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ABSTRACT 
In this research, we have concentrated on trajectory extraction based on image segmentation and data association in 
order to provide an economic and complete solution for rapid microfluidic cell migration experiments. We applied re-
gion scalable active contour model to segment the individual cells and then employed the ellipse fitting technique to 
process touching cells. Subsequently, we have also introduced a topology based technique to associate the cells between 
consecutive frames. This scheme achieves satisfactory segmentation and tracking results on the datasets acquired by our 
microfluidic platform. 
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1. Introduction 
Cell migration plays an important role in many biomedi- 
cal fields, such as drug test and disease diagnosis [1]. 
Traditionally, cell migration is observed under Boyden 
chamber or Tran swell assays and other cell migration 
assays. However, these conventional methods lack of 
chemical gradients control and capability for quantitative 
analysis and often require large amounts of reagents and 
cell samples. Compared with the abovementioned me- 
thods, the microfluidic devices provide a more satisfac- 
tory platform for quantitative cell migration due to its 
capability of configuring precise and stable chemical 
concentration gradients, lower cells and reagents con- 
sumption, and the potential for high-throughput experi- 
ments [2-4]. 

High-throughput of images makes the manual obser- 
vation of cell migration a labor-requiring and time-con- 
suming process, and the accuracy of manual tracking 
highly depends on the experience and judgment of the 
individual researchers. Therefore, an effective automatic 
multiple objects tracking system is essential to conduct 
the quantitative analysis. 

Most cell tracking techniques are composed of two 
phases, detecting and segmenting cells frame by frame, 
and then associating the detected same cells over two or 
more consecutive frames. A large number of segmenta- 
tion methods have been introduced in the past decades, 
and many of them are still receiving intensive attention 
from medical image analysis community, such as water- 
shed [5,6], edge detector [7], split and merge [7-9], re-  

gion growth [10-12], and some clustering methods [13- 
16]. 

In this research, we have employed the active contour 
model, which was first introduced by Kass et al. [17]. 
Given an initial contour, this method would evolve to- 
wards image features such as object boundaries, and the 
evolution will continue until the energy functional 
reaches the minimal. However, the original model is pa- 
rametric and would fail when topology changes happen 
[1]. To handle the topology changes, Caselles et al. pro- 
posed the geodesic active contours with the flexibility of 
topology, which evolves the contours under a level-set 
framework [18]. With the level-set framework, the cell 
tracking group in Carnegie Mellon University has pro- 
posed several important improvements of active contour 
models to distinguish touching cells, though these me- 
thods require large computational time and memory load 
[19-23]. 

The objects association has been a focus of researchers 
in some scientific fields such as radar system and video 
surveillance. Multiple Hypothesis Tracking (MHT) [24] 
and Joint Probabilistic Data Association Filter (JPDAF) 
[25] are two well-known examples of using Recursive 
Bayesian estimation, which is an effective method in 
objects association. While MHT needs the construction 
of exhaustive hypothesis set to select the optimal trajec- 
tory, even with the pruning techniques, this procedure 
requires substantial computation time and memory space 
[26]. In contrast, JPDAF is a simpler and suboptimal 
approach that demands only fixed computational re- 
sources per iteration [27]. Data association, in general, 
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can be regarded as an optimal assignment problem and 
could be resolved by Hungarian algorithm [28]. We refer 
to [29] for a background study on data association tech- 
niques. 

2. Device Fabrication and Cell Preparation 
We have employed the similar fabrication of microfluidic 
devices with the same standard soft-lithography protocol 
described in [30]. The pattern was designed in a comput- 
er and printed into a transparency film to make a mask. A 
silicon wafer was coated with a thin layer of photo resist 
using a spinner. The master was finished by patterning 
the design on the wafer through the mask by UV 
processing. Liquid PDMS was poured on the master and 
cured in an oven. The PDMS replica was then peeled off 
and bonded to a glass slide by plasma treating to make 
the microfluidic device. The device was then coated by 
fibronection for one hour and blocked by BAS for another 
hour before starting the cell experiment to help cell 
bonding and migration on the substrate in the microflui- 
dic channel. 

