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Abstract 
This Anaerobic Digestion of Sisal decortication residue (SDR) from sisal decorication unit at Hale 
biogas plant in Tanga (Tanzania) is presented. The study was done to address the challenges 
facing Katani limited at Hale biogas plant. This plant was built as pilot before building other biogas 
plants. These challenges were like high retention time of substrate which was SDR, low biogas 
productivity, high investment costs due to large tanks sizes and low plant availability. From the 
study, it was discovered that, when particle size was reduced biogas production increased, 
degradation of SDR also increased and no significant change in biogas composition. Increase in 
biogas yield of 30% and 129% were recorded for reduced SDR compared to raw size SDR digested 
at atmospheric condition and 40˚C respectivelly. SDR degradation measured in TS and VS removal 
efficiency, showed increase in degradation of about 5% for the reduced particle size compared to 
raw size particle. The study concluded that SDR was good raw material for biogas production 
when 90% of the particles reduced to less than 2 mm. To maximize production, digestion must be 
conducted at high temperature around 40˚C with constant monitoring and control of all para- 
meters. This will increase plant availability by increasing efficiency and life span of the pumps and 
stirrers. 
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1. Introduction 
Sources for renewable energy become more and more important. Among the renewable energies, biogas has the 
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advantage that it is not a fluctuating source. Biogas can be gained in an anaerobic digestion process from differ-
ent organic substances, e.g. from energy crops, agricultural waste or municipal organic waste [1]. The bio- 
methane from sisal fibre waste, a waste product from sisal industry, especially in the small-scale or local indus-
try, is of great interest as a renewable energy carrier that could be used for cooking and/or power gene- ration [2]. 
The sisal industry traditionally utilizes only 5% of the total weight of the leaf in sisal fibre production, and the 
remaining 95% is being regarded as waste [3]. Fifty-two (52) sisal factories in Tanzania produce about 444,000 
tons of waste pulp and 148,000 tons of waste fibre annually, which is often dumped on land or in nearby rivers 
where it is degraded by microorganisms under uncontrolled conditions [4]. 

The main environmental impacts of sisal factories are related to water pollution and greenhouse gas (GHG) 
emissions by the sisal waste and by-products. Both the solid waste at the disposal sites and the wastewater in the 
lagoons increase emissions of methane gas to the atmosphere, generated after the decay of the degradable or-
ganic carbon (DOC) in the waste. Sisal waste, however, constitutes a major potential source of clean energy if 
digested anaerobically under controlled conditions to generate biogas [3]. Methane has a global warming poten- 
tial that is 21 - 56 times higher than that of carbon dioxide, and is estimated to contribute to 18% - 21% of the 
overall global warming [5]. 

Katani limited is facing the problem of Sisal Decortications Residue (SDR) and decides to utilize them to 
produce biogas. The pilot plant was built at Hale to digest SDR to produce biogas. However, performance of the 
plant has been experiencing challenges like high retention time that reduce productivity and lead to high invest-
ment cost due to large tank sizes required. These challenges made Katani limited hesitate to build other biogas 
plants. To overcome the mentioned challenges, one of the suggested methods is to improve kinetics of bio-
chemical reactions by mechanical pre-treatment of SDR in order to reduce the size of particles. This can speed 
up digestibility process of SDR, reduce digester retention time, and thus increase biogas production, reduce sizes 
of digesters and other tanks for space and cost-saving purposes. 

2. Literature Review 
2.1. Overview of Anaerobic Digestion 
Anaerobic digestion is the use of biological processes, in the absence of oxygen, for the breakdown of organic 
matter and the stabilization of these materials, by conversion to methane and carbon dioxide gases and a nearly 
stable residue. Anaerobic digestion process is gaining wider acceptance in the present scenario due to production 
of biogas, which can be further used for meeting a part of energy demand. Energy has a major economic and po-
litical role as an important energy resource traded worldwide. Biomethanation technology may be perceived as 
potential alternative which does not only provides renewable source of energy but also utilizes recycling poten-
tial of degradable organic portion of waste material. 

