in the adaptive simulation are the same as those used in the 
non-adaptive simulation. Here we let 0.002σ = . The adaptive time histories are shown on the right side of 
Figure 5. The adaptive control surface deflections are rate limited. Observe the almost perfect tracking perfor-
mance of the adaptive controller in sideslip angle β , stability axis yaw rate sr , and stability axis roll rate sp   
 

Table 4. Feedforward gain for the tailless aircraft using a sampling rate of 1 kHz.                                                    

 
D   

β  ( )s wo
r  sp  φ  

elδ  −1.446E−05 −6.264E−04 1.265E−03 1.813E−04 

erδ  −2.572E−05 3.481E−04 9.448E−04 −9.785E−04 

amtδ  −1.619E−03 1.489E−04 −6.865E−04 −9.856E−04 

ytvδ  1.228E−03 −1.445E−03 1.133E−04 1.133E−04 
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Figure 5. Tailless Aircraft at 1 kHz. Failures at t = 5 sec: 50% in any one control effector. No 
wind gust disturbance.                                                                   

 
for each control effector failure.  

For the following set of simulations we introduce a wind gust disturbance of magnitude 5mv =  (ft/s) as de-
scribed in Equation (44), which occurs at 10t =  sec and has a duration of 10 sec. The gust length T in Equation 
(44) is chosen to be to be the inverse of the natural frequency nω  of the closed loop complex eigenvalue pair of 
the unfailed aircraft; here 3nω =  so that 1 0.3333nT ω= =  sec. Here the amount of failure and weighting 
matrices are the same as those used in the simulations of Figure 5. The non-adaptive time responses are shown 
on the left side of Figure 6, where the black line corresponds to the reference model time response, the red line 
corresponds to a 50% elevon failure, the green line corresponds to a 50% all moving tip failure, and the blue line 
corresponds to a 50% yaw thrust vectoring failure. By comparing the left sides of Figure 5 and Figure 6, we 
can clearly see that the fixed controller performance deteriorates considerably due to the disturbance. Observe 
how the fixed controller, on the left side of Figure 6, starts diverging once the wind gust occurs, as can be seen 
in the bank angle and yaw rate outputs, and does not recover. Compare this to the response of the adaptive con-
troller shown in the right side of Figure 6 which exhibits almost perfect tracking and is able to successfully ac-
commodate considerable loss of control effectiveness failures even in the presence of a bounded lateral wind 
gust disturbance.  

10. Conclusion 
A new proof that yields a sufficient condition for stability in the delta domain for simple adaptive control in 
terms of a linear matrix inequality has been presented. We have shown how to compute a feedforward gain D  
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Figure 6. Tailless Aircraft at 1 kHz. Failures at t = 5 sec: 50% in any one control effector. 5 fps 
lateral wind gust disturbance at t = 10 sec with duration of 10 sec.                                   

 
that makes the augmented plant minimum-phase, and thus ASPR, by defining an LMI set that represents a con-
vex control effector failure polytope. The approach consists of minimizing the Frobenius norm of D subject to 
LMI constraints. The designs used a fixed eigenstructure assignment controller for an inner loop augmented 
with the simple adaptive controller. The adaptive algorithm and the proposed method to compute the feedfor-
ward gain have been applied to both an F/A-18 aircraft and a tailless aircraft with lateral wind gust disturbances. 
A feedforward gain was designed for an F/A-18 aircraft for a loss of control effectiveness in any one control ef-
fector of 92% trailing edge flap, 99% aileron, or 80% rudder. Furthermore, a feedforward gain was designed for 
a tailless aircraft for a loss of control effectiveness in any one control effector of 50% elevon, 50% all moving 
tips, or 50% yaw thrust vectoring. Computer simulations for both aircraft with a failure in any one control ef-
fector under lateral gust conditions exhibited almost perfect tracking with the adaptive algorithm whereas the 
nonadaptive F/A-18 controller could not achieve a coordinated turn when an aileron failure occurred and the 
nonadaptive tailless aircraft controller diverged when an all moving tip failure occurred.  
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Appendix 
A.1. Preliminary Result: Closed Loop System Equations 
The closed loop system is given by [21] 

( ) ( ) ( ) ( )i

x p x p de t A e t B u t B d tρ ρ ρρ = + − 

                               (46) 

( ) ( ) ( )a
y p x pe t C e t D u t= + 

                                    (47) 

where ( )ˆi

p p p e pA A B K Cρ ρ ρ= − , ( )ˆi i

p p eB B I K Dρ ρ= − , ( )ˆ
p p e pC C DK C= − , ( )ˆ

p eD D I K D= − , and  

( ) 1ˆ
e e eK I K D K

−
= +   .  

