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Abstract 
 
A model is considered as a representation of compressive and incompressive elastomeric materials in 
nonlinear behavior. Applications are done on one hand by the characterisation of polyurethane 60 - 65 shore 
A (a compressive material), and on the other hand by the characterisation of polyurethane 95 shore A and 
fluorosilicone, both incompressive materials. The Rivlin energy expression is used for incompressive mate-
rials. Linear vibrations superposed on static large deformation, which is most often the real using state of 
elastomeric materials, are studied. Relative experimental and numerical results presented show good predic-
tions. 
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1. Introduction 
 
Elastomeric materials (Rubber, polyurethane, fluorosili-
cone) are widely used in industry over the past decades; 
it shows evidence of progress in this field of material 
researches. Rubberlike materials, compact or porous, 
have very complex mechanical behavior: for a small 
loading, this kind of material presents large strains (many 
percents); stress depends on strain velocity, incompressi-
bility and temperature. Reason why, the thermomechani-
cal behavior of these materials, take into account nonlin-
ear viscoelastic effects: geometrical nonlinearity and 
nonlinear constitutive law. 

The nonlinear behavior of materials can be described 
by a lot of models based on undeformed configuration 
(Lagrangien description) in which, behavior of hypere-
lastic materials needs relationship between Piola-Kirch- 
hoff stress tensor S and Green-Lagrange strain tensor E. 
In deformed configuration (Eulerian description) me-
chanical behavior of materials is described by relation-
ship between the Cauchy stress tensor   [1] and the 
strain tensor of Almansi A. The first standpoint is useful 
in prediction and computational approach of mechanical 
systems whereas the second standpoint is used for ex-
perimental analysis of materials. 

We tried to present mechanical behavior of rubber 
materials in the frame of non-linear viscoelasticity under 
small compressibility and large deformations. The final 
model is a combination of hyperelasticity and viscoelas-
ticity. We pointed out two directions based on tests when 
using this kind of model: relaxation and vibration test 
under various loading. 
 
2. Modeling Nonlinear Elasticity 
 
A lot of models can be used to describe non-linear vis-
coelastic behavior of materials. The common model is a 
mathematical model based on multiple convolutions. The 
stress tensor of Piola-Kirchhoff S is related to strain 
Green-Lagrange tensor E by Volterra-Frechet series 
[2-5]. This is a very complex approach which requires 
special tests on materials to determine kernel of each 
rank. Lai and Findley [2] propose parabolic kernel (in 
time) for rank 1, 2 and 3. We take up a more pragmatic 
way to describe viscoelastic behavior of material [6,7] 
based on linear approach. In Schapery model [7], nonlin-
earities are expressed in term of variable multiplying 
factors (stress, strain, times …). The model presented is 
close to O’Down and Knauss [8]; and Valanis and Lan-
del model [9] using single convolution to describe mem-
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ory effect of material while elasticity is expressed in term 
of hyperelasticity. The Piola-Kirchhoff stress tensor  
S(t) =  is related to Green-Lagrange strain ten-
sor  = , see Beda and Chevalier works 
[10], by the following equations for positive values of 
time : 
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where w is the strain energy density and  
  ijkl  R , t R tE   is the fourth rank relaxation tensor 

(independent functions for isotropic materials). The con-
stitutive relations (1) are consistent with previous model 
if the following compatibility relations between strain 
energy density and relaxation functions are satisfied [10]. 

     
ij

, 0ijkl kl
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R t


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The nonlinear viscoelasticity described by relation (1) 
is a general formulation and can be widely applied. The 
model can be update by two classical viscoelastic tests: 
transient test and vibration test under large deformations. 
 
3. Transient Relaxation Test 
 
To take into account the compressibility of isotropic 
rubberlike materials the strain energy density is based on 
B.K.Z (Bernstein, Kearsley, Zapas) model: 

    *
1 2 1 2 n 3 3, , L +DW W Q G           (3) 

where: 
1 2

3 3
1 1 3 2 2 3 3 3=  , =  , =I I I I I

 
           (4) 

1 2 3,  ,  I I I  are the three invariants of the right Cauchy 
strain tensor , where F is the deforma-
tion gradient operator, Ln a parameter. 

  ijC  tC F F

 

    
 

1

2 2
2

3

tr

1
tr tr

2
det

ij ijI C

I

I

 

   



C

C C

C

 

*
1 2, DW     allows us to bring back to incompressi-

ble material [11],  is the penalty function  3 G 

   
3

d
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d

G
G 0   

 
 and  1 2 , Q    is a coupling 

factor between compressive and incompressible materi-
als. When analyzing polyurethane materials, the follow-
ing modeling (Rivlin hyperelasticity law) is held: 

    *
1 2 ij 1 2
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W
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      

with M  3 and Aij material characteristics related to the 
distortional response. 

