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Abstract 
This work deals with a finite element procedure developed to perform the eigenvalue analysis of 
damped gyroscopic systems, represented by flexible rotors supported on fluid film journal bear-
ings. The rotor finite element model is based on the Timoshenko beam theory, accounting for the 
shaft rotary inertia and gyroscopic moments. The governing equations for the hydrodynamic journal 
bearing are obtained through the Galerkin weighted residual method applied to the classical Rey-
nolds equation. A perturbation scheme on the fluid film governing equation permits to obtain the 
zero-th and first order lubrication equations for the bearings, which allow the computation of the 
dynamic force coefficients associated with the bearing stiffness and damping. The rotor-bearing 
system equation, which consists of a case of damped gyroscopic equation, is rewritten on state 
form to compute the complex eigenvalues. The natural frequencies at several operating conditions 
are obtained and compared to the technical literature data. The influence of the effective damping 
on the eigenvalue real part sign is analyzed for some examples of rotor-bearing systems, showing 
how the stability conditions can be predicted by the eigenvalue analysis. The procedure imple-
mented in this work can provide useful guidelines and technical data about the selection of the 
more appropriate set of bearing parameters for rotating machines operating at stringent conditions. 

 
Keywords 
Flexible Rotors; Fluid Film Bearings; Rotor-Bearing Systems; Finite Element; Eigenvalue Problem 

 
 

1. Introduction 
Researchers have been continuously devising experimental, analytical and computational procedures to analyze 
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the several dynamic aspects associated with rotating shafts employed on high-speed machines. Since 1970, the 
finite element method has been largely used to develop models for flexible rotors and to perform analyses of 
balancing, stability and torsional vibration of rotating machinery [1]-[7]. For a rotating shaft, the Timoshenko 
beam theory has been employed to build finite element models very accurately to analyze the dynamics of flexi-
ble rotors [5]. 

Computational procedures are able to predict the dynamic response of high-speed rotors supported on fluid 
film bearings have been the goal of many turbomachinery manufacturers [8]. Those procedures are very useful 
at the preliminary design stages and commissioning of industrial rotating machines employed on the oil industry 
and petrochemical plants [9]. The eigenvalue analysis of rotating and stationary components of machines and 
mechanical equipments has been a basic step in any dynamic analysis of rotating systems [10]. Vibration modes 
associated with the rotating shaft and bearing support have provided important subsides for the development of 
computational procedures on vibration analysis, balancing techniques and monitoring of high speed rotating 
machinery [8] [11]-[13]. 

On the eigenvalue analysis of structural dynamic systems, the governing equations are generally based on 
both the undamped and damped gyroscopic systems [14]. On the other hand, for industrial turbomachinery and 
rotating machines, the eigenvalue analysis has been carried out based on both the nongyroscopic and gyroscopic 
systems, taking into account or not the dissipative properties [10] [15]-[18]. The eigenvalue problem is also im-
portant on the sensitivity analysis of the system dynamic response [19]-[22]. The stability analysis and the dy-
namic response of gyroscopic systems can also be performed from the eigenvalue problem [17] [23]-[25]. 

This work deals with a finite element procedure devised to perform the eigenvalue analysis of high-speed ro-
tating machines supported on fluid film journal bearings. The Timoshenko beam theory is applied on the rotat-
ing shaft finite element modelling, accounting for the shear effects, the gyroscopic moments and the rotatory in-
ertia. Lumped masses are used to model mechanical components rigidly attached to the rotating shaft, which 
may represent any rotating part of a turbomachine shaft, such as turbine wheels, compressor disks or pump im-
pellers. The hydrodynamic journal bearing finite element modelling is based on the classical Reynolds equation. 
A linearized perturbation method is applied on the Reynolds equation to render the lubrication equations capable 
of predicting the eight linearized dynamic force coefficients associated with the bearing stiffness and damping. 
The rotor-bearing system equation, which consists of a case of damped gyroscopic equation, is rewritten on state 
form [26]-[28] to compute the complex eigenvalues. The natural frequencies are obtained for rotating machines 
operating at stringent conditions. The influence of the effective damping on the eigenvalue real part sign is ana-
lyzed for some examples of high-speed rotor-bearing systems. Also, the influence of the bearing damping coef-
ficients on the natural frequencies and on the stability of flexible rotors is shown through some curves presented 
in this work. The effective damping of rotor-bearing systems is demonstrated to be a very important design pa-
rameter for high-speed rotating machinery. 

