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Abstract 
 
Rock depth information of a site is a significant factor for geotechnical engineering and earthquake ground 
response analysis. In this paper, reduced level of rock at Bangalore is arrived from the 652 boreholes in the 
area covering 220 km2. Geostatistical modeling based on kriging (simple and ordinary) techniques has been 
applied for estimating reduced level of hard rock in Bangalore. The models are used to compute variance of 
estimated reduced level of the rock. A new type of cross-validation analysis proves the robustness of the de-
veloped models. The comparison between the simple and ordinary kriging model demonstrates that the ordi-
nary kriging model is superior to simple kriging model in predicting reduced level of rock in the subsurface 
of Bangalore. 
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1. Introduction 

Rock depth for a site is a very useful parameter to the 
geotechnical and earthquake engineers to find their basic 
requirement of hard strata and ground motion at rock 
level. In most geotechnical investigations, knowledge of 
the hard strata or hard rock depth is essential to design a 
suitable foundation. In ground response analysis, Peak 
Ground Acceleration (PGA) at rock level and response 
spectrum for the particular site is evaluated. This infor-
mation is also essential to evaluate liquefaction hazards 
of a site and to estimate earthquake induced forces on 
structures. 

With an objective of evaluating hard rock depth in 
Bangalore, an attempt has been made to develop a two 
dimensional map of reduced level of rock for Bangalore 
based on kriging (simple and ordinary) technique. Rock 
is identified by borelogs data available in the area and 
identified by visual observation of the cores taken at 
these locations. Hard disintegrated rock is also identified 
as rock and depth from the ground level has been used to 
evaluate reduced level of rock at any location. 

The kriging method was developed during the 1960s 
and 1970s and has been acknowledged as a good spatial 
interpolator [1-3]. The most important features of this 
method are that the interpolator 1) is linear and unbiased  

2) gives minimum estimation error, and 3) is exact and 
gives an evaluation of uncertainty for interpolated values. 
This technique is widely used in the field of earth sci-
ences, including mining, geochemistry, remote sensing, 
etc. A major advantage of kriging is that it is more flexi-
ble than other interpolation methods such as inverse- 
distance weighting, deterministic splines and Thiessen 
polygons. The weights are not selected arbitrarily, but 
depend on how the variable of interest (in this case hard 
rock elevation) varies in space. In kriging, the variable 
weights have been used based on the scale of variability 
whereas in Thiessen polygon, one has to apply same 
weights, whether the function exhibits small-or large- 
scale variability. The main goal of kriging is to predict 
(in the interpolation sense) a variable where no meas-
urements were made using the semivariogram as a model 
characterizing spatial variability. Semivariogram is the 
analytical tool used to evaluate and quantify the degree 
of spatial autocorrelation. It contains three elements of 
information. First of all the semivariogram is an appre-
ciation of the dispersion (or scatter) of the parameters, 
which equates to the half variance. Secondly, it gives an 
autocorrelation distance that represents the radius of in-
fluence of a measurement made at a given point. Thirdly, 
it provides the type of variability that indicates how val-
ues fluctuate in space. 
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A valid estimation of the variance of estimated re-
duced level of rock depths is important for developed 
ordinary as well as simple kriging model. So, the devel-
oped models have been used to compute variance of es-
timated reduced level of the rock depths. In general, the 
variance depends both on the semivariogram and the 
location of the measurements. A number of publications 
can be found in the literature which presents the theory 
and application of kriging [4-12]. 

In this paper, a semivariogram model has been devel-
oped along with the kriging model for the reduced level 
of the rock in the subsurface of Bangalore. Semivario- 
gram analysis is used to detect trends in structure or in-
ternal properties of deposits and estimated values can be 
obtained at points where no data is available. A new 
method for cross-validation analysis of developed mod-
els has been proposed. The cross-validation of the model 
has been done based on the examination of residuals. A 
comparative study has been also done between devel-
oped simple kriging and ordinary kriging. 

