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ABSTRACT 

The photo-elastic method has been employed to determine stress concentration factor (SCF) for square plates containing 
holes and inclined slots when the plate edges are subjected to in-plane tension combined with compression. Analyses 
given of the isochromatic fringe pattern surrounding the hole provides the SCF conveniently. The model material is 
calibrated from the known solution to the stress raiser arising from a small circular hole in a plate placed under biaxial 
tension-compression. These results also compare well with a plane stress FE analysis. Consequently, photo-elasticity 
has enabled SCF’s to be determined experimentally for a biaxial stress ratio, nominally equal to –4, in plates containing 
a long, thin slot arranged to be in alignment with each stress axis. The two, principal stresses lying along axes of sym-
metry in the region surrounding the notch are separated within each isochromatic fringe by the Kuske method [1]. FE 
provides a comparable full-field view in which contours of maximum shear stress may be identified with the isochro-
matic fringe pattern directly. The principal stress distributions referred to the plate axes show their maximum concen-
trations at the notch boundary. Here up to a fourfold magnification occurs in the greater of the two nominal stresses 
under loads applied to the plate edges. Thus, it is of importance to establish the manner in which the tangential stress is 
distributed around the slot boundary. Conveniently, it is shown how this distribution is also revealed from an isochro-
matic fringe pattern, within which lie the points of maximum tension and maximum compression. 
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1. Introduction 

It is well known that small holes and slots raise the stress 
in loaded plates locally by factors of 3 or 4. Clearly this 
becomes important to an assessment of fatigue life when, 
in localised regions of high stress, cyclic loading acceler- 
ates the crack initiation process. The various design rules 
[2,3] require the SCF to be known but often estimates are 
made for unusual geometries. The problem of crack ini- 
tiation from holes and slots is important to understand for 
ensuring the safety of many structures bearing load. The 
prediction of cyclic life is possible when the stress raiser 
is quantified with a stress intensity factor. The finite 
element technique has been used [4-6] to estimate stress 
concentration factors in various engineering components 
where fatigue cracks occur. Holes and slots are less se- 
vere than pre-existing cracks but are always present in 
designs involving fittings, sharp radii, connections and 
attachments [7-12]. Here, in common with much of the 
early work on quantifying stress raisers [13-15], we shall 
examine the influence of slots experimentally by the 
photo-elastic method. Firstly, the technique adopted is 
verified by two alternative methods: 1) from the analyti-
cal solution to the stress concentration around a hole in a  

bi-axially stressed plate and 2) from a numerical FE 
simulation. Both methods 1) and 2) can provide the con- 
tours of maximum shear stress in the surrounding mate- 
rial which photoelasticity reveals within its isochromatic 
fringe pattern. The shear stresses are separated into major 
and minor principal stresses along axes of symmetry and 
around the notch boundary in providing agreement be- 
tween the three methods. Thereafter, a slot is arranged to 
lie parallel to each of the perpendicular stress axes in turn 
to establish the severity of its concentration experimen-
tally from photoelasticity. The degree of stress concen-
tration (SC) is revealed from locating points of maximum 
tension and compression around the notch boundary. 

Overall, the scope of this study is to provide SCF’s for 
a slot with aspect ratio of 5 (nominally) in fixed orienta-
tions to various in-plane biaxial stress states. Here the 
present investigation quantifies SCF’s for slots with ver-
tical and horizontal dispositions in a stress field for which 
tension is combined with compression. The information 
given provides for the apparent omission of this geome- 
try in the library of published SCF available for a multi- 
tude of alternative geometries [3]. The slot orientation 
effect in plates loaded in biaxial tension is presently un-
der investigation. 
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2. Experimental 

Holes and slots 1.0 mm wide and with a maximum length 
dimension of 2a = 6.2 mm were milled into the centre of 
Makralon and araldite CT 200 photoelastic sheets. Two 
methods of bi-axial loading square testpieces were em-
ployed [16]: 1) by installing 75 mm squares of 2 mm 
thick Makralon diagonally within a shear linkage frame 
and 2) applying independent, perpendicular forces to the 
120 mm sides of 1.25 mm thick, CT 200 squares using 
hydraulic jacks. For the jacks, the bi-axial stress ratio Q, 
within the 75 mm square, un-gripped area, was positive 
and adjustable between 0 (uni-axial tension) and 8. 

