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ABSTRACT 

This paper presents the implementation of two multicriteria optimization methods based on different approaches, 
namely, Rough Set Method (RSM) and Net Flow Method (NFM), to the manufacture by reactive extrusion of linear 
Thermoplastic Polyurethanes (TPUs), appropriate for medical applications. A preliminary study allowed determining the 
process operating conditions for which the polymerization time and the average residence time of the reactants in the 
extruder are of the same order of magnitude. Prior to the optimization, a neural network model able to predict with ac- 
ceptable accuracy the effect of the operating conditions on the output process variables, was constructed and validated. 
This model was then used to determine, using Pareto’s concept, a set of non-dominated solutions constituting Pareto’s 
domain. These solutions were then ranked according to the preferences of a decision maker using NFM and RSM. This 
allowed providing the 10% highest ranked solutions of Pareto’s domain and proposing a set of optimal operating condi- 
tions for the production, with the lowest energy consumption, of TPUs with targeted properties and high purity. Ex- 
perimental validation runs carried out under similar operating conditions gave rise to criteria values confirming the su- 
perior performance of NFM, without rejecting, at the same time, the values obtained using RSM. 
 
Keywords: Reactive Extrusion; Thermoplastic Polyurethanes; Modelling; Multicriteria Optimization; Decision-Making 

Support 

1. Introduction 

Polyurethanes are known to be amongst the most versa- 
tile materials in the world [1,2]. They can be tailored by 
catalyzed polyaddition reactions between various polyols 
and polyisocyanates [3-9] which, due to their functional- 
ity, can lead to the formation of linear, branched or cross- 
linked macromolecules containing a significant number 
of urethane groups (-HN-COO-), regardless of the na- 
ture of the rest of the molecules [10]. 

This diversity has given ground to a wide variety of 
applications ranging from rigid and flexible foams to 
structural and coating elastomers, adhesives, TPUs ap- 
propriate for medical devices, leather-like materials, seal- 
ants and auxiliary agents. 

TPUs, which constitute the subject of this study, are 
linear polymers in which the principal chain structure is 
composed by two sections R1 and R2 connected via po- 
lar urethane groups (~R1-NH-COO-R2~). In this context, 
R1 denotes an aliphatic, aromatic or alicyclic radical de- 
rived from the isocyanate monomer while R2 denotes a 
more complex group derived from the polyol component 

(polyether or polyester). TPUs are typically obtained via 
a stepwise, polyaddition reaction between diisocyanates 
and bi-functional polyols with hydroxyl terminal groups, 
according to the following general scheme: 

   
 

1 2

2 1

n OCN-R -NCO n HO-R -OH

-O-R -O - OC-NH-R -NH-CO- n

 
   (1) 

It must also be noted that TPU chains do not contain 
only urethane structures. Depending on the specifications 
of feeds and on the method adopted for the polyaddition 
process, one can also find urea groups, biuret groups, 
allophanate groups, carbodiimide groups, aromatic hy- 
drocarbon rings, isocyanurate or oxazolidone structures, 
and even ionic groups in some cases. 

As a result of their physical and mechanical properties, 
associated to their good stability, low free surface energy, 
physiological inertness to living organisms and resistance 
to biodegradation, specialty TPUs are widely used as 
biomedical materials [11,12] capable of preventing in- 
flammation of tissues, destruction by body fluids and 
deposition of blood components [13-16].  
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In most industrial cases, they are manufactured using 
traditional discontinuous processes which often give rise, 
from batch to batch, to products with inconstant quality.  

The aim of the present work will be to develop and 
optimize a continuous process able to produce linear, 
solvent free and pure TPUs with controlled structure and 
specific end-use properties making them appropriate for 
on-line processing medical probes, catheters, cardiac 
valves and vascular prosthetic and endoprosthetic de- 
vices. In such case, reactive extrusion presents significant 
advantages as it can be used under well controlled ope- 
rating conditions (feed rate, temperature, mixing rate, 
etc.).  

This technique has already been widely exploited for 
the synthesis [17-22], grafting [23], hydrolysis [24] and 
depolymerization of TPUs [25], as well as for the pro- 
duction of oligomers [26]. However, in most cases, all 
the reactants were introduced into the extrusion machine 
in a single stage. 

In the present study, we propose to elaborate TPUs in 
a two-stage process:  
 First, a prepolymer will be synthesized in a batch re- 

actor through catalyzed reactions between a macrodiol 
and a diisocyanate;  

 The resulting prepolymer and a chain extender will then 
be introduced, under controlled operating conditions, 
into a twin-screw extruder to elaborate TPU chains.  

It is expected that this procedure will contribute to the 
production of homogeneous TPUs with constant quality.  

This work will start with a preliminary study devoted 
to determine the operating parameters for which the po- 
lymerization time and the average residence time of the 
reactants in the extruder must be of the same order of 
magnitude.  

Then, an experimental strategy will be developed to 
study and model the effect of the extrusion parameters on 
the properties and the purity of the resulting TPUs.  

The final objective will be to find a set of optimal op- 
erating conditions for the production, with the lowest 
energy consumption, of TPUs with targeted properties 
and high purity. 

Accordingly, this optimization will be confronted with 
a multiobjective decision problem for which a unique 
solution that yields optimal values for all the objective 
criteria rarely exists. This is a common scenario in many 
industrial production optimizations which dictates the 
implementation of a decision-maker, in order to choose 
the best tradeoffs among all defined and conflicting ob- 
jectives. 

The methodology that will be used in this work has 
already been successfully applied to different polymeri- 
zation processes [27-32]. It will be briefly described in 
the next section, while its specific application to this 

process will be discussed later. 

2. Multicriteria Optimization Methodology  

2.1. General Considerations  

To develop industrial processes, companies need to ob- 
tain the desired products quality associated to the highest 
productivity and to the lowest cost investments. To reach 
these objectives, a multicriteria optimization of the proc- 
ess is necessary. In engineering processes, multiple ob- 
jectives have usually been combined, often through lin- 
ear [33] or empirical [34] combination, to form a scalar 
objective function. Another classical method consists in 
optimizing one criterion and setting up constraints on the 
others [35]. These techniques depend on the first user’s 
choice, so preferences can bias the result. 