2. Subsurface of Bangalore and GIS Model 
Development 

Bangalore covers an area of over 220 square kilometres 
and ground Reduced levels (GRL) also vary a lot in the 
city. It varies from 810 m in north-east part to 940 m in 
south-western part of Bangalore. Ground reduced levels 
do not vary much in the central and north-western parts 
of the city. The population of greater Bangalore exceeds 
6 million and it is the fifth biggest city in India. It is situ-
ated on latitude of 1208' North and longitude of 77037' 
East. From geology, subsurface of Bangalore region is a 
Gneiss complex, which was formed by several tec-
tonic-thermal events with large influx of sialic material, 
occurring between 3 to 3.4 billion years ago giving rise 
to an extensive group of gray gneisses designated as the 
“older gneiss complex”. These gneisses act as the base-
ment for a widespread belt of schist’s. The younger 
group of gneissic rocks mostly of granodiomitic and 
granitia composition is found in the eastern part of the 
state, representing remobilized parts of an older crust 
with abundant additions of newer granite material, for 
which the name “younger gneiss complex” has been 
given [13]. The soil is mostly a residual soil from granite 
gneiss due to weathering action. In the most recent past, 
there were more than 400 lakes, and more than 340 lakes 
were dried up and have been encroached for residential 
and industrial development. In the old tank beds, silty 
sand/clay is also found as overburden. 

A Geographic Information System (GIS) model (see 
Figure 1) of Bangalore with several layers on a scale of 
1:20,000 has been developed with a purpose of carrying  

out microzonation of Bangalore. The Bangalore map 
forms the base layer for GIS. The map entities have been 
developed for locating boreholes to the utmost accuracy 
and at each location borelogs have been attached along 
with geotechnical data of each layer up to the hard rock. 
The digitized map has several layers of information. 
Some of the important layers considered are the bounda-
ries (outer and Administrative), Highways, Major roads, 
Minor roads, Streets, Rail roads, Water bodies, Drains, 
Ground Contours and Borehole locations. The locations 
of boreholes are shown in Figure 1 along with ground 
reduced level with an interval of 10 m (see Figure 2). 
Distribution of collected boreholes in Bangalore is 
shown in Figure 3, indicating a very good distribution of 
the boreholes in each quadrant of Bangalore from the 
city center. Figure 1 also depicts grids of 1kmΧ1km 
along with the corporate boundary of Bangalore and 
outer boundary circumscribing the ring road. Figure 1 
gives a clear view of the spatial distribution of boreholes 
in Bangalore region. An average of about three boreholes 
data is available within the grid of 1 km × 1 km. 
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Figure 1. Borehole location in Bangalore Map (scale: 
1:20000). 
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Figure 2. GIS model of borehole locations with respect to 
contours. 
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Figure 3. Distribution of boreholes in quadrants of Banga-
lore. 
 

Geotechnical data for 652 boreholes was collated from 
archives of only two organizations; Torsteel Research 
Foundation in India and Indian Institute of Science. This 
data was generated for geotechnical investigations car-
ried out for several major projects in Bangalore including 
Bangalore metro project. The data collected is of very 
high quality and collected during the years 1995-2003. 
The data in the model is on average to a depth of 30m 
below the ground level. Each borelog contains informa-
tion about depth, density of the soil, total stress, effective 
stress, fines content and N values, depth of ground water 
table and rock depth. In GIS model, the boreholes are 
represented as three dimensional object spanning below 
the map layer. These three dimensional objects are gen-
erated with several layers with a bore location in each 
layer overlapping one below the other and each layer 
representing 0.5m interval of the subsurface. Each layer 
of this model is attached with borelog data at that depth. 
The data consists of visual soil classification, borehole 
location, ground water level, date and time during which 
test has been carried out, other physical and engineering 
properties of soil and rock depth. As such when this 
model is viewed in three dimensions, subsurface infor-
mation on any borehole at any depth can obtained by 
clicking at that level. The hard rock has been identified 
by visual observation of the cores taken at these locations. 
Rock depth from ground level is the difference between 
the ground reduced level at borehole location and re-
duced level of the hard rock at the same borehole loca-
tion. The reduced level of the hard rock at borehole loca-
tion is the difference between the ground reduced level at 
borehole location and depth of overburden thickness up 
to hard rock in the same borehole. The depth of over-
burden is estimated from the available borelogs. The 
term hard rock in this paper corresponds to engineering 
bed rock (shear wave velocity ≈700 m/sec) as against 
seismic bed rock (shear wave velocity ≈3000 m/sec). 