The neutrophils were isolated from human whole 
blood using the gradient density centrifugation method. 
The cells were cultured in an incubator before loading in 
the microfluidic device. A 10 nM IL-8 gradient was gen- 
erated in the microfluidic channel. The device was then 
put under the microscope and time-lapse image acquisi- 
tion and further analysis was done by the custom-devel- 
oped program. 

3. Segmentation by Active Contour Model 
3.1. Region-Based Active Contour Models 
For an image function I(x,y) in the image domain, the CV 
model proposed by Chan and Vese [31] is: 
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where C is any possible curve, inside(C) and outside(C) 
are two regions inside and outside the contours, and c1 

and c2 are the average image intensity of inside(C) and 
outside(C), respectively. The first two terms in Equation 
(1) are called as “global fitting energy”, which will have 
the minimum values if curve C is the real boundary of an 
object. 

Since the CV model is piecewise constant and do not 
contain any local information, therefore, the optimal 
constants c1 and c2 might be significantly different from 
the real image data if the intensities inside or outside the 
curve C are inhomogeneous. Considering such a situation 
happens commonly when an image is captured by time- 
lapse microscopy, the region-based active contour model  

is a more desirable adaptation in our research. In the re- 
gion-based active contour model, the global fitting ener- 
gy is replaced by a Region-Scalable Fitting energy (RSF), 
which contains local intensity information. Assume Ω1 = 
outside(C) and Ω2 = inside(C), the RSF for each pixel 
x∈Ω  is defined as: 
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where λ1 and λ2 are positive constants, and f1(x) and f2(x) 
are the approximate image intensities in Ω1 and Ω2. The 
intensities I(y) are taken into account in the fitting energy 
come from the region centered at pixel x, the size of 
which is under the control of the kernel function K. A 
Gaussian kernel was chosen in [32]. 

Propagating the energy εFit 
x  on the entire image, it de- 

rives the following: 
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The second term in Equation (3) is a penalty term to 
smooth the contour C. Since this model is parametric, it 
is necessary to translate the parametric active contour to 
a geometric active contour, which is more desirable to 
deal with topology changes [18,33]. By applying Heavi- 
side and Dirac functions, numerical approximation of the 
evolution of the level set function can be written as: 

2

1 1 2 2

| |

( ) ( ) ( )( )
| |

div
t

v div e eε ε

φ φµ φ
φ

φδ φ δ φ λ λ
φ

  ∂ ∇
= ∇ −  ∂ ∇  

∇
+ − −

∇

     (4) 

2( ) ( ) | ( ) ( ) | , 1, 2i ie x K y x I x f y dy iσ= − − =∫    (5) 

where f1 and f2 are 

( ) [ ( ( )) ( )]( ) , 1, 2
( ) ( ( ))

i
i

i

K x M x I xf x i
K x M x

ε
σ

ε
σ

φ
φ

×
= =

×
       (6) 

For more details of the active contour model, we 
would refer to [32]. 

3.2. Splitting Touching Cells by Ellipse Fitting 
In general, the segmentation of touching cells is a chal-
lenging task [34,35]. When the traced cells enter into a 
blob, the boundaries of the contacting cells are blurred, 
and most segmentation algorithms would fail in finding 
the edges of cells in this situation. 

In our research, we first select a region larger than the 
blob where touching happens, then apply the ellipse fit- 
ting [36,37] to estimate the features of contacting cells. 
Figure 1(a) shows an example of two touching cells. It is  
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(a)              (b)              (c) 

 
(d)              (e)               (f) 

Figure 1. (a) Contour of two touching cells; (b) Binary im-
age of touching cells; (c) Result of ultimate erosion; (d) The 
set of candidate ellipses; (e) Best fitting ellipses of all the 
seeds; (f) Best fitting ellipses after overlapping deletion. 
 
obvious that the cells could be presented by two ellipses 
in this case. Therefore, splitting the cells is equivalent to 
estimate the parameters of the ellipses which best fit the 
real data. 