In an anaerobic digester, four processes occur simultaneously. When the anaerobic digester performs properly, 
the conversion of the intermediate products (i.e., the products of the first three steps) is virtually complete, so 
that the concentrations of these are low at any time. In the hydrolysis process, macro molecules like proteins, 
polysaccharides and fats are converted into molecules with a smaller atomic mass that are soluble in water: pep-
tides, saccharides and fatty acids. The hydrolysis is a solubilisation process which is carried out by exo-en- 
zymes excreted by fermentative bacteria. Hydrolysis is a relatively slow process and it generally limits the rate 
of the overall anaerobic digestion process. The second step of the anaerobic digestion process is acidogenesis or 
acidification, a process that results in the conversion of the hydrolysed products into simple molecules with a 
low molecular weight, like volatile fatty acids (e.g., acetic-, propionic- and butyric acid), alcohols, aldehydes 
and gases like CO2, H2 and NH3. In the third step, acetogenesis, the products of the acidification are converted 
into acetic acids, hydrogen, and carbon dioxide by acetogenic bacteria. The first three steps of anaerobic diges-
tion are often grouped together as acid fermentation. It is important to note that in the acid fermentation, no or-
ganic material is removed from the liquid phase: it is transformed into a form suitable as substrate for the sub-
sequent process of methanogenesis. In the final step of the anaerobic digestion process, the products of the acid 
fermentation (mainly acetic acid) are converted into CO2 and CH4. Only then will organic material be removed, 
as the produced methane gas will largely desorb from the liquid phase. In each of the four sequential steps, the 
catabolic reactions described above develop together with anabolic activity. The free energy released in the re-
actions is partially used for synthesis of the anaerobic bacterial populations [6]. 
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2.2. Anaerobic Digestion Process Parameters 
The operating parameters of the digester must be controlled so as to enhance the microbial activity and thus in-
crease the anaerobic degradation efficiency of the system. The production of biogas is factored by many opera-
tional parameters. Some parameters that affect the production of biogas include temperature, pH, pre- treatment, 
particle size, mixing, rate of organic loading, retention time, concentration of micro-organisms, type of substrate, 
etc. Any rapid change in these parameters can adversely affect the production of biogas [7] [8]. 

Anaerobic digestion systems are limited by two major steps depending on the nature of the substrates. Hy-
drolysis is often limited if the substrate is complex organic solids while in the digestion of soluble organic mat-
ter, the rate limiting step has been identified as methanogenesis. Since a major drawback in a bioreactor based 
on anaerobic digestion of soluble substrate is the slow growth rate of methanogens, the desirable degree of or-
ganic matter degradation is achieved after a long residence time in the anaerobic reactor [9]. 

Several methods to solubilize or hydrolyze sludge cells prior to anaerobic digestion have been investigated. 
Sonication can, for example, disintegrate sludge cells for 70% - 100% but consumes 200 MJ/kg total dry solids 
(TDS) [10]. Chemical and thermochemical pre-treatments, based on strong acidic or basic conditions in combi-
nation with high temperatures and pressures, have been shown to be efficient in enhancing sludge digestion [11] 
[12]. Several authors found a doubling of the methane production after a thermochemical pre-treatment at 180˚C. 
However, the aggressive reaction conditions often impose special material requirements. Mechanical 
pre-treatment was shown to be very effective in solubilizing microbial cells but turned out to be rather compli-
cated and expensive [10] [13]. 

The sizes of feedstock particles have an influence on the gas production though it is not as important parame-
ter as pH and temperature of the digester content. If the particle sizes are too large, the digester might be clogged 
and also, the digestion of the particles will be difficult for microorganisms. On the other hand, smaller particles 
would provide large surface area for absorbing the microorganisms and enzymes. This will lead to increased 
microbial activity and hence increased gas production [7]. 

Sharma et al. (1988) [14] studied the effect of particle sizes on biogas production using particles of 0.088, 
0.40, 1.0, 6.0 and 30.0 mm. They found out that maximum quantity of biogas was produced from particles with 
smaller size (0.088 mm and 0.40 mm). However, succulent materials such as leaves with larger sizes could be 
used though materials such as straw and other larger particles would decrease the production of biogas. In a nut 
shell, the results suggested that a physical treatment such as grinding could significantly reduce the volume of 
the digester without decreasing the biogas production [15]. 