The shear linkage frame (reported here) was loaded in 
tension along the square’s vertical diagonal, thereby in-
ducing compression along its horizontal diagonal. Figure 
1 shows the square testpiece with its central hole and slot 
details. These were machined to the tolerances shown 
from 2 mm Photostress sheet supplied by Budd Inc., USA. 
The link assembly provided a central stress ratio Q = 
σx/σy = –3.8 in which the co-ordinates x and y are aligned 
with the square’s horizontal and vertical diagonals. Q is 
the negative, central principal stress ratio that applies in 
the absence of a notch. The compressive stress induced 
across the horizontal diagonal was increased by the 
stated ratio (i.e. σx = Qσy = –3.8 σx from the contacts 
made along the four sloping sides. In the frame four 
equal length links were allowed to rotate upon their 12 
mm diameter end connecting pins. A 2 mm groove ma-
chined along the inside of each link provided the register 
for a 75 mm square, Makralon photoelastic model con-
taining the notch (either a hole or a slot) at its centre. 
Corners were chamfered for ease of assembly (see Fig-
ure 1). Fringe patterns were examined under both plane 
and circular polariscope arrangements using sodium va-
pour light. The plane polariscope provides a full stress 
field around the notch in the form of a combination of 
isochromatic and isoclinic fringe patterns which reveal, 
respectively, the principal stress magnitudes and their 
directions. In the circular polariscope, additional 1/4 
wave plates are inserted to remove the isoclinics allow-
ing the isochromatic fringes to appear unobscured. Along 
an isochromatic fringe the difference between the prin-
cipal stresses is constant, i.e. it is a line of constant 
maximum shear stress. Because the principal stress lying 
normal to a notch boundary is zero, the isochromatic 
fringe pattern is sufficient to find the greatest concentra- 
tion in the tangential principal stress around the hole di- 
rectly. All that this requires is a fringe count around the 
hole or slot and its conversion to stress using the model 
material’s fringe stress coefficient. Dividing the greatest 
stress found from this by the nominal applied stress de- 
fines the stress concentration for the particular notch geo- 
metry. 

 

Figure 1. Geometry of slotted plates. 
 

Isochromatic fringe patterns under a series of increas-
ing loads were recorded with a Practica 35 mm SLR 
camera with bellows attachment for close-ups. Typical, 2 
s exposures, at an aperture setting of f5.6 with Kodak 
100 ASA film, are reproduced here as line diagrams. The 
shear frame’s stress ratio Q was found from loading an 
un-notched aluminium plate with a 0˚/90˚ strain gauge 
bonded to its centre. It will be seen that a more precise 
value of Q follows from the classical solution to the 
stress concentration arising from a hole in a plate under 
biaxial loading. 

There are two coefficients used in photoelasticity to 
convert the fringe count (N, fringes) into a stress magni-
tude. The supplier provides a Material Fringe Stress Co-
efficient f, independent of the sheet thickness. The user 
adopts a Model Fringe Stress Coefficient F in which 
thickness is accounted for. Either coefficient is found 
from a calibration upon strips cut from the sheet in which 
the fringes are counted within a known stress field, usu- 
ally from a simple tension test or a beam in four-point 
loading. In the former method a unit increase in the 
fringe number corresponds to an alternating light and 
dark fringe pattern when the tensile stress (= load/section 
area) is uniform under a purely axial load. A bending 
calibration is less prone to experimental error but the 
stress field varies linearly between maximum tension and 
compression corresponding to (say) a hogging beam’s 
top and bottom edges. With equal, maximum stress mag-
nitudes the fringes are counted at one edge where the 
stress is calculated from theory. Normally, the gradient 
of a plot between calculated stress (in MPa) and the 
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fringes count N (= 1, 2, 3 etc.) provides F directly, from 
which f = Ft. Here a tension test conducted upon a paral-
lel strip of test material between the polariser and ana-
lyser revealed a Material Fringe Stress Coefficient f = 
13.9 N/mm/fringe [16]. For a 2 mm thick plate, this gives 
a Model Fringe Stress Coefficient F = f/t = 6.95 MPa/ 
fringe. Hence F allows a direct conversion of an isochro- 
matic fringe count at any point in the model to stress. As 
the latter corresponds, generally, to the difference be- 
tween principal stresses p and q at a point, the photoelas- 
tic technique requires further analyses to separate p from 
q. Conveniently, no such separation is necessary for 
fringe counts at points upon boundary points where one 
principal stress is known to be zero. 

