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Abstract 
A multimode-quartz-crystal oscillator was developed to excite stable dual-mode resonance at dif-
ferent frequencies: The oscillation of the 3rd harmonic resonance of the principle C-mode and an 
additional resonance B-mode of SC-cut crystal. Harmonic combinations of the 3rd and fundamen-
tal mode of B-mode with the 3rd harmonics of C-mode are demonstrated. The measurement of the 
temperature dependence of the oscillation frequency is demonstrated along with the stability de-
termined by root Allan variance. Dependence on the open conductance of the active circuit and the 
dependence on the coupling capacitors are discussed. 

 
Keywords 
Temperature Sensing, Piezoelectric Sensor, Dual-Mode Quartz Crystal Resonance, 
Stress-Compensated Cut (SC-Cut) 

 
 

1. Introduction 
Piezoelectric sensing is increasingly attracting attentions, employing frequency-based measurement depending 
on the surface loading, mass, and a variety of force acting on the piezoelectric resonator. The quartz crystal re-
sonator determines a stable electrical resonance frequency corresponding to the mechanical resonance frequency. 
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The quartz crystal resonator shows a variety of resonance modes. For example, in an AT-cut quartz crystal, the 
harmonic combination of the different temperature characteristics of the fundamental, 3rd and 5th harmonic re-
sonances provides a high precision thermometric system. In the past history, dual-mode oscillation was at-
tempted by several groups and is reviewed in References [1]-[6]. In Reference [3], a thermometry method is 
presented, using a harmonically related pair of C-modes of an SC-cut quartz crystal resonator. SC cut is pro- 
duced with a double rotated cut angle. One of the benefits of SC cut application is stress compensation, which 
can provide a solution for the temperature shock sensitivity and multimode oscillation: providing primary mode 
oscillation with high stability called C-mode and additional resonance B-mode located at 9% higher frequency. 
The experiment is realized by the combination of oscillation circuit with passive frequency discrimination cir- 
cuits or heterodyne method observing a mixed signal response of the quartz crystal resonator. Simultaneous 
multimode observation in the crystal provides larger information, because this mode acts as an embedded ther- 
mometer having a frequency shift proportional to temperature, which in turn enables precise control of the tem- 
perature stabilizing the oscillation frequency and precise control of the oscillation frequency and the stability. 
Recently, we described the development of a narrow-band quartz crystal oscillator circuit [7]. C-mode is aimed 
as a stable frequency standard and B-mode is aimed as a thermometry method. The dual-mode quartz crystal os-
cillator in the combination of the 3rd harmonics oscillations of C-mode and the 3rd harmonics of B-mode needs 
the discrimination of narrower frequency separation, compared with the combination of the fundamental oscilla-
tion of B-mode. In this work, stable dual-mode quartz crystal oscillator circuit was developed based on a com-
bination of two identical narrow gain quartz crystal oscillators. Measurement of frequency stability is based on 
the Allan deviation for discrete multiple measure determined following Barnes et al. [8] and Allan [9]. The Al-
lan deviation in the simultaneous dual-mode oscillation and the oscillation condition for multiple oscillation 
modes are presented following IEEE Standard 1139 [10]. 

2. Dual Mode Quartz Crystal Oscillator 
2.1. Analysis of Dual Mode Quartz Crystal Oscillator 
Figure 1 shows the dual-mode oscillation circuit. Individual oscillator circuits are developed from a narrow- 
band, double-resonance quartz crystal oscillator [7]. 
 