Methods incorporating a domination criterion are often 
more interesting because they are more general, more 
accurate and without any a priori knowledge. The aim is 
to find a non dominated zone in which a decision maker 
will be able to choose the best solution. This region, 
called Pareto’s zone, is the set of all non dominated 
points. It can be obtained using Pareto’s domination 
concept which is defined in such manner that a solution 
(compromise or vector), x1, dominates another solution, 
x2, if it is better or equal for all criteria and strictly better 
for at least one criterion [36]. The study does not allow to 
find immediately the preferred solution but to exclude all 
conditions which are not interesting. Two terms are used: 
Pareto’s domain and Pareto’s front which are related to 
the input variables and output criteria respectively. 

Pareto’s domain can be approximated by a large num- 
ber of possible solutions using an evolutionary algorithm 
[27,36-42]. It constitutes important information for the 
industrialist who will then have to classify these solu- 
tions.  

Multiobjective optimization is commonly realized in a 
three-step procedure: 
 Modelling of the process to encapsulate the underly- 

ing phenomena that relate all input and output process 
variables; 

 Reduction of the decision space to include only the 
non-dominated solutions, providing an approximation 
of Pareto’s domain, using evolutionary algorithms; 

 Ranking of all the solutions contained in Pareto’s 
domain using preferences from a human expert in or- 
der to choose the best compromise.  

The most difficult step is usually the third one as it re- 
lates to a human-centred process that exhibits, by nature, 
a higher level of fuzziness. As a consequence, it is nec- 
essary to develop systematic procedures to unequivocally 
capture the preferences of the expert on the basis of his 
knowledge of the process. 

In this respect, all the output criteria could be viewed 
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as particular objective functions that need to be opti- 
mized. However, some of them are conflicting, making 
the optimization task significantly more difficult. 

2.2. Methods for Ranking the Non-Dominated  
Solutions  

A number of different methods have been proposed in 
the literature for performing the ranking procedure. In the 
present work, two methods will be used and compared, 
namely the “Net Flow” and the “Rough Set” methods. 
The main difference between these methods relies on the 
way the preferences of the experts are captured and used 
to determine the optimal zone of operation. It must be 
noted that it is not the objective of this study to detail 
these well-established methods, but rather to test, for this 
specific problem, whether convergent results can be ob- 
tained using them. 

2.2.1. Net Flow Method (NFM) 
NFM is a hybrid of two outranking methods (ELECTRE 
and PROMETHEE). It uses the knowledge of the objec- 
tive criteria values and compares all non-dominated solu- 
tions, in a pairwise manner, to show a possible outrank- 
ing before a total synthesis of the alternatives. 

The user has to express several parameters to define 
his preferences.  

First he must introduce a weight, wk, for each criterion 
k which serves as index of its relative importance. In the 
algorithm, these coefficients are normalized:  

1

1
n

k
k

w


                 (2) 

The decision maker has also to define indifference, qk, 
preference, pk, and veto, vk, thresholds for each criterion. 
The indifference threshold is defined so that two alterna- 
tives cannot be differentiated below it. The preference 
threshold is defined to show the real preference of one 
alternative against another while the veto threshold is 
defined like a constraint if an alternative is too bad in one 
criterion. In this respect, an alternative is penalized if one 
of its criteria is over the veto threshold compared to an- 
other alternative, even if it is considered as a good alter- 
native for the other criteria. Accordingly, these three 
thresholds are defined, for each criterion, in such a way 
that: 

0    k kq p v   k                (3) 

The criteria difference for each pair of alternatives, [i, 
j], and for each criterion, k, is:  

     ,k k k ki j f i f j   

,

         (4) 

for , ,  and , and 
where fk(i) is the value of the kth criterion of alternative i, 

and k is an optimization indicator (k = 1 if fk is to be 
maximized and k = −1 if fk is to be minimized).  

1, ,i m  1, ,j m  j i 1, ,k n 

A global concordance index, C[i, j], is then calculated 
as with ELECTRE III for each pair of alternatives (for i = 
1, ···, m and j = 1, ···, m) [43]. 

The preference of one alternative over another is named 
“concordant” up to the indifference threshold and the 
local concordance index is then equal to 1. On the con- 
trary, this preference is named “not concordant” up to the 
preference threshold and the local concordance index is 
then equal to 0. Between these two thresholds, a linear 
approach is used again to define the local concordance 
index:   

   
1

,
n

k k
k

C i j w c i j


               (5) 

where 

 

 
   

 

1                        if ,

,
,       if ,

0                       if ,

k k

k k
k k

k k

k k

i j q

i j p
c i j q i j p

p q

p i j

   

    

  

k k  (6) 

A discordance index Dk[i, j] is also calculated for each 
criterion, k, as with ELECTRE III, to take into account a 
bad criterion value which allows to relegate the con- 
cerned point in the total ranking (for i = 1, ···, m, j = 1, ···, 
m and k = 1, ···, n): 

 

 
   

 

0                          if ,

,
,       if  ,

1                           if  ,

k k

k k
k k

k k

k k

i j p

i j p
D i j p i j v

v p

v i j

   

 

k k   


  

 (7) 

The preference of an alternative versus another is 
called “discordant” up to the veto threshold and the dis- 
cordance index is then equal to 1. On the contrary, it is 
named “not discordant” up to the preference threshold 
and the discordance index is then equal to 0. Between 
these two thresholds, a linear approach is used to define 
the discordance index. 

Using the concordance and the discordance indexes, 
outranking degrees, σ[i, j], can be generated for every 
pair of alternatives. These outranking degrees are ob-
tained using the following formula (for i = 1, ···, m, j = 1, 
···, m) [44]: 

      3

1

, , 1 ,
n

k
k

i j C i j D i j


               (8) 

i outranks j all the more than the outranking degree is 
close to 1   0 ,i j 1  .  

The resulting outranking relation sets may be formu- 
lated in the form of an outranking matrix. From these 
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outranking degrees, two preorders are established, as 
with PROMETHEE, by the outgoing flow i

  and the 
incoming flow i

  (for i = 1, ···, m) [45]. 

  
1 1

, and ,
m m

i i
j j

i j i j    

 

  

i

        (9) 

Finally, the total ranking of the alternatives, i, is de- 
termined from the net flow with possible ex æquo (for i = 
1, ···, m): 

i i                     (10) 

The alternative, with the highest net flow, is consid- 
ered as the “best” solution, while the one with the lowest 
net flow is considered as the “worst” solution, also 
known as “nadir”. 

2.2.2. Rough Sets Method (RSM)  
RSM is based on the Rough Set theory originally intro- 
duced by Pawlack [46-48] for ranking a large number of 
feasible solutions from Pareto’s zone. It has been used in 
several applications [49-54].  