3. Analyses 

3.1. Photoelasticity 

For a model of thickness t, photo-elasticity theory [13-15] 
gives the magnitude of the difference between the prin-
cipal stresses p and q 

p q Nf t NF                (1) 

where it is seen that the model stress coefficient F = f/t 
(MPa/fringe) provides a direct conversion from a nu-
merical fringe order value N to the magnitude of the prin- 
cipal stress difference. The special principal stress sym- 
bols p and q that appear universally in photoelastic ana- 
lyses identify here with the hoop and radial stress around 
a slot boundary and along axes of symmetry. 

3.1.1. Hole and Slot Boundary 
Counting the fringe order N around a notch boundary 
allows the major principal (tangential) stress p and the 
maximum stress concentration S to be found directly 
from F. This is because the minor principal (radial) stress 
q is zero normal to the boundary. Equation (1) simplifies 
to give the boundary’s circumferential (or hoop) stress p 
= NF where N is counted around the notch boundary 
starting from the zero-order fringe location. In the Fig-
ures 1, 3 and 5 that follow the N = 0 location is shown to 
mark those boundary points at which there is an inter-
change between hoop tension and compression. 

3.1.2. Axes of Symmetry 
To find the stress distribution along the x, y axes of 
symmetry in the body of the plate, beyond the notch (a 
hole or slot), equi-spaced points n are taken along each 
axis. The fringe number N is then counted at radii rn from 
the centre of the notch, separated by Δr. These symmetry 
axes coincide with principal stress directions where the 
shear stress component is absent. For the calculation of p 
and q it is convenient to convert to polar co-ordinates (r, 
θ) at each point n upon the x- and y-axes so that the prin-

cipal stress difference becomes: 

rp q                  (2a) 

Using Kuske’s method [1], let σr increase by an 
amount δσr across a radial increment δr and apply the 
radial equilibrium equation [17] to positions n = 0, 1, 2, 

 This gives the gradient in σr as 

     r nn n n
r p q r        r nr    (2b) 

The incremental change (Δσr)n in σr between adjacent 
pairs of points n – 1 and n is estimated from the average 
of the their two gradients times their radial separation: 

       1
2r r rn n

r r   
 n

r         (3) 

By placing n – 1 = 0 at a notch boundary, where σr = 0, 
the radial stress at “body” positions n = 1, 2,  follows 
from successive summations: 



     1r rn n
  


   r n

          (4a) 

where (Δσr)n is given in Equation (3). The hoop stress 
follows from Equations (2a) and (4a) as 

     rnn
p q   

n
           (4b) 

3.2. Finite Elements 

The FE analysis of slotted plates was conducted using the 
Abaqus code [18]. Plane stress, iso-parametric elements 
(8-noded, quadratic type) were used to discretise the 
plate testpiece. The boundary conditions included a fix-
ing of the left-hand side and bottom corners of the test-
piece. In order to model the biaxial loading used in the 
experiment a compressive and a tensile load were applied 
to the testpiece’s corners in a similar ratio to those ap-
plied in the test rig. The Tresca equivalent stresses ob-
tained from the FE analysis compare directly with the 
isochromatic fringe pattern from a photoelastic model as 
each provide the magnitude in the difference between the 
major and minor principal stresses. The sodium vapour 
light source sharpens the isochromatic fringe compared 
to the spread found from a white light source. The image 
emerges as a pattern of lines along which the stress dif-
ference is constant from point to point in the model. 