 
Figure 1. Dual mode quartz crystal oscillator.                       
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Local resonance circuits consist of L02 and C0x, L12 and C1x. C0y and C1y are inserted to the connection to a 
crystal resonator. Feedback resistors R02, R03, R12, and R13 are inserted into the power line between CMOS in-
verter integrated circuits IC1 and IC2 and ground aimed at suppression of current and gain control. C05, C06, C15, 
and C16 are pass capacitors. C02, C03, C12, and C13 are necessary for the generation of negative resistance. This 
circuit synthesizes LC oscillation mode determined by L02 and combined capacitors C0x, C02, C03, and C0y, and 
LC oscillation mode determined by L12 and combined capacitors C1x, C12, C13, and C1y. The oscillation frequency 
is settled in the vicinity of the quartz crystal oscillation frequency. Coupling capacitors C04 and C14 are omitted 
in the following analysis. Coupling capacitors C0y and C1y are connected to the quartz crystal resonator. Appro-
priate choice of the local resonance circuit and the coupling capacitors are necessary to realize stable dual-mode 
quartz crystal oscillation. Two oscillator circuits OSC1 and OSC2 are connected to the resonator by capacitors 
C0y and C1y. The SC-cut quartz crystal resonator shows C-mode a primary oscillation mode with good stability, 
and B-mode, a side mode, linearly proportional to the change of ambient temperature. CMOS Inverters IC1 and 
IC2 are replaced with a constant current source. In the equivalent circuit on the left side is OSC1 and on the right 
side is OSC2. Iout1 and Iout2 are output current, and Vin1 and Vin2 are input voltage of each inverter: r02 and r12 are 
internal resistance of inductance L02 and L12, respectively. C0s and C1s are stray capacitance parallel to capacit-
ance C0x and C1s. Impedance Z01 consists of L02, r02, C0x, and C0s, similarly, impedance of the circuit Z11 which 
consists of L12, r12, C1x, and C1s, and Zxt for the parallel circuit of a quartz resonator and Cp, reduced impedance 
is found. Capacitance of leads and connected lines on the circuit board are modeled by Cp. Applying Kirchhoff’s 
law, homogeneous Equation (1) is found. 

01

01 02 03 03

1 1 02 1 0 0

11

1311 12 13

12 2 12 2 1

1 0 0 1 0 0 1 0
0 1 1 1 0 0 0 0
0 0 0 0 0 0

0 1 0 0 0 0
00 0 0 0 1 1 1
00 0 0 0 0
00 0 0 0 1

xt

M M M y yxt

yM xt M M y

i
i

Z Z Z i
G Z G Z G Z i

i
iZ Z Z
iG Z G Z G Z

− −     
     −     
 +    
     − + =     
     −     
 +   
    − +     




            (1) 

The open conductance Gm is adjusted by negative feedback resistors R02, R03, R12, and R13. Equivalent trans- 
conductance is defined by the open conductance and a feedback resistance, as in (2). 

out1 out2
1 2

in1 in2

, .M M
I I

G G
V V

= =                                           (2) 

The open conductance of the CMOS inverter is expressed with drain current Id and conductance coefficient K 
defined in the terms of electron and hole mobility μ and the unit gap capacitance Cg. W/L is the ratio of width 
over length of the gate: 

1, 2 , 2 , where
1 2

m
iM m m m d g

m if

G WG G g g KI K C
G R L

µ= = = =
+

 

Feedback resistance:  
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Solving the determinant of the coefficient matrix, relation (3) is found. The second term on the left side of this 
relation indicates the impedance of OSC1, and the third term indicates the impedance of OSC2. The impedance 
of individual oscillator is connected in parallel to Zxt.  
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Figure 2 shows the entire structure of the oscillator equivalent circuit-2, indicating the impedance of OSC1 as 
Z1 and the impedance of OSC2 as Z2, R1, R2, C1, and C2 are equivalent resistance and capacitance of the imped- 
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Figure 2. Equivalent circuit-2.       

 
ance. R1, C1, Ra, La, C0xs, ω0x, ω0s, and ω1 are found in (4). R2, C2, Rb, Lb, C1xs, ω1x, ω1s, and ω2 are found in (5). 
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Including the equivalent circuit of Zxt, equivalent circuit-3 is found in Figure 3, where L1, C1, and R1 are the 
motion arm and C0 is the parallel capacitance. Cp is stray capacitance on the circuit board connected to the reso- 
nator. Solving for Zxt, equivalent resistance Rci and equivalent reactance Cci of parallel connection of Z1 and Z2 
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Figure 3. Equivalent circuit-3.                          

 
are found. 
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Figure 4 shows a simplified graphical expression of equivalent circuit-4, where capacitance C0p consists of C0 
and Cp, and Ccci consists of Cci and Cz. The whole circuit consists of elements C0, L1, C1, and R1 representing the 
equivalent circuit of the selected mode of the SC-cut quartz crystal resonator (values are in Table 1). 