The classification of the compromises constitutes a 
“measurement” of the decision maker’s preference. A 
human expert classifies a small number of significant 
alternatives of Pareto’s Domain, in a preference de- 
scending order. Decision rules are then extracted in the 
form of a binary code (bits), thus creating a form of ex- 
pert system. This decision-maker profile of preferences is 
subsequently applied to all the compromises. This allows 
different preference zones to be established.  

The Rough Set theory uses a tabular representation of 
the preferential information expressed by the decision 
maker. The lines of this table correspond to objects whereas 
its columns correspond to attributes.  

In the present study, the resulting table will be similar 
to the one suggested by Greco et al. [55]. More explana- 
tions will be given in Section 4.2.4.  

In the original theory of Rough Sets, the rough ap- 
proximations were performed using an indiscernibility 
relation on the pairwise comparison table. These ap- 
proximations might result in inconsistencies between the 
generated rules, as discussed by Greco et al. [51]. To 
overcome this imprecision drawback, a different set of 
inconsistency rules [56] (Zaras (2001)) will be used in 
the present work. Finally, the finite set of solutions, rep- 
resenting the entire Pareto’s front, will be ranked by or- 
der of preference. 

To achieve this classification, the Rough Sets Method 
uses the following steps:  
 A small number of solutions (between 5 and 10) from 

different regions of Pareto’s zone are selected and 
presented to the expert who must classify them in a 
preference descending order (preferences measure- 
ment);  

 Pairwise comparison of the solutions enables the ex- 
traction and validation of the “preference/no prefer- 
ence” rules, according to the RSM; 

 These rules are subsequently applied to all the com- 
promises, using the following principle: when two 
compared solutions are in accordance with a prefer- 
ence rule, then (+1) is added to the score of the first 
solution and (−1) is added to the score of the second 
solution; 

 Finally, the resulting solutions are ranked in a score- 
decreasing order. 

3. Materials and Methods 

3.1. Chemical Products and Reactions 

Polyurethanes were synthesized using the products given 
in Table 1. 

The first stage of the process was carried out by reac- 
tion between HMDI and PTMG to obtain the prepolymer 
(DI), made up of a flexible segment (PTMG) bearing one 
isocyanate function at each end. The corresponding reac- 
tion scheme is: 

 
 

4 x

2 4 x

2 OCN-R-NCO H O CH2 OH

OCN-R-NH-CO- O- CH -OCO-NH-R-NCO

   

  
 (11) 

With R: -(C6H10-CH2-C6H10)-. 
In the second stage, the two isocyanate functions of DI 

reacted with the chain extender (EX) to give a block- 
polyurethane composed of flexible segments alternating 
with the rigid ones. The chain extension took place ac- 
cording to the following reaction scheme:  

 
 

 

 

2 4 X

2 4

2 4 x

2 4 n

nOCN-R-NH-CO- O- CH -OCO-NH-R-NCO

 nOH- CH -OH

OCN-R-NH-CO- O- CH -OCO-

NH-R-NHCOO- CH -OOC-NH

  
 

   


(12) 

The prepolymerization was carried out in the presence 
of a catalyst, (dibutyltin dilaurate: DBTDL), which re- 
mained present and active during the chains extension 
stage as well. DBTDL concentration was 1 w% com- 
pared to the initial reactional mixture of PTMG and 
HMDI. Stoechiometry between HMDI, PTMG and EX 
was 2:1:2. 

PTMG was used above its melting temperature (33˚C - 
36˚C). Three PTMG were used with respective number 
average molar masses: MPTMG = 1000, 1400 and 2000 
g/mol. 

3.2. Reactors and Their Environment  

T  wo batch reactors were used to develop the preliminary  
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Table 1. Main physical characteristics of the reagents. 

 Polyol Diisocyanate Chain extender Catalyst 

Name 
Polytetramethylene  

glycol (PTMG) 
Methylene bis- 

(4-cyclohexyl-isocyanate) (HMDI) 
1,4-butanediol (EX) 

Dibutyltin dilaurate  
(DBTDL) 

Formula H[O(CH2)4]xOH CH2(C6H10NCO)2 HO(CH2)4OH 
[CH3(CH2)10CO2]2-Sn- 

[(CH2)3CH3]2 

Supplier 
ALDRICH 
42,099-9 

ALDRICH 
38,838-6 

ALDRICH 
24,055-9 

ALDRICH 
29,123-4 

Physical aspect Solid Liquid Liquid Liquid 

Molar mass 
(kg/kmol) 

1000/1400/2000 262.35 90.12 631.56 

Density 
(kg/m3) 

975 1066 1017 1066 

Melting  
temperature (˚C) 

33 - 36 25 16 22 - 24 

Boiling  
temperature (˚C) 

>260 168 (1.5 mm Hg) 230 >204 (12 mm Hg) 

 
studies: 

Reactor 1 (i.e., the prepolymerization reactor) was a 
200 mL jacketed glass batch reactor equipped with a 
stirrer, a reflux condenser, a cryostat, a sampling device 
and a nitrogen-supply system. The stirrer used was com- 
posed of a pitch blade turbine. Its rotation speed was kept 
constant at 500 rpm.  

Reactor 2 was a Haake Rheocord-Rheomix internal 
mixer 540 p, equipped with a device which makes it pos- 
sible to follow the time evolution of the torque and the 
temperature of the molten product. 

It was composed of a basic device (Rheocord RC300 p) 
and a measuring cell (Rheomix R540 p). The whole sys- 
tem was controlled by a computer interface between the 
basic apparatus and the mixer, which was composed of a 
chamber with two rotating propeller-shaped rotors. The 
volume of this chamber was 50 mL, limited by a stop 
valve driven by a piston. The back wall, the intermediate 
room and the frontal plate were heated electrically and 
were equipped with independent control loops. A ther- 
mocouple, placed on the frontal plate of the mixer, 
measured the matter temperature. Cooling was achieved 
via channels crossed by compressed air and placed in the 
intermediate zone. 

A Pilot unit for the chains extension was designed. It 
was composed of: 

A prepolymerization batch reactor and its environment 
which includes 1) a tank for the storage of HMDI, 
equipped with a drainage sluice and a centrifugal pump, 
2) a double-walled tank for the storage of PTMG, con- 
nected to a thermostat, an agitator, a drainage sluice and 
a gear pump, 3) a 15 liters capacity reactor, equipped 
with an agitator, feeding devices for HMDI, PTMG and 
the catalyst, a drainage sluice, a gear pump and tempera- 
ture sensors, 4) an automat allowing to control the tem- 

perature and the feed rates of the reagents. Another tank 
was also available to store the solvent (Tetrahydrofuran) 
which was used for the cleaning of the two tanks and the 
reactor.  