4. Results 

Recently, a number of solutions have appeared to the 
SCF’s in plates [19,20] thick cylinders [21], shells [22], 
valves [23], key-ways [24] rivets [25]. Since there re-
main no solutions available for the stress distributions in 
plates containing straight-sided, inclined slots, here we 
present time-honoured photoelastic analyses of their stress 
concentration factors. In contrast, we begin with the clas-
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sical solution to the stress raising effect of a circular hole 
in a thin plate and compare this with alternative solutions 
from photoelasticity and finite elements. The good agree- 
ment found between the three approaches serves to sup- 
port the experimental method adopted for each slot ana- 
lysis and the accuracy of the stress concentration factors 
it provides. 

4.1. Central Hole 

4.1.1. Stress Ratio at Hole Boundary 
The shear frame’s linkages apply a vertical tensile force 
in combination with horizontal compressive force to the 
diagonals of a square plate. Here it needs to be recog-
nised that these remote forces produce compressive and 
tensile stresses at the respective vertical and horizontal 
positions upon the boundary of a hole located at the cen- 
tre of the plate. This means that a hole elongates in the 
direction of tension putting its North and South points 
under compression and its East and West under tension. 
Figure 2(a) shows an isochromatic fringe pattern when a 
vertical tensile force (the y-direction) is applied to the 
frame. Here, the fringe count shows a nominal ratio be-
tween maximum compression (θ = 90˚) and maximum 
tension (θ = 0˚) of σ90/σ0 = –2. This hoop stress ratio ap-
plies to each angular position within the hole’s boundary. 
An average stress ratio of σ90/σ0 = –1.83 was found from 
fringe patterns under numerous loads when fractional 
order fringes were accounted for. Elasticity theory [26] 
relates this ratio to the remote biaxial stress ratio Q = 
σx/σy imposed by the frame: 

   90 0 3 1 3Q    Q            (5) 

when σ90/σ0 = –1.83, Equation (5) shows Q = –3.84. To 
check Q, an un-notched 2 mm thick aluminium alloy 
plate replaced the testpiece having 0˚/90˚ strain gauges 
bonded at its centre in alignment with the plate’s x, 
y-diagonals. When a state of plane stress is assumed the 
stress ratio Q at the plate centre becomes [17]: 

   1x y y x y xQ v             v     (6) 

Under an increasing vertical load, the 0˚/90˚ strains 
responded linearly in a constant ratio εy/εx = –0.561, in 
which εy is positive and εx is negative. Substituting into 
Equation (6) with v = 1/3 gives Q = –3.53, which is in 
acceptable agreement with Q found from Equation (5). 

4.1.2. Hoop Stress Variation within Hole Boundary  
The hoop stress variation measured around the hole is 
shown in Figure 2(b). It is established quite simply from 
applying σθ = NF to the fringe count around the hole. The 
variation found is seen to agree fairly well with the theo-
retical stress-function prediction [26]: 

 
(a) 

 

 
(b) 

Figure 2. (a) Isochromatic fringe pattern around a hole; (b) 
Boundary hoop stress variation within a hole. 
 

  1 2 cos 2 2 cos 2 πS S QS            (7) 

where S = σy is the “applied” tensile stress. The latter is 
found from dividing the applied load by the area of the 
plate section through its horizontal diagonal. The “ap-
plied”, horizontal compressive stress follows as QS = σx. 

4.1.3. Principal Stress Distributions  
Separating p from q by the method outlined above in 
para (3.1), provides the principal stresses along the x, y 
axes of symmetry (Figures 3(a) and (b) apply with a 
common legend). The experimental distributions shown 
here agree well with FE predictions and the stress func-
tion solution to this problem [17]: 
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 max 2r                    (8c) 

where a is the hole radius. The stress ordinates in Fig-
ures 3(a) and (b) are normalised with the remote stress S 
to show that two maximum stress concentration factors 
(SCF) arise at x and y on the boundary under an applied 
stress ratio Q = –3.84. The greater of these occurs in com- 
 

 
(a) 

 

 
(b) 

Figure 3. (a) S-Normalised stress distributions for hole’s 
x-axis; (b) S-Normalised stress distribution for hole’s y-axis. 

pression with SCF = 14/3.84 = 3.65. 
Given its validation from within (a), (b) and (c) above, 

we may now use photoelasticity to determine stress dis-
tributions where a theoretical solution is unavailable. In 
particular, slots 6.2 mm long × 1 mm wide, in alignment 
with the y- and x-directions, will replace the hole at the 
testpiece centre. Correspondingly, the following vertical 
and horizontal slot analyses apply. 