Including C0, Cp and Cz into Cci and Rci composed equivalent impedance Ccci and Rcci are found, as in (7). 

( ) ( )

0

2 2
2 200 0

0 0

0 0

1
1 1, 1 .

1 1

.

p

ci ci
cci

cci pp p
p ci p ci

ci ci

p p

C
R C

R
C CC C

C R C R
C C

C C C

ω ω

 
 +
 = = − 

    + + ⋅ + + ⋅    
    

= +

             (7) 

Supposing i(ω) in the closed circuit of this diagram, the resistance condition is found from the matching con-
dition for the real part where the real part is equal to zero. Oscillation frequency is determined from the match-
ing condition of the capacitance, where the imaginary part is equal to zero. 

2.2. Oscillation Conditions: Combination of Fundamental Resonance and the 3rd  
Harmonics 

Oscillation conditions are given as the resistance condition and frequency condition, in the following forms (8) 
and (9), respectively: 
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Figure 4. Equivalent circuit-4.            

 
Table 1. Equivalent circuit constant of the SC cut quartz crystal resonator.                                             

Mode 
Equivalent Circuit Constant 

C0 (pF) L1 (mH) C1 (fF) R1 (Ω) f1 (MHz) fr (MHz) 

C-mode, 3rd harmonics 3.431 1297 0.1954 70.5 9.997418 9.999807 

B-mode 3rd harmonics 3.244 1757 0.12 264 10.96083 10.952481 

B-mode fundamental 3.899 495.3 3.710 61.8 3.712778 3.712836 

 
Inequality in condition (8) indicates that the negative resistance larger than damping is necessary at the begin-

ning of oscillation. The series resonance frequency f1 is determined by L1 and C1 determined in relation (10), 
where ω1 is angular frequency and fr is the series resonance frequency.  

2
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The resistance condition is estimated for the oscillation of each mode from Table 1, the value of series resis-
tance R1c and R1b determined by the impedance analyzer. Relation (11) shows resistance conditions for the 3rd 
harmonic resonance modes. The frequency condition shows the resonance frequency determined by L1c and C1c 
or L1b and C1b. C1c and C1b are extremely smaller than Ccci.  

1 170.5 , 264c cci b cciR R R R= Ω ≤ = Ω ≤                               (11) 

In the case of the fundamental resonance of B-mode, the series resistance is reduced to 61.77Ω. Negative re-
sistance of the active circuit is indicated by the absolute value. In the physical meaning, this value balances with 
the damping; this value is expressed in the following form: 

( ), 0cci cciR R <  

Figure 5 shows the tuning characteristics by changing resonator capacitors C0x and C1x combined with L02 and 
L12, which determine the oscillation frequency of the individual oscillation mode.  

The frequency dependence of negative resistance is tailored considering the influence of resonator capacitors 
C0x and C1x. The oscillation condition of the 3rd harmonics of C-mode is fulfilled at C1x = 20.5 pF, where the os-
cillation frequency is close to the series resonance frequency. The maximum absolute value of negative resis-
tance is approximately 1.99 kΩ, at 9.992 MHz. The frequency range varies from 0.28 to 0.3 MHz. Similarly, the 
oscillation condition of the 3rd harmonics B-mode is fulfilled at C0x = 13.5 pF, close to the series resonance fre-
quency f1b. The maximum absolute value of negative resistance is approximately 1.9 kΩ, at 10.9 MHz. The os-
cillation condition is fulfilled from 10.84 to 10.96 MHz. The frequency range varies from 0.11 to 0.12 MHz. In 
the combination of the fundamental oscillation of B-mode and the 3rd harmonic resonance of C-mode, the dual 
mode oscillation is realized at C0x = 31 pF and C1x = 20.5 pF. 