3. Methods and Equipment 
3.1. Substrate and Inoculum 
The sisal decortication residue (SDR) used in the experiment was collected from sisal processing plant at Hale, 
Tanzania. The SDR was divided into two groups, one without pre-treatment and other reduced in size by kitchen 
blender and then both samples were distributed on clean pieces of cloth for two days at room temperature (28˚C - 
32˚C). Then samples were measured for moisture content and particle size analysis using sieve analysis. Mois-
ture content and particle size distribution of the samples are shown in Table 1. 

The sisal waste sludge (SWS) was used as inoculum since it has been found to be suitable inoculum for di-
gester start-up [16]. The SWS was collected from digester tank at Hale biogas plant.  

3.2. Experimental Design 
3.2.1. Laboratory Scale Digesters 
The treated SDR was digested in anaerobic laboratory batch digesters. During this experiment, untreated SDR 
and SDR which had been reduced in particle size were compared. To examine the effect of size reduction pre- 
treatment on the subsequent performance of batch anaerobic digestion of SDR, the test was carried out with two 
different particle sizes as shown in Table 1. Each digester contained pre-treated or untreated SDR as a substrate 
and SWS as inoculum. The amounts of waste and inoculum were 60 g and 950 ml, respectively. 

The experimental set-up consisted of 6 tests experiments. Two groups of experiments were conducted; one 
group operated at atmospheric condition 30˚C ± 2˚C and another group at 40˚C. Each group consist of three sets of 
experiments; raw size SDR, reduced size SDR and inoculum as a control. Each set was made up of laboratory  
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Table 1. Moisture content and particle size distribution of the sisal decortication residue.                                      

 Reduced size Raw size 

Moisture (%) 84.47 86.79 

Sieve size Retained weight Retained weight 

mm g % g % 

4.0 0.6 1.0 6.5 11.5 

2.8 1.3 2.3 8.8 15.6 

2.0 2.8 4.9 15.4 27.4 

1.0 26.9 46.8 21.0 37.3 

Remaining 25.9 45.0 4.6 8.2 

Total 57.5 100 56.3 100 

 
digester with 1litre working volume, two conical flask and connecting tubes. One conical flask was connected 
with both laboratory digester and other conical flask. Digester was filled with substrate where by anaerobic di-
gestion was taking place, one flask connecting both digester and another flask was filled with water, and another 
flask was empty as shown in Figure 1. Biogas was produced in the digesters and transported by the tubes to the 
flask containing water. The incoming biogas in the connecting flask pressurised water to the empty flask through 
the tubes. Biogas volume was obtained by measuring displaced water volume and biogas samples from con-
necting flasks were taken using syringe for analysis. 

3.2.2. Pilot Scale Digesters 
Two batch anaerobic digesters were used, one with capacity of 927 litres and another with 1675 litres volume 
for substrate. These digesters were connected to the floating drum gas holder for gas storage and calibrated to 
measure gas volume. Digesters were equipped with sampling points to take samples, hand driven mechanical 
stirrer and metallic cover to stop biogas from escaping. Also in floating drum there were gas sampling points. 
Digesters were filled with substrate materials and floating drum with water. Biogas produced in the digesters 
creates enough pressure for it to be transported to the floating drum gas holder by displacing the water. Figure 2 
shows the photograph of one of the pilot plant anaerobic digester. 

Because one of the objectives was to compare between experimental process and Hale biogas plant process, 
1625 litres anaerobic digester was redesigned to incorporate heat exchanger for it to be operated at elevated 
temperature.  

One of the pilot scale digester (1675 litres) was redesigned to meet the following objectives; to be able to op-
erate at elevated temperature like higher mesophilic temperature and thermophilic temperature and to stabi- lize 
the process in order to be independent of the atmospheric condition [17]. 

Redesign of the pilot plant made possible to mimic operating condition of the Hale biogas plant and stabilize 
the process. As a result, microorganisms in the digester are not affected by temperature fluctuation caused by 
ambient temperature changes. 

1) Process Description 
SDR from decorticator is weighed to know its weight before feeding into the anaerobic digester through in-

fluent inlet. SDR is left to digest for required retention time. After digestion, digester materials are removed 
from the digester through effluent outlet as fertilizer. Temperature in the digester is controlled by heat exchanger. 
While SDR digestion is taking place biogas is produced in the digester. The gas produced pass through gas pipe 
to floating drum gas holder.  