3. Methodology 

In this paper, ordinary kriging and simple kriging are 
adopted for evaluating reduced level of the rock in sub-
surface of the Bangalore. For both the methods, there is a 
need to introduce the terminology of the covariance 
function or semivariogram. The covariance function be-
tween two points is defined as: 

      C h E d x m d x m         (1) 

where m is the mean of d(x) and C(h) is the covariance 
function with lag h, with h being the distance between 
two samples x and x': 

2( ) ( )h x x x x y y 2              (2) 

The semivariogram for an intrinsic random function 
[14,15] is defined as: 

    0.5 2h E d x d x            (3) 

Figure 4 illustrates the different components of the 
semivariogram. 

If the variance exists (the random function is second 
order stationary), the relation between the covariance 
function and the semivariogram is as follows: 

    0h C C h                (4) 

where,  h  is the semivariogram and  0C  is the 
variance. 

For semivariogram, the model used in this analysis is 
Gaussian model. The general equation for this model 
looks like: 

 
3

0 3

3 1
 for 

2 2

h h
h c c h a

a a


 
    

 
    (5) 

  0  for h c c h a             (6) 
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Figure 4. A typical semivariogram. 
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For semivariogram model, geoanisotropic model has 
been used to reduce the anisotropy into isotropy by a 
linear transformation of coordinates [16]. Once the model 
of semivariogram is constructed, the weights are com-
puted for kriging. The method for ordinary kriging, sim-
ple kriging and cross-validation of the models are given 
as below: 

3.1. Ordinary Kriging 

Ordinary kriging is a linear geostatistical method. It 
gives local estimation by interpolation. The basic equa-
tion used in ordinary kriging is as follows:  

 
1

,
n

i i
i

d x y w d


                 (7) 

where n is the number of scatter points in the subsurface 
of the Bangalore. di is reduced level of the rock at point i 
in the subsurface of the Bangalore and wi is weights as-
signed for point i. This equation is essentially the same 
as the equation used for inverse distance weighted inter-
polation except that rather than using weights based on 
an arbitrary function of distance. The weights used in 
kriging are based on the model semivariogram. For ex-
ample, to interpolate reduced level of the rock (dP), at a 
point ‘P’ in the subsurface of the Bangalore based on the 
surrounding points P1, P2, and P3, the weights w1, w2, and 
w3 must be found. The weights are found through the 
solution of the simultaneous equations: 

       1 11 2 12 3 13 1pw h w h w h h           (8) 

      1 12 2 22 3 23 2 ph w h w h h           (9) 

      1 13 2 23 3 33 3 pw h w h w h h         (10) 

where (hij) is the model semivariogram evaluated at a 
distance equal to the distance between points i and j in 
the subsurface of the Bangalore. For example (h1p) is the 
model semivariogram evaluated at a distance equal to the 
separation of points P1 and P. Since it is necessary that 
the weights sum to unity, a fourth equation is added. 

1 2 3 1.0w w w                 (11) 

Since there are now four equations and three un-
knowns, a slack variable, is added to the equation set. 
The final set of equations is as follows: 

      1 11 2 12 3 13 1 pw h w h w h h           (12) 

      1 12 2 22 3 23 2 pw h w h w h h           (13) 

      1 13 2 23 3 33 3 pw h w h w h h           (14) 

1 2 3 1.0w w w                   (15) 

The equations are then solved for the weights w1, w2, 
and w3. The dp value of the point p is then calculated as: 

1 1 2 2 3 3pd w d w d w d             (16) 

where, d1, d2 and d3 are reduced level of the rock at point 
P1, P2 and P3 respectively. The variance can be calculated 
at each interpolation point as: 

     2
1 1 2 2 3 3z p p pS w h w h w h      



     (17) 

when interpolating to an object using the kriging method, 
variance data set is always produced along with the in-
terpolated data set. In some cases, specific spatial data 
distributions give rise to negative kriging weights, caus-
ing interpolated values to be negative or out of data lim-
its and physically not compatible with data. For this rea-
son negative and particular positive weights are set to 0 
according to the rules proposed by Deutsh [17], ensuring 
the sum of weights is equal to one. 

3.2. Simple Kriging 

Simple kriging uses the average of the entire data set. 
The basic equation used in simple kriging is as follows: 

  
1

,
n

sk i i
i

d x y m d m


           (18) 

where i  is weight assigned for point i and m is the 
average value. 