A.2. Proof of Theorem 1 
Select a positive quadratic Lyapunov function ( ),i x IV e K  such that its derivative iVρ  is negative definite for 
some ( ),i x I LV e K V>  for ( )1 0, , 0,1, 2, ,i it T T i q+∈ =  . The Lyapunov candidate must include all dynamic 
values ( )xe t  and ( )IK t  of the system, namely 

( ) ( )( ) ( ) ( ) ( )( ) ( )( ){ }TT 1, .i x I x x I IV e t K t e t Pe t tr K K t T K K t−= + − −                  (48) 

Note that ( )0, 0V K = , ( ) ( )( ), 0xV e t K t >  for all ( ) ( )( ) ( ), 0,xe t K t K≠  , and ( ) ( )( ),xV e t K t →∞  as
( )xe t →∞  or ( )K t →∞ .Applying the unified operator to Equation (48) along the trajectories of system in 

Equations (46)-(47) results in 

( ) ( )( ) ( )( ) ( ) ( ) ( )( ) ( )( ) ( )( )
( )( ) ( )( ) ( )( ) ( )( ){ }

T T T

T T1 1

,i x I x x x x x x

I I I I

V e t K t e t Pe t e t P e t e t P e t

tr K K t T K K t K K t T K K t

ρ ρ ρ ρ ρ

ρ ρ− −

= + + ∆

+ − − + − −   

 

( ) ( )( ),i x IV e t K tρ  can be written as follows [21]: 

( ) ( )( )
( ) ( ) ( )( ) ( ) ( ) ( ) ( ) ( )( )

( ) ( ) ( )( ) ( ) ( ) ( )( )
( ) ( ) ( )( ) ( ) ( ) ( )( )

( ) ( ) ( )( ) ( )( ) ( ){ }
( )( ) ( )( ){ }

T T

T

T

T T1

T1

,

2

i x

p x p d x x p x p d

p x p d p x p d

T
p x p p x p

a
p y I I

I I

V e t K t

A e t B u t B d t Pe t e t P A e t B u t B d t

A e t B u t B d t P A e t B u t B d t

u t C e t D u t u t C e t D u t

tr K t r t e t K K t T K t

tr K t T K t

ρ ρ ρ ρ

ρ ρ ρ ρ

ρ

σ

ρ ρ

−

−

= + − + + −

+ ∆ + − + −

− + − +

− − −

+ ∆

  

 

  

 

  

   



 

Then, 

( ) ( )( ) ( ) ( )1 2,i x IV e t K t t tρ λ λ= +                             (49) 

where 

( ) ( ) ( ) ( )
( )

T T
1

x
x

e t
t e t u t

u t
λ

 
 = Γ   

 




                            (50) 

where 

( ) ( ) ( )
( ) ( ) ( )

T T TT

T T TT

p p p p p p p p

p p p p p p p p

A P PA A PA PB C A PB

B P C B PA D D B PB

ρ ρ ρ ρ ρ ρ ρ

ρ ρ ρ ρ ρ

 + + ∆ − + ∆ Γ =  
− + ∆ − − + ∆  

      

      

                (51) 

and 
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( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( )( ) ( )( ) ( ){ } ( )( ) ( )( ){ }

T T T T T T T
2

T TT T T T

T TT1 12

d x x d d p x d p

x p d p d d d

a
p y I I I I

t d t B Pe t e t PB d t d t B PA e t d t B PB u t

e t A PB d t u t B PB d t d t B PB d t

tr K t r t e t K K t T K t tr K t T K t

ρ ρ

ρ ρ

λ

σ ρ ρ− −

= − − − ∆ − ∆

− ∆ − ∆ + ∆

− − − + ∆

 



 





 

( )2 tλ  can be written as follows [21]: 

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

( )( ) ( ) ( ) ( ) ( ) ( ) ( )( ) ( )( ){ }
( ) ( )( ){ } { }

( )( ) ( )( ) ( )

T T T T T T T
2

T TT T T T

T TT 1

1 T 2 1 T

T

2 2

2 1

2 2

d x x d d p x d p

x p d p d d d

a a
y y I I

I

a
y I

t d t B Pe t e t PB d t d t B PA e t d t B PB u t

e t A PB d t u t B PB d t d t B PB d t

e t e t r t T T r t tr K t K T K t K

tr K t K T K tr KT K

e t K t K r t

ρ ρ

ρ ρ

λ

σ σ

σ σ σ

σ

−

− −

= − − − ∆ − ∆

− ∆ − ∆ + ∆

− − ∆ − − ∆ − −

− − ∆ − + ∆

− ∆ − −

 



 



 

   

 ( )( ) ( )
Ta

ye t Kr tσ∆ 

     (52) 

If the system in Equations (46)-(47) is ASPR, then 0Γ <  which implies ( )1 0tλ < . Using an analysis simi-
lar to appendix 4A in Kaufman, Barkana, and Sobel [6], we first consider the trajectories where ( )a

ye t  re-
mains bounded while ( )IK t K−   and ( )xe t  increase without bound. Recall that the components ( )mx t , 