2) Illustration of the Digester before and after Redesign 
Before redesign of the digester there was no heat exchanger, effluent outlet was short and the stirrers were 

long. In this digester it is not possible to either control temperature or operate digester at higher temperature. 
Temperature was changing with respect to environmental condition. During the day the temperature rises and 
falls during the night. Figure 3 shows the cross-section of the digester before redesign. 

During redesign, a heat exchanger was added in the digester, while the effluent outlet was extended and the  
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Figure 1. Setup of laboratory scale digesters.                                           

 

 
Figure 2. Pilot scale anaerobic digester.                                           

 

 
Figure 3. Cross section of the digester before redesign.                                                                                     
 
stirrers were reduced to allow passage of heat exchanger pipes. These features allow digester to be operated at 
high temperature and can be controlled by installation of thermostat. Also, the effluent outlet was extended to 
stop effluent material from dropping onto the hot water tank. Figure 4 shows the cross-section area of the di-
gester after redesign. 
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Figure 4. Cross section of the digester after redesign.                                                                                     

3.3. Analytical Methods 
All sets of digestions runs were left to continue until no significant gas production were observed. Terminations 
were determined by biogas production trend of the digesters. The biogas volume and composition were meas-
ured and analysed daily. The gas composition was measured by Biogas Component Express Analyser. In this 
method, CH4, CO2, H2S and O2 were determined. Biogas composition determination was done prior to meas-
urement of biogas volume. Biogas yield was calculated by subtracting the amount of biogas produced by the 
control from the biogas production of each substrate and dividing the difference by the mass of volatile solids in 
the substrate fed to the digester. The process was controlled by monitoring pH, temperature and Volatile fatty 
acids (VFA) for PSD while for LSD only pH and temperature were controlled. It was not possible to measure 
VFA in LSD because of large sample required. The digester contents were analysed for total solids (TS), volatile 
solids (VS) and chemical oxygen demand (COD) before and after digestion. 

Total Solids (TS), volatile solids (VS) and chemical oxygen demand (COD) were determined according to 
standard methods [18]. VFA were determined by titrimetric method also known as Kapp method [19]. The pH 
was measured by pH meter. Substrate temperature was measured by liquid in glass thermometer. 

4. Results and Discussion 
4.1. Effect of Particle Size on Biodegradability 
Particle sizes have significant effect on the degradability of SDR. Smaller particles provide large surface area 
required by the micro-organisms, resulting in increased microbial activity; thus, the anaerobic biodegradability 
is increased. Biodegradability of SDR was analysed in terms of TS and VS removal efficiencies and COD of the 
effluent. Values of TS and VS were measured before and after digestion and biodegradability values were cal-
culated in terms of their removal efficiency. Figure 5 to Figure 6 describe biodegradability of SDR at different 
conditions using TS, VS and COD in LSD. 

Figure 5 shows that the maximum TS removal efficiencies were 54.15% and 52.51% in reduced sizes di-
gester operated at temperature of 40˚C and atmospheric temperature respectively while that of unblended di-
gester were 50.87% and 49.23% for heated and atmospheric conditions, respectively. Minimum TS removal ef-
ficiencies were 46.31% and 44.07% in inoculum digester operated at temperature of 40˚C and atmospheric tem-
perature respectively. 

Figure 6 shows that the maximum VS removal efficiencies were 65.45% and 63.4% in reduced sizes digester 
operated at a temperature of 40˚C and atmospheric temperature respectively while that of unblended digester 
were 60.6% and 59.3% for heated and atmospheric conditions respectively. The minimum VS removal efficiencies 
were 52.0% and 46.3% in inoculum digester operated at ambient temperature and 40˚C respectively. 
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Figure 5. Comparison of total Solids removal efficiency for labora-
tory scale digesters.                                           

 

 
Figure 6. Comparison of volatile solids removal efficiency for labo-
ratory scale digesters.                                           

 
Figure 7 shows that the maximum COD was 10.7 g O2/dm3 for unblended digester operated at ambient con-

dition and minimum was 1.9 g O2/dm3 for heated inoculum digester. COD of the other digesters are 9.8 g 
O2/dm3 for heated unblended digester, 8.8 g O2/dm3 for, atmospheric blended digester, 6.6 g O2/dm3 for heated 
blended digester and 2.3 g O2/dm3 for atmospheric inoculum digester. 