The weights  i  are found through the solution of 
the simultaneous equations:  

      
       

1 11 2

3 13 1

0 0

0 0 p

C h C h

C h C h

   

  

   12     

     


     (19) 

      
       

1 21 2

3 23 2

0 0

0 0 p

C h C h

C h C h

   

  

   22     

     


     (20) 

       
       

1 31 2

3 33 3

0 0

0 0 p

C h C h

C h C h

   

  

32       

     


     (21) 

The variance of estimation then become equal to 

   2

1 1

1 0
n n

sk i i
i i

S C  
 

    
 

  iph        (22) 

3.3. Cross-Validation of the Models 

A new type of cross-validation analysis for kriging has 
been presented in this study. In practice, cross-validation 
is based on statistical tests involving the residuals. Re-
siduals are differences between observation and model 
predictions. The detailed description of residuals in the 
case of kriging is given by Kitanidis [16]. It has been 
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assumed that the n measurements are available at a time, 
in a given sequence. The kriging estimate of z at the 
second point, x2 from the first measurement, x1 is calcu-
lated. So, one can write  2z z x 1  and  

22 12 x x   . Where,  is the kriged value at the 
point x2. The actual error 2 2  is normal-
ized by the standard error (

2z
 2

2

 z x z 
 ) and this normalized value 

of the error is given by: 

2
2

2




                  (23) 

For the k-th measurement location, the actual error (δk) 
and normalized error  2  can be written as, respec-
tively: 

  ˆ ,  for 2, ,k k kz x z k n            (24) 

, for 2, ,k
k

k

k



   n           (25) 

A cross-validation Q1 and Q2 are used to check the 
statistical distribution of the residuals between the ob-
served data and kriged values at the original observation 
location by using the same kriging parameters and 
semivariogram model parameters. To perform Q1 and 
Q2 cross validation, a normalized residual array (εk) is 
constructed as suggested by Kitanidis (1997). Q1 is the 
mean of the residual (εk) and it is written as: 

2

1
1

1

n

k
k

Q
n





                (26) 

Under the null hypothesis, Q1 is normally distributed 

with mean 0 and variance 
1

1n 
. The probability density 

function (pdf) of Q1 is: 

 

   

21
1 exp

22π
11

Q
f Q

nn

 
 
 
 
   

1        (27) 

where, n is the number of data points. If the experimental 
value of Q1 turns out to be acceptable close to zero then 
this test gives no reason to question the validity of the 
model. The Q2 is the variance of εk and it is written as:  

2

2

1
2

1

n

k
k

Q
n





               (28) 

   2Q n 1  approximately follows the chi-square 
distribution with parameter  1n  . Where, n is the 
number of data points. The mean and variance of Q2 are  

1 and 
2

1n 
 respectively. The pdf of Q2 is given by the 

following equation: 

 
   31

22

1

2

1 2
1 2 exp

2
2

1
2

2

nn

n

n Q
n Q

f Q
n





 
  

 
  

 

   (29) 

where,  is the gamma function. For robust model, the 
experimental value of Q2 should be close to one. In this 
work, kriging model and cross-validation have been pro-
grammed using MATLAB software. 

4. Results and Discussion 

In case of ordinary kriging, the semivariogram of re-
duced level of rock obtained from the experimental val-
ues is shown in Figure 5. The Gaussian model has been 
plotted in Figure 5 and gives a reasonable fit to the val-
ues obtained. The range, sill and nugget of the 
semivariogram are 0.95, 1.202 and 0.097 respectively. In 
the semivariogram, on the x-axis “relative to the full 
length scale” means normalized lag distance. The esti-
mation of reduced level of rock has been done by using 
developed model of semivariogram (shown in Figure 5). 
Figure 6 shows the kriging surface of the reduced level 
of rock for ordinary kriging. For simple kriging analysis, 
the experimental semivariogram has been calculated us-
ing the reduced level of rock data. A Gaussian model has 
been fitted with parameters: 0.95 for range, 1.178 for sill 
and 0.079 for nugget. By using the model of the 
semivariogram shown in Figure 7, reduced level of rock 
has been estimated in the subsurface of the Bangalore. 
The result is shown in Figure 8. 