In the combination of the 3rd harmonic resonance modes, the multimode-oscillation is observed provided that 
the oscillation condition is fulfilled simultaneously. In the stable oscillation, gain G1M decreases compared with  
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Figure 5. Frequency dependence of negative resistance for 
local resonator capacitors: C0x and C1x.                       

 
the initial phase. At G1M = 1 mA/V, the damping resistance becomes larger than negative resistance. The maxi-
mum absolute value of negative resistance is approximately equal to 2 kΩ and the damping resistance of the 3rd 
harmonic resonance of B-mode is 264 Ω. The negative resistance of the oscillator is shown for various values of 
gain G1M, in the vicinity of 10.9 MHz and 10 MHz. 

In Figure 6(a) and Figure 6(b), as the gain decreases in the stable oscillation at G1M = 1 mA/V, the negative 
resistance becomes smaller than R1b then the oscillation condition is no longer fulfilled, while the oscillation 
condition for C-mode still holds. Transition of oscillation mode occurs from dual-mode oscillation to the single 
oscillation. Figure 6(c) and Figure 6(d) shows the oscillation condition the gain of C-mode oscillator G2M. G2M 
is settled to 5 mA/V initially, and the gain of the counterpart oscillator B-mode oscillator G1M is settled to 5 
mA/V. The maximum absolute value of negative resistance is approximately 2 kΩ. Generally, the transconduc-
tance GM of the oscillator circuit decreases in the magnitude on the growth of signals, and the frequency depen-
dence of negative resistance varies depending on GM. In the case where G1M of OSC1 is equal to 0 mA/V, nega-
tive resistance of OSC2 shows wide-frequency characteristics and decreases in the frequency according to the 
increase in the magnitude of G1M. Negative resistance of OSC1 shows an abrupt change in the vicinity of G1M = 1 
mA/V. Negative resistance of OSC2 shows corresponding change but the oscillation condition is fulfilled. Simi-
lar tendency is observed in the dependence of negative resistance of OSC1 according to the decrease in conduc-
tance G2M of OSC2. 

The gain at the initial stage of oscillation is set at 5 mA/V, along with the growth of the signal, B-mode shows 
a maximum value of negative resistance 4.5 kΩ at G1M of approximately 2 mA/V, then steeply decreases. In 
Figure 7(a), negative resistance shows zero at G1M approximately 1.8 mA/V. As the negative resistance of C- 
mode is larger than 1 kΩ, a maximum value 3.4 kΩ is observed at G1M approximately 0.5 mA/V, the oscillation 
condition is fulfilled for this mode, and the oscillation mode transfers to C-mode and B-mode becomes incapa-
ble. Similarly in Figure 7(b), the gain settled to 5 mA/V at the initial stage of oscillation, and the negative resis-
tance shows zero at G2M approximately 1.0 mA/V. As the negative resistance of B-mode is larger than 0.7 kΩ, a 
maximum 4.7 kΩ at G1M of 1.3 mA/V, the oscillation mode transfers to the single mode oscillation of B-mode 
when the condition of C-mode becomes unfulfilled. When the 3rd harmonic resonance of B-mode is selected, 
the resistance is 264 Ω, and the oscillation region becomes narrower, because larger negative resistance is 
needed due to the dependence on G1M. Because the dependence on G2M is fulfilled, the oscillation region is li-
mited by the the B-mode oscillator. Figure 7(c) and Figure 7(d) show the case of the combination of B-mode 
fundamental versus the 3rd harmonics of C-mode. In this case, the series resistance of B-mode decreases to 
61.77 Ω. 