A corotative twin-screw-extruder (CLEXTRAL, BC21), 
equipped with interpenetrated screws and connected to 
the prepolymerization reactor via a gear pump and a 
flow-meter.  

The extruder was also connected to a tank containing 
the chain extender via an HPLC pump. 

The screws profile was determined so as to obtain a 
good mixture of the prepolymer and the chain extender 
and to maximize the residence time in the extruder, this 
in order to obtain the highest conversion. This profile 
included four elements of transport to quickly transport 
the prepolymer and the chain extender to the first zone of 
mixture, a regular alternation of elements of transport, 
elements with inversed steps and elements of mixing of 
variable steps and lengths. These last two types of ele- 
ments allowed the formation of a pressure zone. The 
product accumulated in the threads of the upstream 
transport screws, thus increasing the rate of filling of the 
extruder and consequently the residence time of the re- 
acting mixture. 

The temperature control of the extruder barrel was 
achieved by means of electrical resistances and water 
circulation in the jacket of each constitutive element of 
the barrel, thus making it possible to establish the desired 
temperature profile along the barrel.  

3.3. Analytical Methods 

3.3.1. Number and Weight Average Molar Masses 
The number and weight average molar masses were de- 
termined by size exclusion chromatography (SEC), using 
two detectors: a multi-angle laser light scattering (MA- 
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LLS) apparatus (Dawn DSP-F) and a differential refrac-
tometer (Waters 410, Millipore). 

Elutions were performed at 35˚C with tetrahydrofuran 
(THF) containing di-tertiary-butyl-2.6 methyl-4 phenol 
as stabilizer. The flow-rate was 1 mL·min−1. The concen- 
tration of the polymer solutions and the corresponding 
injected volume were 1 g/L and 25 µL respectively. Prior 
to chromatography, THF and polymer solutions were 
passed through a Nylon filter of 0.45 µm porosity.  

The SEC assembly consisted of a degasser, a Waters 
510 Millipore pump, a U6K Millipore injector, a pre- 
column, two chromatographic columns assembled in 
series and filled with linear ultrastyragel and an electric 
oven to control the temperature of the columns. Data 
from the two detectors were acquired and exploited by 
means of the software Astra from Wyatt Technology 
which allowed the determination of the molar mass dis- 
tribution and the number and weight average molar masses 
of the samples. 

3.3.2. Residual Yield of Prepolymer (TDI) 
TDI is given by: 

n
DI

DI

M
T

M
                 (13) 

With: 
nM : TPUs number average molar mass;  

MDI = 2 (MHMDI) + MPTMG + 2(MEX) = 705 + MPTMG, 
where: MPTMG is 1000, 1400 or 2000 g/mol. 

3.3.3. Glass Transition Temperature and Young’s  
Moduli 

The glass transition temperature, Tg, as well as the tem- 
perature evolution of Young’s modulus, were obtained 
by dynamic mechanical thermal analysis, using the ten- 
sile testing machine DMTA V 902-50010 of Rheometric 
Scientific. This apparatus was coupled with a computer 
equipped with Orchestrator software which provided 
instantaneously the values of the shear storage modulus 
and loss modulus. Moreover, the apparatus was used in 
the “autostrain” mode, i.e. the imposed sinusoidal de- 
formation was automatically adapted so that the meas- 
ured stress remained higher than the sensitivity of the 
sensors. The initial distance between the jaws of the ten- 
sile testing machine was fixed at 6 mm.  

Measurements were carried out on rectangular samples 
of 20 mm length, 13 mm of width and 2 mm of thickness 
which were obtained by using a manual hydraulic press. 
The operating conditions were the following:  
 Test in three points.  
 Frequency: 10 Hz.  
 Constant deformation (0.1%). 
 Temperature range: between −100˚C and +80˚C.  

 Temperature rise speed: 3˚C·min−1.  
From the acquired data, the ratio of Young’s moduli, 

determined at Tg − 20˚C and Tg + 20˚C was subsequently 
calculated.  

4. Results and Discussion 

4.1. Preliminary Study 

A preliminary study was carried out, in batch reactors 
and with moderate quantities of reagents, in order to de- 
fine the operating conditions (temperature, catalyst con- 
centration and mixing speed) which could be used to 
develop the continuous extrusion process. The first part 
of this study was focused on the kinetic modeling of the 
prepolymer synthesis while, the second part, dealt with 
the evaluation of the reaction time of the chains exten- 
sion and the feasibility of the overall process.  

4.1.1. Kinetic Model of the Prepolymer Synthesis 
Initially, a set of experiments were carried out under the 
following operating conditions: 
 Temperature: 100˚C. 
 PTMG: 90.875 g. 
 HMDI: 34.125 g. 
 Catalyst: 3 different concentrations: 0.001 w%, 0.01 

w% and 0.1 w%. 
Samples were taken out at various reaction times and 

the weight concentration of unreacted isocyanate (NCO 
functional groups) was determined by a back-titration [57] 
(Otey et al., 1964). 

The corresponding experimental data were subsequently 
used for the construction and the validation of a mathe- 
matical model of the prepolymerization kinetics which, 
in addition to the primary reaction given in scheme (11), 
considered also: 
 One of the most important secondary reactions be- 

tween urethane and isocyanate functional groups, which 
takes place after a certain conversion and results to the 
formation of allophanates, according to the following 
simplified mechanism:  

OC-NH-R

2 22 2
-CH -O-CO-NH-CH R-NCO -CH -O-CO-N-CH  

 
(14) 

 The influence of the catalyst concentration on the re- 
action kinetics. 

The rate of consumption of isocyanate functional groups 
was expressed by the following equation: 

      1 2

d NCO NCO OH NHCOO NCO
d

k k
T

   (15) 

where k1 and k2 are the rate constants of the primary and 
secondary reactions respectively. The technique of the 
minimum squared deviation between experimental and 
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theoretical values was used to determine the values of 
these rate constants. 

The results showed that: 
 k1 depends on the catalyst concentration according to 

the following relation: 

 1 0.24 . 2.33 (kg/mol/s)k Cat         (16) 

and, 
 k2 is constant and equal to 9.45 × 10−3 (kg/mol/s). 