To apply the ellipse fitting, first, a set of seeds for the 
closed contours produced by the Region-Scalable Fitting 
based Active Control model are generated by ultimate 
erosion, which is a binary operator in mathematical mor- 
phology. The ultimate erosion repeat eroding an object 
until the object disappears, while the residual points are 
considered as seeds. Figures 1(b) and (c) illustrate the 
beginning and result of an ultimate erosion process, re- 
spectively. For convenience, we denote the pixels on the 
contours as C(xc,yc), and the seeds as Si, where i = 1, 2, ..., 
N and N is the number of seeds. For each of seeds Si, we 
then sort C(xc,yc) into increasing order according to the 
distance from C(xc,yc) to Si. At the end of sorting process, 
there would be N increasing order lists of C(xc,yc), de- 
noted as Ci 

sorted(xc,yc). First M elements are selected from 
Ci 

sorted(xc,yc) into a set Ci 
1 (xc,yc), and then incrementally 

append more elements into the set Ci 
k (xc,yc), where k 

means at the kth stage. In each stage, an ellipse is fitted 
to the pixel coordinates in set Ci 

k (xc,yc) by direct least 
squares fitting of ellipse [38]. After processing all stages, 
a number of candidate ellipses, as shown in Figure 1(d), 
are produced and the best fitting ellipse will be selected 
from them. The obtained 4 best fitting ellipses of the 
seeds in Figure 1(c) are presented in Figure 1(e). To 
rank the fitness of the ellipses, we have adopted the fol- 
lowing measurement 
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where Ellipse(Ci 
k(xc,yc)) denotes the ellipse fitted by the 

point Ci 
k(xc,yc), ϕobject represents the touching objects, and 

a and b are the weights. 
Two essential features are taken into account in our 

criterion of fitness, the first term of Equation (7) rewards 
the ellipse belonging to the region of object, while and 
the second term penalizes the ellipse out of the region of 
object. The ellipse with the highest value of this criterion 
will be chosen as the best fitting from a list of candidate 
ellipses. By performing the selection process to all of N 
increasing order lists, we would obtain N best fitting el- 
lipses from N seeds. In the ultimate erosion process, 
since the number of seeds would likely be more than the 
touching cells, thus it is necessary to make a decision that 
which of the best fitting ellipses represents the true cell. 
As a solution, we have arranged the N best fitting ellipses 
in decrease order by the fitting criterion values, and 
eliminated all ellipses that have an overlap over 60% 
with the previously selected ellipse. The rest two ellipses 
representing the touching cells are shown in Figure 1(f). 

4. Data Association Using Graph Theory 
An association process after successful cell segmenta- 
tions is to link the corresponding cells between two con- 
secutive frames. In our cell migration experiment, we 
have focused on investigating the slower moving cells 
which are bonded to the glass substrate. Since these un- 
adhered cells are not desirable and can be discarded, we 
employ a data association method based on graph theory 
[39], which is less costly in computational complexity 
and more suitable to address the adhered cells in our ex- 
periments. 

The migration speeds of cells are different in our ex- 
periments. The cells moving faster are regarded as active 
cells, while the ones with smaller displacement between 
two consecutive frames are classified as lazy type. Zhang 
et al. has presented a real-life example to explain the idea 
of this approach [39]. For example, if the neighbors 1, 2, 
3, 4, and 5 of A and B in Figure 2(a) are already identi- 
fied in Figure 2(b), then A, B and X, Y can be matched 
correctly according to the topology information of their 
identified neighbors. 