Similar results have been reported by other researchers. Total fibre degradation of sisal fibre waste increased 
from 31% to 70% for the 2 mm fibre compared to untreated fibres [4]. Also, 67% and 63% total fibre degrada- 
tion were observed with 2 mm sieve mesh size of bagasse and maize bran, respectively, in batch cultures [20]. 
These results mean that biodegradability of the SDR increases with the decrease in size of the particles, and also 
increases with rise in temperature. Thus, by combining the effect of temperature rise and size reduction of the 
SDR maximizes the biodegradability effect. 

4.2. Effect of Particle Size on Biogas Yield Potential 
Biogas yield potential is the ability of the substrate material to produce biogas. It is very important to know the 
relation of any parameter with yield potential to decide whether is economically viable to change that parameter 
in the production process or not. 

4.2.1. Effect of Particle Size on Biogas Yield Potential on Laboratory Scale Digester 
In the LSD, biogas yield increased to 0.386 m3/kg VS when SDR was reduced in size and digested at 40˚C. This 
is 146% increase compared with 0.157 m3/kg VS when raw SDR was used and digested at atmospheric condi-
tion. There are also increases in reduced size SDR operated at 40˚C (heated) and raw size SDR operated at at-
mospheric condition to 0.205 m3/kg VS and 0.168 m3/kg VS. These are 31% and 7% increase compared with 
raw size SDR digested at atmospheric condition as shown in Figure 8.  

The large increase has been observed when two factors are combined, which are temperature and particle size.  
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Figure 7. Comparison of Carbon Oxygen DEMAND for laboratory 
digesters.                                                                                     

 

 
Figure 8. Biogas yield potential for SDR under different conditions.                                           

 
There is 130% increase when SDR digested at same temperature of 40˚C under reduced size and raw size. On 
the other hand, 88% increase has been observed when digested at different temperatures (i.e. atmospheric and 
40˚C) of reduced size SDR (Figure 8). 

The cumulative biogas volume (CBV) of SDR show that highest biogas volume collected within 14 days was 
from reduced size SDR digested at 40˚C (heated) which was 3552 cm3, lead the other three by difference of 
more than 1500 cm3. The CBV of reduced size SDR digested at atmospheric condition was 1886 cm3 which was 
the second. The third and fourth were raw size SDR digested at 40˚C with CBV of 1548 cm3 and raw size SDR 
digested at atmospheric condition respectively as shown in Figure 9. 

Variation of heated to atmospheric operated digesters biogas volume ratio (BVR = Y) with time showed that 
there was small change in biogas production for raw size digested SDR compared to reduced size SDR as shown 
in Figure 10. The ratio increased abruptly on day 9 for both reduced size and raw size. For reduced size SDR 
the ratio reached highest value which was 23 on 11th day, this means increase in production rate of heated di-
gester 23 times more compared to the one operated at atmospheric condition. For raw size SDR the ratio reached 
highest value which was 4 on 10th day. 

Similar results have been reported by other investigators. Methane yield increased by 23% when fibres were 
cut to 2 mm size and was 0.22 m3 CH4/kg VS compared to 0.18 m3 CH4/kg VS for untreated fibres [4]. As re-
ported also by Hills and Nikano [21], working on tomato waste chopped to particle sizes in the range 1.3 - 20 
mm, biogas yield increase was inversely proportional to the average particle diameter. Similarly Angelidaki and 
Ahring [22] reported a potential increase in methane yield of 16% for macerated manure biofilters with particle 
sizes between 1 and 2 mm, as compared to the fibres of 5 mm particle size. This means that particle size reduc-
tion and temperature rise increases the amount of biogas produced. 

4.2.2. Effect of Particle Sizes on Biogas Yield Potential on Pilot Scale Digester (PSD) 
For the pilot scale digesters, two experiments of raw sized SDR were conducted, one at elevated temperature  
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Figure 9. Cumulative biogas volume of different digestion conditions 
with time.                                                                                     

 

 
Figure 10. Variation of heated to atmospheric biogas volume ratio 
with time.                                                                                     

 
around 40˚C and another at atmospheric condition. All these experiments were operated in semi continuous 
mode. For the reduced size experiments, blender could not have capacity to reduce size of SDR enough for pilot 
plant. Not only that but also removing remaining fibres of that capacity in the SDR was tedious work. Figure 11 
shows biogas production per VS from pilot scale digesters operated in semi continuous mode. 