Figure 1 depicts the time evolution of NCO-groups 
conversion for the 3 catalyst concentrations and demon- 
strates: 
 The good agreement between simulated and experi- 

mental data;  
 That at 100˚C, the maximum conversion is obtained 

after around 180, 900 and 1100 seconds with 0.1, 0.01 
and 0.001 w% catalyst concentration respectively. 

4.1.2. Study of the Overall Process Using Haake  
Internal Mixer 

The overall polymerization was carried out according to 
the following procedure:  

In a first step, PTMG and HMDI were introduced in 
the mixing chamber and heated at 100˚C. The catalyst 
was then introduced (at a concentration of 0.1%). After 
10 minutes of reaction, which exceeds the maximum 
time required to achieve the prepolymer synthesis, the 
temperature was raised to 160˚C and the chain extender 
was subsequently added.  

The mixing speed of the first stage varied at each run 
from 5 to 200 rpm while that of the second stage was 
fixed at 160 rpm. The mixing torque was continuously 
recorded. During the reaction, the molar mass of the re- 
sulting TPU increased thus increasing the viscosity of the 
mixture as well. Hence, the mixing torque served as an 
indirect measurement of the progress of the reaction.  

Figure 2 illustrates this interesting aspect showing 
clearly three distinct domains. In the first one, the value  
 

 

Figure 1. Prepolymerization in the batch reactor: time- 
evolution of NCO-groups conversion for different catalyst 
concentrations. 

 

Figure 2. Synthesis of TPUs using Haake internal mixer: 
time-evolution of the torque for different prepolymerization 
rotation speeds. 
 
of the torque is near zero because of the low viscosity of 
the mixture. After the introduction of the chain extender, 
the curve exhibits a sharp peak due to a sudden increase 
of viscosity corresponding to the formation of chains 
with high molar masses.  

After about five minutes, the reaction is complete and 
the torque reaches a constant value. A dependence of this 
constant value with the mixing speed used during the 
prepolymerization stage is clearly observed. This is 
probably due to a better mixing using the higher mixing 
speed which can improve the conversion during the first 
stage and, consequently, the production of more pre- 
polymer molecules, i.e. in fine more final TPU chains 
during the second stage, thus inducing the higher visco- 
sity of the final product. 

Moreover, as shown in Table 2, the corresponding 
values of the weight average molar masses of the ten 
final products were similar ( wM ~175,000 g·mol−1). 

4.2. Reactive Extrusion Process 

4.2.1. Operating Conditions 
First stage: prepolymerization 
This stage was carried out in the batch reactor of the 

pilot unit according to the following procedure:  
 Heating (40˚C - 45˚C), vacuum drying of PTMG in 

order to eliminate traces of water and vacuum drying 
of HMDI. 

 Circulation of a dry nitrogen current in PTMG and 
HMDI tanks and introduction of these two reagents 
into the reactor via transfer pumps. The introduced 
quantities were controlled by the transmitters of flow 
whose acquisition and integration of the signals on 
computer allowed the follow-up of the volumes and 
the stop of filling when the necessary quantities were 
reached.  

 Homogenization and heating (55˚C) of the reacting  
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Table 2. Influence of the mixing speed used during the pre- 
polymerization on the weight average molar masses of the 
TPUs. (Catalyst: 0.1 w%; Reaction time: First stage: 11 min; 
Second stage: 30 min; Reaction temperature: First stage: 
100˚C; Second stage: 160˚C). 

Run 
(#) 

Mixing rotation speed 
Stage 1 (rpm) 

Mixing rotation speed 
Stage 2 (rpm) 

wM  

(g/mol)

1 5 160 175,000

2 30 160 159,000

3 5 160 179,000

4 80 160 183,000

5 30 160 165,000

6 80 160 175,000

7 160 160 174,000

8 200 160 178,000

9 160 160 182,000

10 200 160 185,000

 
mixture followed by the injection of the catalyst. 

 Maintenance under nitrogen and temperature control 
of the reaction medium at 90˚C. The reaction being 
very exothermic, the released thermal load (approxi- 
mately 5 kW) could not be easily controlled. The re- 
action was thus carried out in a quasi adiabatic way.  

 The standard operating conditions for the preparation 
of 10 kg of prepolymer were: MPTMG = 7.922 kg, MHMDI 
= 2.078 kg and MDBTDL = 10 g (w 0.1%).  

Second stage: chains extension 
The prepolymer was introduced at the feeding hopper 

of the extruder using the gear pump. Using the HPLC 
pump, the chain extender was introduced into the ex- 
truder using a liquid injector placed on one side of the 
elements of the barrel.  

4.2.2. Experimental Strategy 
On the basis of a factorial experimental design, 106 runs 
were carried out. For each run, the polyurethane samples 
were recovered at the outlet side of the die and analyzed 
in order to determine their number and weight average 
molar masses, nM  and wM , their glass transition tem- 
perature, Tg, and their Young’s modulus, ET, evolution 
with temperature. Additional measurements, useful for 
the process optimization, were also carried out during 
each run: the power necessary to ensure the rotation of 
the screws, W, and the pressure at the head of the die.  

The input and output variables of the process and their 
operating range and target values are given in Table 3. 

The input variables are the barrel temperature, T, the 
screws rotation speed, N, the prepolymer feed rate, Q,  

Table 3. Input and output process variables. 

Variables 

Input process  
variables 

Symbol Range Units 

Temperature of the 
barrel 

T 150 - 200 ˚C 

Screws rotation 
speed 

N 50 - 600 rpm 

Prepolymer feed rate Q 1 - 4 kg/h 

PTMG molar mass MPTMG 
1000, 1400 
and 2000 

g/mol 

Output process 
variables 

Symbol Target values units 

Weight average 
molar mass wM  63,000 g/mol 

Residual yield of DI TDI Minimum % 

Glass transition 
temperature 

Tg −45 ˚C 

Young’s modulus 
ratio 

rE 12.5 - 

Power consumption E Minimum kJ/kg 

 
and PTMG molar mass, MPTMG.  

In this table: 
 The energy consumption, E, is given by: 

 roomW hS T T
E

Q

             (17) 

where S, Troom and h are the heat-transferring surface, the 
room temperature, and the coefficient of heat exchange, 
respectively. 
 The ratio, rE, is equal to: 

20

20

g

g

T

E
T

E
r

E





                (18) 

This expression is a simplification of the slope, STG, of 
a plot of Young’s modulus versus temperature:  

   
20 20

20    20
g gT T

TG

g g

LnE LnE
S

T T

 


  


        (19) 

 The residual isocyanate yield, TDI, is given by Equa- 
tion (13). 