2. Finite Element Equations 
The rotor-bearing system is modelled using finite element models for both the flexible shaft and the hydrody-
namic journal bearings. A global equation of motion, Equation (1a), is obtained from the finite element matrices, 
where [M] represents the global shaft translational inertia matrix, [N] represents the global rotatory inertia ma-
trix, [K] the shaft and bearing stiffness matrix and [C] is the generalized shaft and bearing damping matrix, in 
which the shaft gyroscopic effects are included. The bearings stiffness [Km] and damping [Cm] coefficients are 
included into the system matrices, in order to represent the fluid film resistance to the rotor displacement and to 
velocity, respectively. The rotor-bearing system equation is rewritten on state form to compute the complex ei-
genvalues. The complex eigenvalues associated with the system are separated to get the natural frequencies and 
information on the stability of the rotor-bearing system. 

2.1. Shaft Modelling 
The finite element method is applied for the modelling of both the flexible shaft and the hydrodynamic journal 
bearings. Figure 1 depicts a schematic view of a flexible rotor supported on fluid film plain cylindrical journal 
bearings. 

The finite element shaft modelling implemented in this work has been based on the special shape functions 
derived by [5]. Reference [5] employs the Timoshenko beam theory to derive the governing equations for a  
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Figure 1. Flexible shaft supported on fluid film journal bearings.                       

 
flexible circular shaft supported on elastic supports taking into account the shaft shear effects, gyroscopic mo-
ments and rotatory inertia. The system is represented schematically in Figure 1. 

Two node beam finite elements with eight degrees-of-freedom are employed to model the lateral motion of 
flexible shafts. The journal bearing contributions to the rotor stiffness and damping coefficients are accounted 
for. The finite element procedure is based on the following global equation of motion 

[ ]{ } [ ]{ } [ ]{ } { }M N U C U K U R+ + + =                             (1a) 

where [M] represents the global shaft translational inertia matrix, [N] represents the global rotatory inertia ma-
trix, [K] the shaft and bearing stiffness matrix and [C] is the generalized shaft and bearing damping matrix, 
which is expressed as [ ] [ ] [ ]1C C G= −Ω ⋅ , in which [G] is the shaft gyroscopic effect matrix. The matrix [C1] 
represents the bearing damping. The shaft acceleration, velocity and displacement vectors are given, respec-
tively, by { } { } { }, ,U U U  , and Ω is the shaft rotating speed (rad/s). Each node has 4 degrees of freedom, where 
the i-th element displacement and rotation is represented by the vector Ui composed of the following compo-
nents: 
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The external excitation force is represented by the vector {R} in Equation (1a). For the eigenvalue problem 
analysis, this vector is null {R} = {0}. 

2.2. Bearing Modelling 
The journal bearing finite element model is developed based on the classical Reynolds equation for 
oil-lubricated plain cylindrical journal bearings [1]. For the coordinates (X, Z), this equation is given by. 

3 3 d
12 12 2 d
h P h P R h h

X X Z Z X tµ µ
   ∂ ∂ ∂ ∂ Ω ∂

+ = +   ∂ ∂ ∂ ∂ ∂   
                       (2) 
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The journal rotational speed is denoted by Ω. Journal eccentricities on the vertical and horizontal directions 
are expressed as eX and eY, respectively. The eccentricity ratio is defined as ε = e/c, where 2 2 2

X Ye e e= + . The 
circumferential coordinate X = R·θ and R is the bearing radius. Fluid viscosity is given by µ, P represents the 
hydrodynamic pressure and h is the fluid film thickness. A linearized perturbation procedure is used in conjunc-
tion with Equation (2) to render the zeroth- and first-order lubrication equations [29]. These equations allow the 
computation of the bearing reaction forces and eight dynamic force coefficients. For brevity, these equations and 
the validation of the finite element procedure for the bearing dynamic coefficients are omitted in this work. 

The dynamic force coefficients are represented in matrix form by the stiffness [Km] and the damping [Cm] 
matrices as in Equation (3), given by [30]. They stand for the fluid film resistance to the rotor displacement and 
velocity, respectively. 

[ ] [ ];XX XY XX XY
m m

YX YY YX YY

K K C C
K C

K K C C
   

= =   
   

                       (3) 

Figure 2 depicts the cross-section of a journal bearing and its linearized stiffness and damping coefficients 
along the X-axis and Y-axis. 