Figure 8 shows the dependence on the transconductance for the case two parameters are varied simulta-
neously. Initially, gain G1M and G2M are settled to 5 mA/V. When the gain G1M decreases to 2.6 mA/V, negative 
resistance for B-mode shows 4.8 kΩ. Then it shows a maximum value 0 Ω at G1M = 2.1 mA/V. Similarly, 
C-mode shows 2.9 kΩ, at G2M = 1.8 mA/V. Then, it shows a maximum 0 Ω at G1M = 1.15 mA/V. The maximum 
value of negative resistance is located at a certain value of gain, which is not necessarily large. In another view of 
the oscillation conditions, quartz crystal oscillation is stabilized at minimum negative resistance. The minimum value 
of negative resistance |Rcci|min is 264 Ω for B-mode and 70.5 Ω for C-mode, from Table 1. At |Rcci|min larger than 
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(a)                                                     (b) 

     
(c)                                                     (d) 

Figure 6. Depencence of negative resistance on transconductance: G1M and G2M. (a) Negative resistance in the combination 
of the 3rd harmonics B-mode vs. 3rd C-mode; (b) Negative resistance in the combination of B-mode fundamental vs. the 3rd 
harmonics C-mode; (c) Negative resistance in the combination of the 3rd harmonics B-mode vs. 3rd C-mode; (d) Negative 
resistance in the combination of B-mode fundamental vs. the 3rd harmonics C-mode.                                    
 
70.5 Ω the oscillation condition of C-mode is fulfilled before the oscillation condition of B-mode is achieved, if 
negative resistance is smaller than 264 Ω. In this case, the oscillation mode transfers to the single oscillation of 
C-mode. 

Figure 9 shows the dependence of negative resistance on frequency for various values of coupling capacitors: 
C0y and C1y.  

In Figure 9(a), the case of the combination of the 3rd harmonic resonance of B-mode and C-mode, C0y is  
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(a)                                                     (b) 

      
(c)                                                     (d) 

Figure 7. Dependence of negative resistance on gain: G1M and G2M. (a) Dependence on G1M, G2M = 5 mA/V; (b) Dependence 
on G2M, G1M = 5 mA/V; (c) Dependence on G1M, G2M = 5 mA/V; (d) Dependence on G2M, G1M = 5 mA/V.                   
 

   
(a)                                                     (b) 

Figure 8. Dependence of negative resistance on gain: G1M and G2M. (a) Combination of the 3rd harmonics of B-mode versus 
3rd harmonics of C-mode; (b) Combination of the fundamental of B-mode versus 3rd harmonics of C-mode.                
 
fixed at 10 pF. The case of C0y = 0 pF means that the oscillator is disconnected from the quartz resonator and 
only OSC1 is connected to the resonator. The oscillation condition for B-mode (OSC1) is fulfilled in a narrow 
region in the vicinity of the resonance frequency, in the case where C1y = 30 pF: 

( )1 264cci bR R> = Ω  

In Figure 9(b), the case of the combination of the fundamental B-mode versus the 3rd harmonics of C-mode, 
C1y is fixed at 10 pF. The case C0y = 0 pF means that OSC1 (B-mode) is disconnected and only OSC2 (C-mode) 
is connected with the quartz resonator. The oscillation condition for C-mode is fulfilled from 9.7 to 10.1 MHz. 
For C0y = 10 pF, the negative resistance of OSC1 and OSC2 is approximately equal to 2 kΩ. The oscillation con- 
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(a)                                                     (b) 

     
(c)                                                     (d) 