Figures 3 and 4, respectively, show the variations of 

wM  and Tg versus the screw rotation speed (N) for dif- 
ferent prepolymer flow rates (Q) and barrel temperatures 
(T), of a polyurethane obtained using PTMG with a mo- 
lar mass of 1400 g/mol. 

These figures show that up to ~150 rpm, wM  and Tg 
vary only moderately as (N) increases. On the other hand, 
as expected for polycondensation reactions, wM  in- 
creases, while Tg decreases as (T) and (Q) increase. 
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Figure 3. Synthesis of TPUs using Haake internal mixer: 
weight average molar mass versus screw rotation speed for 
different barrel temperatures and prepolymer flow-rates. 
 

 

Figure 4. Synthesis of TPUs using Haake internal mixer: 
glass transition temperature versus screw rotation speed for 
different barrel temperatures and prepolymer flowrates. 

4.2.3. Process Modelling 
As already mentioned, prior to performing the optimiza- 
tion process, it is necessary to develop an adequate 
model capable of providing accurate predictions of all 
the principal outlet variables ( wM , TDI, Tg, rE, E), within 
the range of the considered operating conditions.  

A deterministic model would require writing the mass 
and heat transfer equations coupled with the hydrody- 
namics in the extruder. This approach commonly leads to 
a complex algebraic-differential equation system which 
could not be easily usable in multicriteria optimization. 
Hence, a three-layer feedforward neural network (multi- 
layer perceptron) was considered, using the quasi-New- 
ton learning algorithm [58], to model each objective 
output variable of the process. 

So, five models using the four input variables (T, N, Q, 
MPTMG) and able to calculate the values of the five output 
variables were established. The identification of the un- 
known parameters of these models required 76 runs, 
while 30 runs were used for the validation of the models. 
Moreover, for each network the number of neurons has 
been optimized in a range from 2 to 12, in order to avoid 
an over parameterization. 

Table 4 indicates the number of neurons of the hidden 
layer corresponding to each outlet variable. 

Figures 5-7 display a comparison between the simu- 
lated and experimental values of wM , E and rE, respec- 
tively. They clearly show that the models are able to pre- 
dict with acceptable accuracy the output process vari- 
ables. 

4.2.4. Multicretiria Optimization and Decision Aid 
 Pareto’s domain approximation 

Five objective criteria were determined on the basis of 
the five outputs of the models. They were divided to two 
process criteria, namely 
- an energy criterion,  

EC E                   (20) 

- and a purity criterion,  

Tx DIC T                  (21) 

and to three quality criteria, defined by the following 
relationships:  

w w wCM M M  C            (22) 

g g gCCT T T               (23) 

rE E ECC r r               (24) 

where, wCM , gC  and T EC  are target (desired) pro- 
perty values, depending on the particular use of the ma- 
terial. In the present study, these target values were se- 
lected on the basis of a commercial TPU named Tecoflex, 
which is marketed for medical use by Thermedics Poly- 
mer Products. They were equal to 63,000 g·mol−1, −45˚C 
and 12.5, respectively. 

r

The values of the four input variables were chosen ran- 
domly (initialization) and by a crossover operator in their 
operating range to generate, using the neural network 
models, the five output variables which, in turn, provided 
the corresponding five objective criteria (Equations 
(20)-(24)). The operating ranges of the experimental  
 
Table 4. Number of neurons of the hidden layer of the neu- 
ral network models. 

Output 
variable 

wM  

(g/mol)

TDI 
(%) 

E 
(kJ/kg) 

Tg  
(˚C) 

rE 

Number of 
neurons 

7 9 3 9 8 
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Figure 5. Synthesis of TPUs by reactive extrusion: com- 
parison of simulated and experimental values of weight 
average molar masses. 
 

 

Figure 6. Synthesis of TPUs by reactive extrusion: com- 
parison of simulated and experimental values of the energy 
consumption. 
 
design (Table 3) were slightly enlarged in order to en- 
able the exploration around the bounds. Roughly 5000 
compromises, representing a set of candidate operating 
conditions, were generated. 

To visualize the 4-dimensional input space and the 5- 
dimensional output space, a projection onto a 2-dimen- 
sional space was used. The resulting graphical represen- 
tation was not perfect since the effect of the other dimen- 
sions created confounding areas. However, it was suffi- 
cient to provide information about the preferred zone of 
operation as well as the robustness of the optimal point.  

For instance, in the input space, the projection of 
MPTMG versus T (Figure 8(a)) showed that the 5000 non- 
dominated solutions were grouped in two fairly con- 
densed areas surrounded by a diffuse set of points. This  

 

Figure 7. Synthesis of TPUs by reactive extrusion: com- 
parison of simulated and experimental values of Young’s 
moduli ratios. 
 
was also observed in all the other input-input projections 
(e.g. in Figures 9 and 10). 

In the present study, all the criteria had to be mini- 
mized. All the output vs output graphs showed that, for 
each projection, the minima of the two corresponding 
criteria could be reached simultaneously. This is clearly 
illustrated in the example shown in Figure 8(b) through 
the projection of CTg versus CTx.  

The values of both input variables and criteria corre- 
sponding to the centers of these two regions (Table 5) 
are very different. Hence, a choice, based on the prefer- 
ences of a decision-maker, is essential. 
 Ranking of Pareto’s efficient solutions 

The two previously presented ranking methods are 
used for this operation. For reasons of clarity, the condi- 
tions of their implementation will be presented separately. 
Then the results obtained using each one will be analyzed 
and compared.  

1) Ranking Using the Net Flow Method 
The values of the four parameters (i.e., weights, wk, 

indifference, qk, preference, pk and veto, vk, thresholds), 
as proposed by an expert of the process, are given in Ta- 
ble 6. 

The selection of a proper level for each threshold is 
not an easy task since it requires a good knowledge of the 
process. In the present work, a maximum value was ini- 
tially assigned to the weight average molar mass, via 
Pareto’s zone. Next, the indifference threshold was given 
a random value between 0.1 of the target value and 0.01 
of the maximum value. Subsequently, the preference 
threshold was set at 5 times the indifference threshold 
and the veto threshold at 4 times the preference threshold. 
Concerning the weights, emphasis was given on Young’s 
moduli ratio to account for the importance of the pro- 
essability of the final TPUs. c   
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(a)                                                 (b) 

Figure 8. Examples of projection  for the synthesis of TPUs. (a) s corresponding to the space of operating conditions used
Pareto’s zone of inputs variables MPTMG and T and (b) Pareto’s front of criteria CTg and CTx. 
 

able 5. Operating conditions and criteria corresponding to T
the centers of the two distinct areas of Pareto’s domain. 