4.1. Lazy Cells Recognition 
As the example shown in Figure 2, obtaining the identi- 
 

 
(a)                     (b) 

Figure 2. Example of objects association. 
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fied neighbors is an essential procedure to discriminate 
the un-matched objects. Naturally, the objects moving 
slower are more likely to be recognized, therefore a good 
association strategy is to identify these lazy type cells 
first. In the situation that cells almost remain their posi-
tions and shapes, a nearest neighborhood search is an 
effective method in despite of its simple basis. 

Assume that N cells (Ti; i = 1, ..., N) have been tracked 
up to the last frame, and M cells (Ci; i = 1, ..., M) have 
been detected in the current frame. A cost function is 
introduced here to present the similarity between Ti and 
Ci: 

2 2 2

2 2 21 ( ) , if 
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ij ij ij
i i
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where Gi is the maximum Euclidean distance that a cell i 
can move between two consecutive frames, Ldi and Sdi 
are the maximum differences of perimeters and areas for 
the possible matched cells between two consecutive 
frames, respectively. If the distance dij is greater than Gi, 
then Costij is set to zero and the correspondence will be 
ignored. For each of cells in the current frame, we select 
the track with the highest Cost value among the N tracks 
in the last frame and then assign the cell the same label 
with the track. Since the assignment between a cell and a 
track is a one to one relationship, a process of optimizing 
is essential when more than one cell tend to be associated 
with the same track. Hungarian algorithm [28] is an ef- 
fective solution to obtain the optimal assignment in our 
case, and is applied in this study. In our experiments, 
most of cells nearly maintain their positions between two 
frames. Therefore, lower threshold Gi can significantly 
reduce the computational time since majority of cells are 
unnecessary to be considered. The marked lazy cells are 
presented in Figure 3. 

4.2. Active Cells Association by Graph Theory 
After having successfully tracked lazy cells, which can 
provide the essential topology information about the 
neighbors of the unmatched active cells, we now will 
focus on the unmatched cells pairs. The term of an un-
matched cells pair represents an unmatched cell in the 
current frame and the one in previous frame. 

Two phases are correlated with the linking of two un-
matched cells pairs in consecutive frames. Firstly, a 
search region is assigned to each of the unmatched cells 
pairs. If the neighbors in the search region of an un-
matched cells pair are the same in the consecutive frames, 
the two unmatched cells pairs are claimed as associated. 
In other words, the unmatched cells pair should have the 
same number of neighbors that are similar in directional 
positions. The directional position  

 
(a) 

 
(b) 

Figure 3. (a) All marked cells in the previous frame; (b) 
Marked lazy cells in the current frame. 
 
is measured by calculating the difference of degree val-
ues of each correlated neighborhood pair [39]: 

k 1, ( ) , '( )( ( ), ( ))
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<     (9) 

where Fk and Fk+1 denote the index of frames, R(i) and 
R'(j) compose an unmatched cells pair, k is the index of 
the correlated neighbors in the neighborhood group, and 
Angle indicates the degree value of neighbor in a space 
centered on the unmatched cells pair. Figure 4 illustrates 
an example of AngleFk ,R(i)(k) which is represented by 
D(k). 

Then, for the rest of unmatched cells, the neighbors of 
the unmatched cells pair with the same label are called as 
Share Source Neighborhoods (SSN). The likelihood of a 
cell pair is evaluated by [39]: 

( ( ), '( ))
( ( ), '( )) ( ( ), '( ))dist SSN

Q R i R j
Q R i R j Q R i R j= ×

     (10) 

where 
( ( ), '( ))

( ( ), '( )) ( ( ), '( ))[ ]

dist

D S

Q R i R j
Dist R i R j Size R i R jexp α β

δ δ
× ×

= − −
 

1, ( ) , '( )

1

( ( ), '( ))
( ( )) ( ( ))

k k

SSN

M
F R i k F R j k

k

Q R i R j
Angle D Angle D

exp

nbr
θ

α β
δ

+

=

 



−



−

=
∑

 



L. P. OUYANG  ET  AL. 

Copyright © 2013 SciRes.                                                                                 ENG 

230 

 
Figure 4. The unmatched cells pair is centered in the axes. 
D(k) represents the angle of each correlated neighbor. 
 