( )mu t , and ( )d t  are bounded because the reference model and the input disturbance are assumed to be 
bounded, then there exist positive constants 1 2 3 4 5 6 7 8 9 10 11 12, , , , , , , , , , ,α α α α α α α α α α α α , and 13α  such that 

( ) ( )( ) ( ) ( )( ) ( ) ( )

( ) ( )

2

1 2 3 4

2

5 6 7

,

.

i x I x x

I I

V e t K t e t u t e t u t

K t K K t K

ρ α α α α

α α α

< − + + +

− − + − +

 

 

               (53) 

For any real numbers x and y there exists some positive finite scalars 1 2 3, ,a a a , and 4a  such that 
2 2

1x a x y< +                                      (54) 

2 2
2y a x y< +                                      (55) 

( )2 2 2
3x a x y< +                                     (56) 

( )2 2 2
4y a x y< +                                     (57) 

Then using Equations (54)-(57) we have 

( ) ( )( ) ( ) ( )( ) ( )( )
( ) ( )( ) ( )

2 2

8 1 2 5

2 2

9 1 2 5 10

,i x I x I

x I

V e t K t e t u t K t K

e t u t K t K

ρ α α α α

α α α α α

< − + + −

+ + + − +









             (58) 

or 

( ) ( )( ) ( ) ( )( ) ( )
2

2 2

11 1 2 5 12 13, .i x I x IV e t K t e t u t K t Kρ α α α α α α < − + + − − + 
 



  

Let ( ) ( ) ( )( ) ( )
2 2

1 2 5x If t e t u t K t Kα α α= + + −   then 

( ) ( )( ) ( )( )2

11 12 13, .i x IV e t K t f tρ α α α< − − +                          (59) 

We can see from Equation (59) that if ( ) ( )1

2

12 13 11Lf t V α α α> = + , then ( ) ( )( ),i x IV e t K tρ  is negative.  
Observe that there exist some positive finite constants 14α , and 15α  such that 

( ) ( ) ( )
22

14 15 ,i x IV t e t K t Kα α< + −                               (60) 
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which implies that ( ) ( )iV t f t≤ . Since ( )f t  is positive, this implies ( ) ( )( ) ( ),i x IV e t K t f tρ < −  for any
( ) ( )

1i Lf t V t V≥ >  and for some 0> . Hence ( ) ( )( ) ( ) ( ),i x I iV e t K t f t V tρ < − ≤ −   for any ( )
1i LV t V>  and 

for some 0> . 
Now consider the trajectories where ( )a

ye t  together with ( )IK t K−   and ( )xe t  increase without 
bound. We have that 

( ) ( )( ) ( ) ( )( ) ( ) ( )

( ) ( ) ( ) ( )
( ) ( ) ( ) ( ) ( )

2

1 2 3 4

2 22
7 8 10

9 11 12

,

.

i x I x x

a
y I I

a a
y I y

V e t K t e t u t e t u t

e t r t K t K K t K

e t K t K r t e t r t

ρ α α α α

α α α

α α α

< − − + +

− ⋅ − − + −

+ ⋅ − ⋅ + + ⋅

 

 



              (61) 

There exist positive constants 1 2 3 4 5 6 7 8, , , , , , ,β β β β β β β β , and 9β  such that 

( ) ( )( ) ( )( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( )

2 2 22
1 2 3 4

5 5 6

, a
i x I y I

a a
y I y

V e t K t f t e t r t K t K

e t K t K r t e t r t

ρ β β β β

β β β

< − − − − −

+ ⋅ − ⋅ + ⋅ +





               (62) 

Rewrite Equation (62) as 

( ) ( )( ) ( )( ) ( ) ( )

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

2 2 2
1 2 7

2

5 4

2 2
7 5 6

, a
i x I y

a
y I I

a a
y y

V e t K t f t e t r t

e t K t K r t K t K

e t r t e t r t

ρ β β β

β β

β β β

< − − −

+ ⋅ − ⋅ − −

− + ⋅ +

                    (63) 

or 

( ) ( )( ) ( )( ) ( ) ( ) ( )( )
( ) ( ) ( ) ( )

2 2

1 2 8 9

2 2
7 5 6

, a
i x I y I

a a
y y

V e t K t f t e t r t K t K

e t r t e t r t

ρ β β β β

β β β

< − − − ⋅ − −

− + ⋅ +



               (64) 

For some value 
2LV  such that ( ) ( )

2i Lf t V t V≥ >  the first two negative terms in Equation (64) together with 

( ) ( )
2 2

7
a
ye t r tβ−  will dominate the positive terms of lesser degree. This implies that 

( ) ( )( ) ( ) ( ),i x I iV e t K t f t V tρ < − ≤ −   for any ( )
2i LV t V>  and for any 0> . 

Therefore, ( ) ( )( ) ( ),i x I iV e t K t V tρ < −  for any ( ) ( )1 2
max ,i L LV t V V>  and 0>  which guarantees that 

all adaptation variables are bounded.                                                            
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