Figure 9. Dependence of negative resistance on coupling capacitors: C0y and C1y. (a) Combination of the 3rd harmonics of 
B-mode versus the 3rd harmonics of C-mode. C1y is fixed at 10 pF; (b) Combination of B-mode fundamental versus the 3rd 
harmonics of C-mode. G1M = 5 mA/V and G2M = 5 mA/V; Cz = ∞ pF; (c) Combination of the 3rd harmonics of B-mode ver-
sus the 3rd harmonics of C-mode. C0x = 13.5 pF; C0s = 5 pF; C0y = 10 pF; (d) Combination of fundamental B-mode versus 
the 3rd harmonics of C-mode. C0x = 31 pF; C1x = 20.5 pF; C1s = 5 pF; L12 = 5.6 μH; G2M = 5 mA/V; Cp = 2 pF; C0c = 3.431 
pF; C0b = 3.244 pF.                                                                                         
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dition for C-mode is fulfilled from 9.8 to 10.1 MHz and for B-mode from 10.8 to 10.9 MHz. If C0y is set to 30 
pF, the oscillation condition for OSC2 is fulfilled, but the negative resistance for OSC1 is lower than the critical 
value. Figure 9(c) and Figure 9(d) show the oscillation condition for OSC2. C1y is varied while the counterpart 
C0y is fixed at 10 pF. The peak for the OSC2 steps out of the resonance frequency region at C1y equal to or larger 
than 30 pF. 

Figure 10 shows negative resistance as functions of coupling capacitors C0y and C1y, where C0y either C1y is 
variable and counterpart is fixed at 10 pF. C1y = 10 pF, the oscillation condition of B-mode is fulfilled from 3.56 
to 3.8 MHz, and the oscillation condition of C-mode is fulfilled from 9.8 to 10.1 MHz. The relation between 
negative resistance |Rcci| and coupling capacitor C0y shows that negative resistance of C-mode oscillator fulfills 
the oscillation condition for wide range of C0y. 

( )1 70.5cci cR R> = Ω  

On the other hand, negative resistance of the B-mode oscillator fulfills the oscillation condition only in a nar-
rower region from 6 to 18 pF. 

( )1 264cci bR R> = Ω  

The oscillation condition of C-mode is fulfilled, at C0y and C1y from 2 to 48 pF, and stable oscillation of 
C-mode is available. The oscillation condition of B-mode is fulfilled only at narrower region of C0y and C1y from 
6 to 13 pF. Stable dual mode resonance oscillation is available in this region. Figure 10(b) shows the case of the 
combination of fundamental B-mode and the 3rd harmonics of C-mode. The oscillation condition is fulfilled in 
wider choice of the parameter C0y and C1y. The value of connecting capacitors C0y and C1y is a parameter that 
enables simultaneous dual mode resonance oscillation. In summary, the best coupling capacitances are C0y = 10 
pF and C1y = 10 pF. If C0y is larger than 30 pF, the oscillation condition for OSC1 is not fulfilled, while the os-
cillation condition for OSC2 is fulfilled from 9.8 to 10.2 MHz. This discussion on the choice of coupling capa-
citors must be reviewed in the case of the lower limit of the transconductance. 
 

   
(a)                                                     (b) 

Figure 10. Dependence of negative resistance on coupling capacitors: C0y and C1. (a) Combination of the 3rd harmonics of 
C-mode and B-mode; (b) Combination of the fundamental B-mode and the 3rd harmonics of C-mode.                                  
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3. Experimental Result and Discussions 
3.1. Analysis of the Stability 
The short-time stability of the C-mode oscillation is compared. The bottom level of the σ versus τ dependence is 
employed as the measure of the stability, where σ is the root Allan variance defined as (12) and τ is the sampling 
interval (gate time) [10] 

( )

1
2 21

1

1 1

2 .
1

M
k k

y
k k k

f f
M f f

σ τ
−

+

= +

  −
 =  − +   

∑                            (12) 

fk is the moving average of 10 sequential of frequency data. τ is the sampling time interval. M is the number of 
samples per measurement. The average of frequency is calculated over the gate time. Measurement was carried 
out by universal frequency counters Agilent 53230A (Agilent Technologies, Santa Clara, Ca, USA) synchro-
nized with a rubidium oscillator. Figure 11 shows typical example of wave forms observed in the simultaneous 
multimode oscillation.  