One of the most important finding of this study is that 
the semivariogram for both models is free from white 
noise or a pure nugget effect. The pure nugget effect 
corresponds to the total absence of auto-correlation. A 
weighted nonlinear least squares method has been used 
to fit semivariogram model. The points closer to the ori-
gin are given higher weights than points further away, be- 
cause they are inherently more accurate, as they are cal-
culated using more data pairs. Gaussian model, which has 
been used for semivariogram, ensures well-conditioned 
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Figure 5. Semivariogram model using ordinary kriging. 
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kriging matrix. So this study did not exhibit any numeri-
cal stability problem. For both models, the semivario- 
gram stops increasing beyond a certain distance. This 
semivariogram is called “transition” models, and corre-
sponds to a random function which is not only intrinsic 
but also stationary. A function is stationary if it consists 
of small scale fluctuations about some well-defined mean 
value. For a stationary function, the length scale at which 
the sill is obtained describes the scale at which two 
measurements of the variable become practically uncor-
related. The advantage of intrinsic model is that it has 
been used to summarize incomplete information and 
patterns in noisy data. It has been also used to interpolate 
unknown data from observation of data. The semivario- 
gram has a sill, which indicates that having extreme val-
ues has a very low probability. The both kriging models 
gave a unique solution. The reason for unique solution is 
explained below. 

Considering a case of two different measurements of 
reduced level of rock obtained at the same location, if the 
semivariogram for both models is continuous (with zero 
nugget) the function d(x) will be continuous. This means 
that one of the two measurements is redundant. Thus, 
one must be discarded; otherwise, a unique solution 
cannot be obtained because the determinant of the matrix 
coefficients of the kriging system vanishes. This problem 
is solved by adding a nugget term to the semivariogram. 
As a result, the Gaussian model adopted shows the nug-
get effect. In practical sense, nugget effect gives the 
kriging equations a stability and robustness. Without a 
nugget effect, inverting the kriging matrices may lead to 
computational round-off errors. Nugget effect also con-
firms that the contour map of estimate has a discontinuity 
at each observation point. As the sampling distance de-
creases, it is possible to obtain a better estimate of nugget 
effect. But the cost of the exploration program increases 
enormously. The model for the experimental semivario- 
gram has been chosen based on the examination of re-
siduals (differences between observation and model pre-
dictions). The predicted values from simple and ordinary 
kriging are different because of their different properties. 
As a result, the residuals from simple and ordinary 
kriging are different. For this reason, the semivariograms 
are different for simple and ordinary kriging. In this 
study, the residuals are always uncorrelated. The lack of 
correlation in the residuals has been explained below: 

If the residuals are correlated, one can use this correla-
tion to predict the value of k  from the value of 

2 1, , k    using a linear estimator. So, one can reduce 
further the mean square error of estimation of d(xk). But 
this is impossible because d(xk) is already the mini-
mum-variance estimate. Thus, the residuals must be un-
correlated. 

Kriging maps (Figures 6 and 8) provide a qualitative 
difference between the ordinary kriging and simple 
kriging methods. The advantage of this study is that it 
provides the magnitude of the variance of the estimated 
reduced level of rock. Figure 9 is the variance map of 
reduced level of rock generated by ordinary kriging. 
Figure 10 is a variance map of reduced level of rock 
generated by simple kriging. Using kriging variance map 
(Figures 9 and 10), one can give an indication of the 
quality of estimate. From Figures 9 and 10, it has been 
seen that the variance increases with increasing distance 
between estimated points and the actual point. The over-
all pattern of Figures 9 and 10 give an indication of 
where in the field adequate or inadequate sampling oc-
curred. In the Figures 9 and 10, it is clear that the vari-
ance of the estimated data from simple kriging analysis is  
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Figure 6. Map of the reduced level of rock for Bangalore 
using ordinary kriging. 
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Figure 7. Semivariogram model using simple kriging. 
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Figure 8. Map of the reduced level of rock for Bangalore 
using simple kriging. 
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Figure 9. Map of the variance of the estimated reduced level 
of rock for Bangalore using ordinary kriging. 
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Figure 10. Map of the variance of the estimated reduced 
level of rock for Bangalore using simple kriging. 
 
always greater than the variance of the estimated data 
from ordinary kriging analysis. Prediction of variance 
also depends on the behavior of the semivariogram at the 
origin, and it is known that without a nugget effect the 
predicted variance is often underestimated. 