2.3. Eigenvalue Problem 
The vibration analysis of rotor-bearing systems can be carried out through computational procedures developed 
specially to predict the dynamic response and stability analysis of rotating shafts supported by fluid film bear-
ings. At the preliminary design and commissioning stages of industrial turbomachinery, those procedures can 
bring important insights on the rotating system dynamic behaviour. 

The first step in the dynamic analysis consists of obtaining the system natural frequencies under several oper-
ating conditions. The free vibration problem associated with linear systems of differential equations leads natu-
rally to the eigenvalue problem [31]. For damped gyroscopic systems, the complex eigenvalues and eigenvectors 
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Figure 2. Linearized stiffness and damping coefficients of the journal bearing.           
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provide very useful data about the mode shapes and stability of rotating systems. 
The eigenvalue problem associated with Equation (1) can be reduced to a standard form, following a proce-

dure similar to that presented by [27]. A second order state vector {X}, defined in the following form, is used to 
rewrite the governing equation on state variables: 

{ } { } { }
TT TX U U =   

                                  (4) 

The free vibration problem associated with Equation (1) can be rewritten as follows 

{ } { } { }* * 0M X C X   + =   
                             (5) 

where 

[ ] [ ]
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* 0
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 

                             (6a) 
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I

 
  =    − 

                                 (6b) 

where [I] is the identity matrix, with the same dimension as that of [M], [N], [C] and [K]. The solution of Equa-
tion (5) has the form 

{ }( ) { }( )est
oX t X t=                                   (7) 

and the associated eigenvalue problem can be stated as 

{ } { } { }* * 0o os M X C X   + =                              (8) 

or 

{ } { }*
o oA X s X  =  ,                                   (9) 

where, provided [M*] is non-singular, 
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− −
−  − + − +

       = − =        
              (10) 

As described before, the matrix [C] is defined as [ ] [ ] [ ]1C C G= −Ω ⋅ , where [G] is the shaft gyroscopic ma-
trix, while the matrix [C1] represents the bearing damping. The variable s in Equation (8) represents the system 
complex eigenvalues. These eigenvalues are composed of a real part “a” and an imaginary part “b”, given by 
Equation (11). 

s a ib= ±                                        (11) 

The imaginary part “b” corresponds to the system natural frequency and the real part “a” gives information on 
the system stability, as shown in the numerical results presented in the following sections. 

3. Numerical Results 
Numerical results of some rotor-bearing systems are obtained to validate the finite element procedure developed 
in this work and to perform the stability analysis of a damped gyroscopic system. In example 1, the predicted 
results of the natural frequencies obtained from the eigenvalue analysis of the damped gyroscopic system are 
compared to those in the literature. In example 2, a more complete system is analysed, including fluid-film 
bearing supports, and stability analysis based on the eigenvalues and the effective damping parameter. The finite 
element procedure and the eigenvalue calculation are both implemented in Matlab®. 
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3.1. Example 1 
The validation of the finite element procedure begins with an example of a uniform shaft supported at its ends 
on identical damped bearings, presented by [32], where the shear effects, rotatory inertia and gyroscopic effects 
are considered. Firstly, for the mesh convergence analysis, the system parameters are listed in Table 1. 

The finite element mesh convergence analysis is done based on the natural frequencies of the rotor-bearing 
system, and compared to reference [32] results. The results are presented in Tables 2 and 3 and Figure 3, where 
“NF” stands for natural frequency and “n” is the number of elements. It is concluded that an 80-element mesh 
yields less than 2% error at the prediction of the first, second, third and fifth natural frequencies, and less than 
2.4% error at the fourth natural frequency. 

Another validation procedure is developed for a similar system. It consists of a stability analysis, using the 
data presented by [32] in his second example, where direct stiffness coefficients are 3.5024 × 106 N/m and the 
damping coefficients are variable, as shown in Table 4. 

The complex eigenvalues lead to the damped natural frequencies of the system and these eigenvalues are 
compared to [32], for the validation. The results for an 80-element mesh are presented in Figure 4 and Figure 5, 
with the natural frequencies in function of the bearing damping coefficient, where “EV” stands for “eigenvalue”. 
The solid, dotted and dashed lines are associated with the results presented by [32], while the symbols indicate 
the predictions obtained by the finite element procedure developed in this work. The finite element predictions  
 

Table 1. System parameters adopted for the mesh convergence analysis.                               