The stability of the single C-mode oscillation is compared with the simultaneous multimode oscillation of 
different harmonic combinations. In this experiment, the measure of the stability is the bottom level of the σ 
versus τ dependence, where σ is the root Allan variance defined as (12) and τ is the sampling interval (gate time). 
Figure 12 shows the σ versus τ curve for the oscillation of C-mode, single-mode oscillation. 

Figure 13(a) shows the root Allan variance of the 3rd harmonics of C-mode σy(τ) < 10−10 at τ of 100 - 1000 
ms and the 3rd harmonics of B-mode σy(τ) < 10−10 for the gate time below 500 ms. Figure 13(b) shows the 3rd 
harmonics of C-mode shows σy(τ) < 10−10 for τ from 20 to 1000 ms, and the fundamental B-mode σy(τ) < 10−10 
for τ from 20 to 1000 ms, indicating high stability of the simultaneous multimode oscillation comparable to the 
single mode oscillation. 

3.2. Temperature Dependence of Oscillation Frequency 
Temperature dependence of the oscillation frequency was measured in the simultaneous oscillation. Allan stan-
dard deviation was observed to avoid spontaneous mode change of additional resonance mode. Figure 14 shows 
root Allan variance at the start point and at higher end of the temperature range. Figure 15 shows the tempera-
ture dependence of the oscillation frequency observed simultaneously. 

The regression curve of C-mode shows a cubic function with an inflection point at 85.7˚C (Designed value). 
The frequency drift of C-mode is 0.32 × 10−6 per degree Celsius. This result suggests that the stability of the os-
cillator remains at the level of typical quartz crystal oscillator. The regression curve of B-mode indicates a linear 
dependence of approximately −26.5 ppm/degree. The dual-mode oscillation direct thermometry is applicable 
over this temperature range. 

3.3. Suppression of the Fundamental B-Mode Oscillations 
Figure 16 shows a typical example of the spectrum of the dual mode quartz crystal oscillation. The spectrum 
was measured by real time FFT analysis (Rohde-Schwarz RT1004, Rhode and Schwarz Company, Munich, 
Germany). 

Figure 16(a) shows the combination of the 3rd harmonics of C-mode and B-mode, and Figure 16(b) shows 
the case of the combination of the 3rd harmonics of C-mode and fundamental B-mode. Compared with the se-
paration of frequency between the 3rd harmonics, the separation between the 3rd harmonics oscillation of 
C-mode and fundamental oscillation of B-mode is 6.2 MHz. This wide separation enables easier construction of 
the mode discrimination system, but this scheme results in more numbers of spectral peaks. 

The common part of circuit constants for the analysis are as follows: Oscillator 1: C02 and C03 = 47 pF; C0s = 5 
pF; C0y = 10 pF; G1M = 5 mA/V. Circuit constant of Oscillator 2: C12 and C13 = 47 pF; C1s = 5 pF; C1y = 10 pF; 
G2M = 5 mA/V; Cz = 100 pF; Cp = 2 pF; C0c = 3.431 pF; C0b = 3.244 pF. L02 = 5.6 μH; L12 = 5.6 μH; C0x = 9 pF; 
C1x = 17 pF; L02 = 33 μH for the fundamental mode or L02 = 5.6 μH for the 3rd harmonic resonance of B-mode.  

The common part of circuit constants for this experimental part is as follows. Oscillator 1: C02 and C03 = 47 
pF; C0y = 10 pF; L02 = 5.6 μH; C0x = 9 pF for the 3rd harmonic resonance and L02 = 33 μH; C0x = 30 pF for the 
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(a) 

 
(b) 

Figure 11. Observation of simultaneous dual-mode oscillation of SC-cut quartz crystal resonator. (a) Upper track: C-mode 
3rd harmonics, 9.999331 MHz. Lower track: B-mode 3rd harmonics, 10.885515 MHz. Horizontal scale: 100 ns/div; (b) Up-
per track: C-mode, 3rd harmonics, 9.999733 MHz, Lower track: B-mode, fundamental, 3.691164 MHz. Horizontal scale: 
200 ns/div.                                                                                                      
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Figure 12. σ versus τ curve of single mode oscillation of C- 
mode. Open circles: C-mode (9.999835 MHz).                 