4.2. Vertical Slot 

Figure 4(a) shows the isochromatic pattern around a 
vertical slot subjected to a similar remote biaxial stress 
ratio Q = –3.84 from loading in the shear frame. The 
boundary hoop stress variation σθ = NF, as derived from 
the fringe count N, is shown in Figure 4(b). This reveals 
a ratio of σ90/σ0 = –5 between the maximum compressive 
and tensile stresses. Separating the principal stresses be-
yond the slot, along the more highly stressed y-axis, leads 
to the distribution shown in Figure 5. Each stress com-
ponent: radial, hoop and maximum shear, has a distribu-
tion similar to the y-distributions for a circular hole in 
Figure 2(b). Away from the slot ends, stress components 
fall off rapidly to attain the ratio that prevails in the ab-
sence of the notch. The slot magnifies these by a nor-
malised stress concentration factor and here it is seen 
that, along its y-axis, the slot is more severe than the hole. 
That is, the greater applied compressive stress is magni-
fied by a factor of SCF = 15.62/3.84 = 4.07 compared to 
3.65 for the hole.  

4.3. Horizontal Slot 

Figures 6(a) and (b) shows the isochromatic fringe pattern 
around a horizontal slot subjected to Q = –3.84 within the 
shear frame. A load identical to that applied to the verti-
cal slot was used. The fringe count N reveals the bound-
ary hoop stress variation σθ = NF, as shown in Figure 
6(b). Maximum hoop tension σθ = 6F occurs along the 
x-axis. A maximum compression of equal magnitude 
occurs along the straight sides close to the point where 
the end radius begins. Elsewhere, compression along the 
straight edge is of a lesser magnitude σθ = 5F, giving a 
tension/compression axis stress ratio of –1.2. Separating 
the principal stresses beyond the slot ends along the 
x-axis, leads to the distribution shown in Figure 7. Each 
of the three stress components shows a normalised dis-
tribution, similar to the stress distribution for the x-axis 
of a hole (see Figure 3(a)). Moreover, the stress concen-
trations at the x-axis boundary of a hole and at the end of 
a horizontal slot are comparable. Their SC’s are, respec-
tively: 7.65/3.84 = 2 and 9.37/3.84 = 2.44. However, a 
comparison between Figures 5 and 7 shows that a slot 
with a vertical orientation, giving SC = 4.07, is far more 
severe in concentrating hoop stress within its boundary. 
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(a) 

 

 
(b) 

Figure 4. (a) Isochromatic fringe pattern around a vertical 
slot; (b) Boundary hoop stress variation within a vertical 
slot. 

 

Figure 5. S-Normalised stress distributions for vertical 
slot’s y-axis. 
 

 
(a) 

 

 
(b) 

Figure 6. (a) Isochromatic fringe pattern around a horizon-
tal slot; (b) Boundary hoop stress variation within a hori-
zontal slot. 
 

 

Figure 7. S-Normalised stress distributions for horizontal 
slot’s x-axis. 
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5. Conclusion 

This photoelastic technique applied here confirms FE 
predictions where the former has been shown to agree 
with the analytical solution to the known stress concen-
tration arising from a hole in a plate. The model material 
Makralon is calibrated previously within the photoelastic 
bench from the simpler plane geometry of a strip in ten-
sion, as used here, or for a beam in four-point bending. 
Following its validation, this preliminary study shows 
that photo-elasticity is a useful experimental technique 
for providing a full stress field around slots subjected to 
bi-axial loadings. In particular, when slots are aligned 
with applied stress axes their straight boundaries distrib-
ute tangential stress uniformly in tension and compres-
sion. A maximum concentration in stress usually occurs 
within the end radii, their precise positions depending 
upon the slot orientation.  
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