Qdist is the measurement of internal attributes of the pair, 
such as the similarity of size and location. QSSN is used to 
measure the likelihood of the topology between their 
neighbors. Dist and Size are the differences of distance 
and size between R(i) and R'(j). αk and βk are the corre- 
lated neighbors from the set of SSN. Besides, constants 
δD, δS, and δθ are used to set the sensitivity of Q to each 
factors. Cells pairs with largest Q values would be 
matched. This matching process will be repeated until no 
pair can be matched. 

5. Experimental Results 
In this research, we have applied our new Cell Segmen- 
tation and Tracking system to two different sets of data, 
which were recorded by our microfluidic platform. 

Table 1 illustrates that although temporal efficiency of 
the Region-Scalable Fitting (RSF) model is lower than 
those of classic algorithms, its accuracy after ellipse fit- 
ting is generally higher than those of other methods in 
our experiments. Considering our application is not real- 
time required, we select RSF model to provide better 
segmentation results. Compared with other methods, 
RSF model achieves not only higher segmentation accu- 
racy but also better segmented contours. The results of 
our experiment, as presented in Figure 5, show that the 
watershed transform results in over-segmentation inside 
the cells; the graph cuts fails to detect some cells and 
some obtained contours are incorrect; the edge detector 
could not obtain closed contours if the edges are not sa- 
lient; while the contours produced by the RSF model are 
smooth and closed. 

The trajectories of DataSet 1 and DataSet 2 produced 
by data association based on graph theory are presented 
in Figures 6 and 7. The overall tracking accuracy on 
DataSet 1 and DataSet 2 are 86.7% and 91.04%, re- 
spectively. 

6. Conclusions 
In this research, we have conducted study on trajectory 
extraction based on image segmentation and data associ- 

Table 1. Comparison between RSF and other classical seg- 
mentation method. 

 
DataSet 1 DataSet 2 

Fail False Time Fail False Time 
Edge Detection 3.0 0.8 0.5326 0.66 0.33 0.5127 

Watershed 3.05 0.85 0.6672 0.93 2.4 0.6421 
Graph cuts 12.9 1.5 1.7660 NaN NaN NaN 
RSF model 1.75 0 10.541 0.7 0.4 10.717 

a. Fail denote the average number of cells failed to be segmented; b. False 
means the average number of regions improperly recognized; c. Time is the 
average time usage; d. NaN means the algorithm is unable to detect cells in 
the dataset. 
 

 
(a)                      (b) 

 
(c)                     (d) 

Figure 5. The comparison of results by different segmenta- 
tion techniques on Dataset 1. (a) Segmented by watershed 
transform on the gradient magnitude; (b) Segmented by 
graph cuts; (c) Segmented by canny edge detector; (d) Seg- 
mented by RSF model. 
 

 
(a) 

 
(b) 

 
(c) 

Figure 6. The results of applying the new Cell Segmentation 
and Tracking system to DateSet 1: (a) At frame 3; (b) At 
frame 14; (c) At frame 38. 
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(a) 

 
(b) 

 
(c) 

Figure 7. The results of applying the new Cell Segmentation 
and Tracking system to DateSet 2: (a) At frame 2; (b) At 
frame 22; (c) At frame 45. 
 
ation in order to provide a solution for rapid microfluidic 
cell immigration experiments. We applied region scala- 
ble active contour model to segment the individual cells 
and the ellipse fitting technique to process touching cells. 
We have also introduced a topology based technique to 
associate the cells between consecutive frames.  

By applying our new Cell Segmentation and Tracking 
system to two different sets of data recorded by micro- 
fluidic device, we have came up with some encouraging 
outcome. The overall tracking accuracy on two sets of 
data is 86.7% and 91.04%, respectively. 
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