Area 1 2 

MPTMG (g/mol) 1  2  274 042

Q (kg/h) 2.77 3.63 

T (˚C) 150 168.4 

Operating 

C ) 

C  Criteria 

conditions 

N (rpm) 306 400 

Mw (g/mol 7248 3426 

CTx (%) 1.62 7.77 

E (kJ/kg) 10.9 12.8 

CTg (˚C) 21.1 0.63 

CrE (-) 2.02 6.3 

 
able 6. Weights and indifference, preference and veto 

Criterion (k) 
erence Preference Veto 

thr

T
thresholds for each criterion. 

Weighting Indiff
factor 
(w ) k

threshold 
(qk) 

threshold 
(p ) k

eshold
(v ) k

CMw (g/mol) 3  1 00.15 6273 1,365 25,46

CTx (%) 0.15 0.82 4.10 16.41 

C  E (kJ/kg) 0.15 0.31 1.55 6.19 

CTg (˚C) 0.15 0.39 1.97 7.88 

CrE (-) 0.4 0.03 0.15 0.8 

 
The Decision Support Shell, described in Section 2.2.1, 

w

d to 

non-preference rules, which 
w ly 
ob

rE

rE  

es  

obtain the preference or 
ere applied to all the compromises of the previous
tained Pareto’s front. 
Table 7 presents the resulting sets of rules, generated 

by the pair-wise comparison of ten alternatives, previ- 
ously ranked by the decision maker. 45 such comparisons 
produced an equal number of candidate rules. Some were 
redundant while others were contradictory. After elimi- 
nation of each redundant rule and of those being contra- 
dictory, 16 rules were preserved.  

Considering two alternatives, A and B, to be ranked 
according to rule 1, the corresponding preference rule 
(00100) was expressed as:  

IF CMw is worse for A than for B, AND CTx is worse 
for A than for B, AND CE is better for A than for B, AND 
CTg is worse for A than for B, AND C  is worse for A. 
According to Section 2.2.2, (+1) is then attributed to B.  

The corresponding non preference rule (11011) is ex-
pressed as:  

IF CMw is better for A than for B, AND CTx is better 
for A than for B, AND CE is worse for A than for B, AND 
CTg is better for A than for B, AND C  is better for A
than for B, THEN B is not preferred over A. (−1) is then 
attributed to B.  

Accordingly, in Table 7, (0) corresponds to “worse 
than” while (1) corresponds to “better than” or “equal 
to”. 

Even though the method seems simplistic, a single rule 
cannot be interpreted without considering the complete 
set of rules. For example, it is impossible to infer, from 
rule 1, that only the criterion CE is relevant. In fact, over- 
all criteria have the same importance in the sixteen rules 
(there are no associated weights). 

These rules are an approximation of the choice process 
of the decision maker as a set, including its apparent in- 
consistencies. In fact, this process is often complex and 
cannot be reduced to a logical reasoning. This becom

as then applied to the non-dominated compromises of 
Pareto’s domain, in order to rank them according to the 
values of the parameters chosen in this example. 

2) Ranking Using the Rough Sets Method (RSM) 
The method described in Section 2.2.2 was use  
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(a)                                                 (b) 

Figure 9. Ranking of the 10% best solutions (black points) and the overall best (white square) of Pareto’s zone correspondi
to input variables Q and T using: (

ng 
a) The net flow method and (b) The rough sets method. 

 

 
(a)                                                 (b) 

Figure 10. Ranking of the 10% best solutions (black points) and the overall best (white square) of Pareto’s zone correspon - 
ing to input variables N and T usin . 

d
g: (a) The net flow method and (b) The rough sets method

 
apparent when attempting to compare, for example, rules 
#5 and #15. This is the main reason for the implementa- 
tion of a method that is approximate and less precise than 
that of the assessments of the NFM, for modeling the 
process choice of the decision maker. The advantages of 
this method are its simplicity in application and compu- 
tational speed.   

3) Analysis and Comparison of the Results 
Figures 9-12 display the projection of the results ob- 

ta methods 
to

(a) and (b)). 

 (b)). 

ution, represented by black 
po

10% best solutions, resulting from each ranking method, 

ain. Moreover, the points ob- 
tained using the RSM are more dispersed than those ob- 

ined by the application of these two ranking 
:  

 Q and T (Figures 9(a) and (b)) and N and T (Figures 
10

 CTg and CrE (Figures 11(a) and (b)) and CE and CTx 
(Figures 12(a) and

Each Figure also displays the 10% best solutions as 
well as the overall best sol

ints and by a white square, respectively.  
All figures clearly show that the projections of the 

tained using the NFM. 

do not cover the same dom

This confirms the lower degree of accuracy of the re-
sults obtained using the RSM. 

Table 8 shows the best and worst values of the input 
process variables and corresponding criteria obtained 
using the Net Flow and Rough Sets Methods. 

g conditions presented in 
T

 validation, 
th

to those obtained using the NFM, thus confirming the   

To validate these results, two experimental runs were 
carried out using the operatin

able 9. As PTMG samples, with molar masses equal to 
those preferred by the two ranking methods (i.e., 1805 
and 2100 kg/kmol), were not available for this

e two experiments were carried out using PTMG with a 
molar mass of 2000 kg/kmol. All the remaining experi- 
mental conditions were kept as close as possible to the 
optimal ones, indicated by each ranking method.  

The resulting criteria values, also given in Table 9, 
clearly show that the best experimental results are close 
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Table 7. Set of rules generated

Prefered rules 

 by use of the rough sets method. 

Non-prefered rules 

CMw CTx E CTg CrE CE CTg CrE CMw CTx C

0 0 1 0 0 1 1 1 1 0 

0 1 1 0 0 1 0 0 1 1 

0 1 1 1 0 1 0 0 0 1 

1 0 1 0 0 0 1 0 1 1 

1 1 0 0 0 0 0 1 1 1 

1 1 1 0 0 0 0 0 1 1 

1 1 1 1 0 0 0 0 0 1 

0 0 0 1 1 1 1 1 0 0 

0 0 0 0 1 1 1 1 1 0 

0 0 1 1 1 1 1 0 0 0 

0 1 0 1 1 1 0 1 0 0 

1 0 0 0 1 0 1 1 1 0 

1 0 0 1 1 0 1 1 0 0 

1 0 1 1 1 0 1 0 0 0 

1 1 0 1 1 0 0 1 0 0 

1 1 1 0 1 0 0 0 1 0 

 

 
(a)                                                 (b) 

Figure 11. Ranking of the 10% best solutions (black points) and the overall best (white square) of Pareto’s front correspond- 
ing to criteria CTg and CrE using: (a) The net flow method and (b) The rough sets method. 
 