The BVR of heated digester over that operated at atmospheric condition showed that in the first 6 days BVR 
was between 0.5 and 1.2. In the 6th day BVR increased abruptly until 9th day where it reached maximum of 2.1 
as shown in Figure 12. 

4.3. Analysis of Kinetics of Biodegradation Reaction (s) 
Kinetics is the study of the speed with at which a biochemical reaction occurs and the factors that affect this 
speed. The speed of a bio-reaction is the rate at which the concentrations of reactants and products change. This 
information is especially useful for determining how a reaction occurs.  

In this study, substrate biodegradability was assessed by developing a mathematical model that was based on 
the first order kinetics. According to Linke [23], the transformation of biodegradable solids into biogas was cor-
related as shown in Figure 13. 

The transformation can further be described by Equations (1)-(7) for a batch reactor system. 



Y. R. Rajabu, S. V. Manyele 
 

 
562 

 
Figure 11. Biogas production per volatile solids over time for pilot 
scale digesters.                                                                                     

 

 
Figure 12. Variation of heated to atmospheric biogas volume ratio 
with time.                                                                                     

 

 
Figure 13. Pattern of transformation of volatile solids into biogas.                                           
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Equation (1) is linked to the first order rate degradation of the volatile solids in which Co is the initial volatile 
solids while Ct is the volatile solids concentration at time (t) given by Equation (2). 
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Rearranging Equation (3) result into Equation (4) 

( )1 e kt
m ty y−− =                                       (4) 

where: 
yt = volume of biogas produced per unit mass of volatile solids at any time (t) during biodegradation. 
ym = maximum yield volume of biogas per unit mass of volatile solids converted. 
The rate constant associated with the degradation of the biodegradable fractions is represented by k (1/days), 

while the period of digestion is represented by t (in days). 
The application of Equation (4) in assessing substrate biodegradability and the rate constant was accom- 

plished by linearising Equation (4) as shown below. By differentiating Equation (4), Equation (5) is obtained, 
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Taking natural logarithm on both sides of the Equation, the Equation (6) is obtained, 
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which can be reduced to the form shown in Equation (7), 
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Equation (7) is analogous to the straight line equation y mx c= + , in which ( )ln lnmy k+  represents the  

slope while, (–k) represents the intercept of the plot of 
d1ln
d

ty
t t

 
 
 

 against the inverse of the retention time. The  

term ( )ln lnmy k+  which is slope is a measure of the availability of readily and moderately degradable frac-
tions of the substrate. Yusuf et al. (2011) [24] reported that, because of the limited time range of most biode-
gradability test, only the readily and moderately degradable fractions were consumed while the poorly or recal-
citrant fractions were hardly affected. Thus, this term can be used to select substrate with the potential for high 
biogas production under short retention time. This term was referred to as the short term anaerobic biodegrad-
ability index (STABI). Higher values of STABI depict substrate with the potential to produce high quantity of 
biogas under short retention periods while lower values are indicative of substrate with the potential to produce 
low quantity of biogas under such condition from a given substrate volatile solids. 

The term (k) is a measure of the rate of removal of the biodegradable fractions in the feed materials (or sub-
strate) as the biogas yield increases with time. Based on Equations (5) and (6) this rate constant is an indication 
of the first order kinetics for biodegradation of sisal waste. The first order kinetic constant is described by East-
man and Ferguson (1981) [25] as purely an empirical function that reflects the cumulative effects of many fac-
tors such as pH, temperature, quantity and quality of substrate, rate of removal of the biodegradable fractions, 
rate of inhibition by other components of the substrate such as lignin or by-product of the reaction process such 
as fatty acids, etc. 

As the value of (k) becomes larger, the faster the rate of removal of the biodegradable fraction becomes. 
While as the value of (k) becomes smaller, the slower the rate of removal of the biodegradable fraction becomes. 
Thus, Equation (7) can be used to measure the mesophilic temperature short term biodegradability and also 
identify anaerobic processes that are progressive or stressed [24]. 
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The application of this modified first order model in assessing the short term biodegradability and removal 
rate of the biodegradable fractions was carried out for the substrates in LSD. The Equation revealed that digester 
with reduced size SDR operated at 40˚C had the highest short term biodegradability. The plot of G versus 1/t 
revealed that the model equation could suitably assess the kinetics of sisal waste biodegradation in the tem- 
perature range from 25˚C to 40˚C because the lines were almost linear with linearity factor close to one 
( )2 1R ≅  as shown in Figure 12 and Figure 13. 