In case of cross-validation of kriging model, the ac-
ceptable region is defined in the Figures 11 to 14 (be-
tween the two vertical lines). For a good model, the Q1 
as well as Q2 must fall in this acceptable regions as 
shown in Figures 11-14. In case of ordinary kriging, the 
value of Q1 and Q2 is 0.002, 1.069 respectively. The Q1 
and Q2 values are well within the acceptable region 
(shown in Figures 11 and 12). In case of simple kriging, 
the value of Q1 and Q2 is 0.01, 0.911 respectively. The 
Q1 and Q2 fall in the acceptable region (shown in Fig-
ures 13 and 14). For both the models, the value of Q1 
and Q2 are close to 0 and 1 respectively. The cross- 
validation indicates that the developed ordinary kriging 
as well as simple kriging models are robust models for 
the estimation of the reduced level of rock in the subsur-
face of Bangalore. However it is clear from the results 
that the ordinary kriging seems to be predicting better 
than simple kriging. 

In order to compare between the ordinary and simple 
kriging models, five points have been chosen randomly 
from known reduced level of the rock of 652 points in  

 

 

Figure 11. Distribution of Q1 for ordinary kriging. 
 

 

Figure 12. Distribution of Q2 for ordinary kriging. 
 

  

 

Figure 13. Distribution of Q1 for simple kriging. 
 

   

 

Figure 14. Distribution of Q2 for simple kriging. 
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Table 1. Comparison between ordinary kriging and simple kriging model. 

Bore hole 
No. 

Longitude (degree) Latitude (degree) 
Actual reduced level 

of the rock (m) 
Predicted value(m) by 

simple kriging 
Predicted value(m) by 

ordinary kriging 

275-1 77.5765 12.9448 885.2 896.2 890.4 

965-3 77.6237 12.9447 884.46 875.46 883.46 

15-1 77.6641 12.9924 893.5 888.5 896.5 

104-1 77.5874 12.9331 896.6 908.6 903.6 

344-6 77.5368 13.0293 900 893 896 

 
the subsurface model of Bangalore. The predicted values 
of these points are shown in Table 1. It can be seen from 
the table that the ordinary kriging model has given better 
prediction than simple kriging model. For the data sets 
used in this paper, ordinary kriging has shown to be a 
better estimator than simple kriging in terms of reduced 
kriging variance and the comparison between an esti-
mated and actual value. This result is expected, since the 
simple kriging uses the average of the entire data set 
while ordinary kriging uses a local average (the average 
of the scatter points in the kriging subset for a particular 
interpolation point). The reduced level of rock at a 
half-space point could be more accurately estimated from 
the reduced level of rock at neighboring half-space 
points than that at distinct location. As a result, simple 
kriging is less accurate than ordinary kriging. 

First, confirm that you have the correct template for 
your paper size. This template has been tailored for out-
put on the A4 paper size. If you are using US letter-sized 
paper, please close this file and download the file for 
“MSW US ltr format”. 

Maintaining the Integrity of the Specifications 
The template is used to format your paper and style the 
text. All margins, column widths, line spaces, and text 
fonts are prescribed; please do not alter them. You may 
note peculiarities. For example, the head margin in this  

5. Conclusions 

This study has demonstrated the usefulness of kriging as 
a tool to determine the reduced level of the rock in Ban-
galore considering a large data set (652 points) distrib-
uted over 220 sq·km area. Geostatistics has permitted the 
development of a semivariogram model for predicting 
reduced level of the rock in Bangalore. 

The power of geostatistics has become even more ap-
parent through the estimated reduced level of the rock in 
a way that is consistent with what we know from the 
field data. By the use of semivariogram, it is possible to 
make estimation of the reduced level of the rock at points 
of the site where reduced levels of the rock were not 

known. The models have been developed by using sim-
ple as well as ordinary kriging methods. Variance map 
for both kriging techniques have been generated and 
presented. A new type of cross-validation analysis (Q1 
and Q2) which proves the robustness of the developed 
kriging models has been also presented in this study. 
Ordinary kriging yielded better results than simple 
kriging for estimation of reduced level of the rock in the 
subsurface of Bangalore. 
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