SM. Due to the nature of RSM, the preferred point 

perimental values are 10.4 and 13.5 kJ/kg, and the glass 

tal values are 0.25˚C and 0.10˚C. 
However, these differences remain within the range of 

not strictly identical, results. 

superior performance of this ranking method, without 
rejecting, at the same time, the values obtained using the 

transition temperature, whose predicted value is 2.6˚C 
while the two experimen

R
shows two criteria that are not well predicted by the neu-
ral network simulators, i.e. the power consumption, 
whose predicted value is 1.15 kJ/kg while the two ex-

the model uncertainty. 
This analysis clearly shows that the two ranking 

methods implemented in this work provide similar, but 
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(a)                                                 (b) 

Figure 12. Ranking of the 10% best solutions (black points) and the overall best (white square) of Pareto’s front correspond- 
ing to criteria CE and CTx using: (a) The net flow method and (b) The rough sets method. 
 
Table 8. Best and worst values o obtained using the net flow and 

ue Worst value 

f the input process variables and corresponding criteria 
rough sets methods. 

Ranking method Variable Best val

MPTMG (g/mol) 1805 2095 

Q (kg/h) 2.98 3.31 

T (˚C) 
Input 

152 168 

N (rpm) 155 147 

C wM  (g/mol) 

CT

Net flow 

Criterion 

M ) 

Input 

8350 6941 

CTx (%) 10.6 14.46 

CE (kj/kg) 13.6 3.80 

g (˚C) 0.14 0.50 

CrE (-) 11.57 11.57 

PTMG (g/mol 2100 1095 

Q (kg/h) 3.82 3.1 

T (˚C) 155 147.5 

N (rpm) 100 418 

C wM  (g/mol) 2  43 2 

CT

Rough sets 

Criterion 

1  

8,975 1,54

CTx (%) 9.4 9.36 

CE (kj/kg) 1.15 1.26 

g (˚C) 2.6 24.8 

CrE (-) 1.57 4.5 

 
5. Conclusions 

The present work concerns the optimization of a reactive
extrusion process for the synthesis of linear thermoplastic 

ed to medical uses.  
 were carried out under bulk condi- 

 

safety and protection of the environment. The absence of 
solvent allows avoiding eventual stages of purification of 
the final product a ycling of the solvent. In addition 
the maintenance and cleaning operations, which are nec-

sses, this con- 

 

polyurethanes adapt
The experiments

tions which present undeniable advantages in terms of 
essary after each batch run, are simplified. Moreover, 
compared to batch or semi-batch proce   

nd rec
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Ta blble 9. Comparison between the best solutions (input varia es and criteria) obtained using the net flow and rough sets 
methods and the experimental values. 

Input variables MPTMG (g/mol) Q (kg T (˚C) N (rpm)  /h) 

NFM 1805 2.98 152 155  
Best values using 

RSM 2100 3.82 155 100  

Run 1 2

Run 2 

ria C ) C  CM ol) C ) CrE -) 

NFM 11.
Best values us

RSM 11.

Run 2 

000 3.00 150 155  

2000 3.8 155 100  

Crite E (kJ/kg Tx (%) w (g/m Tg (˚C  (

13.6 10.6 8350 0.14 57 
ing 

1.15 9.36 28,75 2.6 57 

Run 1 13.0 10.1 7680 0.10 11.4 

10.4 5.1 26220 0.25 12.9 

 
tinuous process allow ce the o ratin
conditions and the stationary state are reached, obtainin
with a higher rate of production, materials with more 
homogeneous properties. In addition, e present case

e synthesis can be integrated into the on-line manufac- 

ime 
an

d: 
 

tes, 

 

sumption (E), 
th

s, on ptimized ope g 
g 

 in th , 
th
ture of specific final products (e.g., catheters, implants, 
etc.). This will result in an appreciable time-saver which 
will be reflected on the overall costs of the process.  

Hence, a multicriteria optimization of the process ap- 
ared to be of profound interest. To develop the optimiza- 
tion strategy, a two-stage process was developed. 

A preliminary study allowed determining the process 
operating conditions for which the polymerization t

d the average residence time of the reactants in the 
extruder were of the same order of magnitude. This was 
done through a series of experiments which allowe

Determining, owing to the elaboration of a kinetic 
model, the optimal experimental conditions (tem- 
perature and catalyst concentration) of the first stage; 

 Showing, through a study of the overall process using 
a Haake internal mixer, that after about five minu
the polymerization could be complete. 

The extrusion process was then developed using a 
factorial experimental strategy which allowed studying
the influence of the input process variables (T, N, Q, 
MPTMG), on a number of selected outputs, which include 
the TPU production yield, the energy con

e main properties of the polyurethanes ( wM , Tg, rE,) 
and their purity (TDI).  

This information was subsequently used to construct 
neural models which were able to predict, with accept- 
able accuracy, the output variables of the process.  

These models were, in turn, used to determine, with 
the help of an evolutionary algorithm, a series of 5000 
no

main.  
The multi set of com ises 

was finally carried out using two methods, namely the 
Net Flow an ough Sets Methods which, taking into 
account the preferences of a decision maker, allowed the 

 pro- 
vi

ors are grateful to the French Ministry of Educa- 
tio

ructures of Linear Polyurethanes. Properties and 
Applications of Linear Polyurethanes in Polyurethane 

omers,” Progress in Ma- 

n-dominated alternatives, constituting Pareto’s do- 

ranking of the Pareto’s zone alternatives. NFM develops 
a powerful mathematical approach, whereas RSM

criteria analysis of this prom

d the R

des an approximate decision model which includes 
possible contradictions of the decision maker but whose 
implementation is simple with rather short computing 
times.  

These two methods made it possible to propose ac- 
ceptable recommendations for the operating conditions 
of the process. Experimental validation runs carried out 
under similar operating conditions gave rise to criteria 
values confirming the superior performance of NFM, 
without rejecting, at the same time, the values obtained 
using RSM. 
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