From Figure 14 and Figure 15, the short term biodegradability of the substrate in reduced size LSD operated 
at atmospheric temperature for the period under study was observed to be 8.5843 while the intercept, depicting 
the removal rate of biodegradable fractions was estimated to be 0.1600. The model was able to fit the data set 
with a goodness of fit (R2) of 0.9856. Similarly, raw size LSD operated at atmospheric conditions, reduced size 
and raw size LSD operated at 40˚C had short term biodegradability of 8.5136, 11.113 and 10.059 with a removal 
rate constant of 0.1732, 0.5328 and 0.475 and a goodness of fit of 0.9888, 0.9935 and 0.9969 as shown in Fi- 
gure 14 and Figure 15. 

In essence, substrate in reduced size LSD operated at 40˚C, with short term biodegradability of 11.113, had 
the highest potential to produce more quantity of biogas for a given substrate volatile solid, followed by sub- 
strate in raw size LSD operated at 40˚C, raw size LSD operated at ambient temperature and lastly by substrate in 
reduced size LSD operated at atmospheric temperature. 

Similarly, the modified first order model revealed that substrate in reduced size LSD operated at 40˚C with a 
rate constant (k) of 0.5328 had the highest removal rate of biodegradable fraction. This means the highest rate of 
biogas production compared to other three cases shown in Table 2. The raw size LSD digested at atmospheric  

 

 
Figure 14. Plot of short term anaerobic biodegradability index 
versus reciprocal of digestion time of LSD operated at atmospheric 
condition.                                                          

 

 
Figure 15. Plot of short term anaerobic biodegradability index 
versus reciprocal of digestion time of LSD operated at 40˚C.                
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Table 2. Short term anaerobic biodegradability index (STABI) and rate constant (k) for different cases.                            

Cases Temperature (˚C) Size STABI K 

1 Atmospheric Raw 8.584 0.160 

2 Atmospheric Reduced 8.514 0.173 

3 40 Raw 10.059 0.475 

4 40 Reduced 11.113 0.533 

 
conditions had the lowest rate constant (k) of 0.160. That means the lowest biodegradable fraction of the total 
solids within equal digestion time with other cases. From this observation, rate constant (k) is directly propor- 
tional with increase in temperature and inversely proportional with increase in particle size of the SDR. 

These results are supported with the studies carried out by Gollakota and Meher [26]. These authors demon- 
strated that both rate and yield were higher at 37˚C than at 30˚C when castor cake was used as substrate. Also 
pre-treatment such as grinding could significantly reduce the volume of the digester required without decreasing 
biogas production. 

5. Conclusions 
Sisal wastes have high potential to produce biogas when mechanically pre-treated by particle size reduction and 
digested in AD operated at temperature of 40˚C compared to the one operated at lower atmospheric temperature. 
In this study LSD with SDR reduced in sizes operated at 40˚C show that 0.5 m3 biogas can be obtained from 1 
kg VS of sisal wastes. While LSD operated at room temperature without size reduction of SDR produce only 0.2 
m3 biogas from 1 kg sisal wastes VS. 

Kinetics of the SDR was enhanced to the significant values when size was reduced such that 90% of the parti-
cles passed through 2 mm sieve and operating temperature to be 40˚C compared to kinetics of raw SDR where 
by only 46% of the particles can pass through 2 mm sieve and digested at atmospheric temperature (28˚C - 
32˚C). But temperature has large effect compared to size reduction. 

Frequently failure of the motor at Hale biogas plant was caused by sisal fibres remaining in the SDR to accu-
mulate the motor and resist its motion. This can be avoided by pre-treating the waste by either removing all fi-
bres before feeding SDR to the biogas plant or size reduction of SDR to the extent that all long fibres will be 
shortened to the size which will not cause negative effect to the plant. 

Pre-treatment of the SDR before feeding to the biogas plant is very important to be taken into consideration in 
the designing stage of the plant. Screening and size reduction units must be installed if sisal fibres are produced 
by corona to insure safety of the motor and pumps and also to enhance kinetics of SDR. 
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