 

  
(a)                                                     (b) 

Figure 13. σ versus τ curve of simultaneous dual-mode oscillation. Open circles: C-mode. Open square symbols: B-mode. 
Bars: Standard deviation of 5 sequential measurement. (a) σ versus τ curve of C-mode (3rd harmonics, 9.999331 MHz), 
B-mode (3rd harmonics, 10.885515 MHz); (b) σ versus τ curve of C-mode at (3rd harmonics, 9.999733 MHz), B-mode (fun-
damental, 3.691164 MHz).                                                                                    
 

  
(a)                                                     (b) 

Figure 14. σ versus τ curve at the start and the endpoint of the temperature dependence. Open circles: C-mode. Open square 
symboles: B-mode. Bar: Standard deviation of 5 sequential data. (a) σ versus τ curve of C-mode (3rd harmonics, 9.999331 
MHz), B-mode (3rd harmonics, 10.885515 MHz) at 27˚C; (b) σ versus τ curve of C-mode (3rd harmonics, 9.9999956 MHz), 
B-mode (3rd harmonics, 10.963845 MHz) at 80˚C.                                                                   
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Figure 15. Simultaneously measured oscillation frequency. 
Open circles: C-mode. Open square symbols: B-mode. Regres- 
sion function of B-mode: Y = −26.453X + 716.55.            

 

 
(a) 

 
(b) 

Figure 16. Spectrum of the simultaneous oscillation. Horizontal scale: Span 0 to 30 MHz. Resolution 100 kHz. (a) Spectrum 
of C-mode (3rd harmonics, 9.99975 MHz upper track) and B-mode (3rd harmonics, 10.97758 MHz lower track); (b) Spec-
trum of C-mode (3rd harmonics, 9.99975 MHz, upper track) and B-mode (fundamental, 3.69147 MHz, lower track).              
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fundamental resonance of B-mode. Oscillator 2: C12 and C13 = 47 pF; C1y = 10 pF; L12 = 5.6 μH; C1x = 17 pF for 
the 3rd harmonic resonance of C-mode. IC1 and IC2 TC7SHU04F, Vcc = 5 V. 

4. Conclusions 
The SC-cut resonator is made of double-rotated cut crystals and it shows a principal resonance C-mode and 
B-mode, additional resonance mode. High stability of the principal mode was observed in both single and mul-
timode resonance oscillation. The linear dependence of the B-mode on the temperature can realized the ther-
mometric method with the assurances of the stability. Design rules were ensured by the measurement of the sta-
bility of σ versus τ curve. 

The narrow-band wide variable crystal oscillator circuit was proved to be an efficient experimental maneuver 
in the simultaneous measurement of the stability and the oscillation frequency dependence on the ambient tem-
perature. The frequency separation is narrower than the combination of the 3rd harmonic resonance of C-mode 
and the fundamental resonance of B-mode which is approximately 6.2 MHz. The combination of the 3rd har-
monic resonance oscillation shows quasi-sinusoidal wave forms with negligible distortion with Allan standard 
deviation σy(τ), 10−11 < σy(τ) < 10−10, sufficiently stable for standard time base and sensor applications. In the 
present stage of the experiment, the demonstrated result was obtained by precise choice of the circuit constant 
and bias current. It is necessary to monitor the unlocking from crystal resonance by the real-time monitoring of 
the Allan standard deviation. Although the reproducibility of the circuit and the oscillation condition is not tho-
roughly identified and appropriate circuit design is still necessary, we risk concluding that the dual-mode quartz 
crystal resonance oscillation can be applied to piezoelectric sensing and the production of a stable frequency 
standard. 
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