Parameter Description Value Unit 

L shaft length 1.270 m 

d shaft diameter 0.1016 m 

E shaft Young module 207 × 109 Pa 

ρ shaft specific mass 7833 kg/m³ 

kb bearings direct stiffness coefficient 10.51 × 106 N/m 

cb bearings direct damping coefficient 17512 N·s/m 

 
Table 2. Finite element mesh convergence analysis—Natural frequencies comparison (rpm).               

 
[32] 

FEM-Prediction 

 n = 5 n = 10 n = 20 n = 40 n = 60 n = 80 n = 100 n = 120 

1st NF 4260 4239 4396 4373 4342 4329 4323 4319 4316 

2nd NF 6000 6296 6052 5983 5985 5994 6000 6004 6007 

3rd NF 16,500 16,463 16,934 16,938 16,864 16,829 16,809 16,796 16,788 

4th NF 45,000 46,557 46,580 46,444 46,202 46,091 46,031 45,992 45,966 

5th NF 90,000 92,700 91,943 91,848 91,631 91,518 91,454 91,413 91,385 

 
Table 3. Finite element mesh convergence analysis—Natural frequencies relative error.                   

 n = 5 n = 10 n = 20 n = 40 n = 60 n = 80 n = 100 n = 120 

1st NF −0.5% 3.2% 2.6% 1.9% 1.6% 1.5% 1.4% 1.3% 

2nd NF 4.9% 0.9% −0.3% −0.2% −0.1% 0.0% 0.1% 0.1% 

3rd NF −0.2% 2.6% 2.7% 2.2% 2.0% 1.9% 1.8% 1.7% 

4th NF 3.5% 3.5% 3.2% 2.7% 2.4% 2.3% 2.2% 2.1% 

5th NF 3.0% 2.2% 2.1% 1.8% 1.7% 1.6% 1.6% 1.5% 
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Figure 3. Relative error between the predicted natural frequencies and [32].                            

 
Table 4. System parameters for stability analysis.                                                  

Parameter Description Value Unit 

L Shaft length 1.270 m 

d Shaft diameter 0.1016 m 

E Shaft Young module 207 × 109 Pa 

ρ Shaft specific mass 7833 kg/m³ 

kb Bearings direct stiffness coefficient 3.5024 × 106 N/m 

cb Bearings direct damping coefficient - N·s/m 
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Figure 4. Natural frequencies versus bearings damping coefficients, for the 1st, 2nd and 3rd vibration modes. 
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Figure 5. Natural frequencies versus bearings damping coefficients, for the 4th and 5th vibration modes.   

 
are represented by EV158, EV159, EV160, EV161 and EV162, which represent the 158th, 159th, 160th, 161st and 
162nd system eigenvalues, respectively. 

The numerical procedure using state variable form produces many eigenvalues, which are separated and or-
ganized. For this example, using a mesh with 80 beam elements, after filtering and organizing the eigenvalues, it 
can be observed that the 160th, 161st and 162nd eigenvalues represent, respectively, the 3rd, 2nd and 1st vibration 
modes of the rotor-bearing system (Figure 4). As the damping coefficient increases, the order of eigenvalues 
corresponding to the modeshapes may change, as shown in Figure 5. The comparative results depicted on 
Figures 4 and 5 show that the finite element procedure renders results in good agreement with those presented 
by [32], with a maximum 2% relative error. 

This analysis shows the influence of the bearing damping on the natural frequencies of the rotor-bearing sys-
tem. If the bearing parameters chanJge, the damping may vary, changing the vibration behaviour of the entire 
system. The stability can also be studied based on the eigenvalues. The computation of the damping exponent 
associated with part “a” of the complex eigenvalues (Equation (11)), renders results very similar to those ob-
tained by [32], whose results are omitted here for brevity. An analysis of the real part of the complex eigenval-
ues is carried out for another system and presented in example 2. 

3.2. Example 2 
This second example consists of a rotor-bearing system composed of a shaft supported by two hydrodynamic 
journal bearings, similar to that shown in Figure 1. More details can be seen in [6]. The parameters of the sys-
tem are shown in Table 5. 

The exponents associated with part “a” (Equation (11)) of the complex eigenvalues are computed for the ro-
tating system with some sets of parameters associated with the hydrodynamic journal bearings. This analysis is 
performed to show the importance of the bearing effective damping 2ωCxx/Kxy on the stabilization of the rotating 
system [2]. The shaft rotating speed is represented by ω, while Cxx is the bearing direct damping coefficient and 
Kxy is the bearing cross-coupled stiffness coefficient. 

For this example, three sets of rotating speeds have been selected (750 rpm, 3200 rpm and 5600 rpm), as 
shown in Table 6, in order to show how the bearing effective damping and the value of “a” are related to the 
system stability. The bearing stiffness coefficients remain constant, while the damping coefficients are adjusted  
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Table 5. System parameters for example 2.                                                       

Parameter Description Value Unit 

L Shaft length 0.30 m 

d Shaft diameter 0.015 m 

l Bearings length 0.012 m 

c1 Bearing radial clearance 34.5 × 10−6 m 

μ Lubricant viscosity 25 × 10−3 Pa·s 

ρ Lubricant mass density 892 kg/m³ 

E Shaft Young modulus 200 × 109 Pa 

ν Shaft Poisson coefficient 0.30 - 

ρ Shaft mass density 7870 kg/m³ 

 
Table 6. Numerical results for example 2 and stability parameters.                                    

Speed (rpm) [Km] (N/m) [Cm] (N·s/m) 2ωCxx/Kxy Stability a 

750 4 4.4150 4.4137
10

4.4137 4.4150
 

×  − 
 

29.81 0
0 29.81

 
 
 

 0.1 UNSTABLE 156 

750 4 4.4150 4.4137
10

4.4137 4.4150
 

×  − 
 

1579.9 0
0 1579.9

 
 
 

 5.3 Stable −260 

3200 6 0.8111 1.3896
10

1.3896 0.8111
 

×  − 
 

208.4 0
0 208.4

 
 
 

 0.1 UNSTABLE 298 

3200 6 0.8111 1.3896
10

1.3896 0.8111
 

×  − 
 

4168 0
0 4168

 
 
 

 2.0 Stable −193 

5600 6 0.4092 2.3518
10

2.3518 0.4092
 

×  − 
 

200.2 0
0 200.2

 
 
 

 0.1 UNSTABLE 1767 

5600 6 0.4092 2.3518
10

2.3518 0.4092
 

×  − 
 

4004 0
0 4004

 
 
 

 2.0 Stable −130 

 
for each rotating speed. For simplicity, the cross-coupled damping coefficients are neglected in this analysis. 

The results obtained from this stability analysis show that an increase on the direct damping coefficient can 
stabilize a rotor operating unstably. A sign change on the eigenvalue exponent “a” indicates that the rotor is 
moving from unstable to stable conditions or vice-versa. The stability analysis based on the real part “a” of the 
complex eigenvalues associated with the rotor shown in Table 5 provides the same results as those based on the 
time integration of the rotor governing equation, presented by [6]. It is clear from this analysis that the bearing 
effective damping 2ωCxx/Kxy is a very important parameter for rotors operating on hydrodynamic bearings. 
When the effective damping decreases and approaches 0, the system tends to be unstable, and when it increases, 
the system tends to be stable. On Table 6, a system is considered unstable when a > 0, and stable when a ≤ 0. 
The values shown on the second and third columns labelled [Km] and [Cm] are the bearing dynamic force coeffi-
cients. 

The journal dynamic coefficients play a crucial role on the stability of the system, as shown in this second 
example. By changing the damping coefficients, a stable condition can be established, as shown on Table 6. 

4. Conclusions 
The appropriate selection of a rotor supporting system is a fundamental step on the design and commissioning of 
industrial rotating machines. Dynamic force coefficients play a crucial role in the rotor capability to bear unde-
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sirable vibrations and to run under stable conditions. The results presented in this work show clearly the impor-
tance of selecting the appropriate bearing configuration able to provide enough effective damping to bound the 
growth of the vibration response at critical operating conditions. 

The finite element procedure has been implemented to analyze the stability of high speed turbomachines 
supported by hydrodynamic journal bearings. The numerical results presented in this work show that the com-
putational procedure implemented for the eigenvalue analysis of damped gyroscopic systems is able to render 
reliable results, which are in good agreement with the results presented in the technical literature. 

The finite element procedure can also be employed to evaluate design and operating changes in high-speed 
turbomachinery, in order to improve their dynamic response. From the parameters of the rotor-bearing system, 
its dynamic behaviour can be studied and modified, for example, to avoid its operation near a critical speed, or 
to guarantee safe operation when traversing critical speeds. 
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