The penalty function depends on bulk modulus K of 
material; it means that the relative variation of pressure is 
proportional to relative volume variation. 
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         (6) 

The coupling function Q is given in terms of series: 
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where coefficients an are determined by tensile test and 
mathematical regression [12,13], N  2. 

Table 1 relates Rivlin constants for polyurethane 
given by using uniaxial tensile tests [14]. 

For compressible material (polyurethane 60 - 65 shore 
A) the coupling function is given by curves, Figure 1, 
with bulk modulus K  23 MPa. 

 
Table 1. First part of energy deformation density of poly-
urethane. Result of Uniaxial tensile test under elongation  
(1    1.2). 

*

DW  (relation 5) 

Material (in MPa) 

A10 A01 A11 A20 A02

Polyurethane 60 - 65 shore A
(compressive: = 0.3) 

0.216 0.226 –0.227 0 0 

Polyurethane 95 shore A 
(incompressive) 

13 –6.74 14 69.7 –130
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Figure 1. Coupling function Q versus invariant of right 
Cauchy Green tensor. 
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For incompressible materials (polyurethane 95 shore 
A) function Q and G can be neglected in relation (3). 

Concerning the memory effect of material, we carried 
out tensile relaxation tests and retained for relaxation 
function usual Prony’s series model in which parameters 
depend on Green-Lagrange tensor . In the case of 
tensile test, the relaxation tensor R(, t) is given by the 
following expression: 

 tE  

       
3
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,  1 exp
 i

i i

t
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  
        

   


 

  (8) 

where  is the stretch. 
Tensile relaxation tests are carried out under four dif-

ferent stretches ( = 1.05,  = 1.10,  = 1.15,  = 1.20). 
One remark that for the polyurethane 95 shore A, an 

incompressive material, the second order model de-
scribes quite well the material behavior prediction. 

Figure 2 relates the evolution of magnitude factors 
 and time constants  1 2 3 1 2 3,  ,  r r r , ,     versus 

stretch . It shows that the stretch  weakens stiffness of 
material ( i  decreases with increasing ) and reinforces 
the elasticity ( increases with increasing ). 

r

Let us examine the consistency of the model and the 
compatibility, relations (2). 

Table 2 shows that assessment of the compatibility, 
relation (2) is satisfactory (discrepancy  5%). Finally 
we try a comparison between the actual Cauchy stress 
tensor  and the Cauchy stress tensor predicted by the 
model at two strain velocities. 

Figure 3 shows that the model gives a better predic-
tion at low strain velocity which is close to static behav-
ior. 
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Figure 2. Variation of magnitude factor (ri) and time con-
stant (i), (i = 1, 2, 3 relation 8), versus elongation  for 
polyurethane 95 shore A. 

Table 2. Comparison between static and relaxation behav-
ior of polyurethane 95 shore A. Validity of compatibility. 

0  1.05 1.10 1.15 1.20 

 0w E E  [Mpa] 

(quasi static tension) 
1.91 2.85 3.58 4.07 

 0R E ,  [Mpa] 0E

(relaxation) 
1.80 2.94 3.62 3.70 

Validity 
(in %) 

6 3 1 9 

 

 
(a)                           (b) 

Figure 3. Comparison between model and test at various 
strain velocities. 
 
4. Vibrations Tests 
 
In industrial context, the great majority of rubber materi-
als are working under static load (large strain ) on 
where small vibrations ε(t) are superposed. 

0E

See for example rubber connection in vibrating struc-
tures (rotating engine, car engine, etc. …). 

The total strain is then given by the following rela-
tions: 

  0
ij ij ijt  E E  t              (9) 

in which  ij 1t . 
Constitutive relations (1) are expanded till first order: 
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and the Piola-Kirchhoff stress tensor is a sum of two 
stress tensors S0(t) and S1(t) given by relations (10) and 
(11): 

     0 0
0 0ijkl

ij ijkl pq kl
pq
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S t R E E

E
 
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S0(t) is static stress, constant for large value of time 
while S1(t) relates linear viscoelastic behavior around 
large strain . 0

Experimental setups involving longitudinal vibration 
of beams [15-17] are presented in Figure 4. 

E

Figure 5 shows experimental curves of Young modulus 
of fluorosilicone rubber material. Analytic formulas for 
constitutive equations of viscoelastic materials are pro-
vided to predict behavior of material under large range of 
frequencies and different stretches. To describe the be-
havior of realistic viscoelastic material, a fractional de-
rivative model [18-20] is used. The complex Young mo- 
dulus can be written in the following form: 

 

 

Figure 4. Experimental setups and data recording system 
used to evaluate complex Young modulus of rubber mate-
rial. 

 

 

Figure 5. Amplitude of complex Young modulus of a fluoro-
silicone rubber material. 
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            (12) 

where E0, f0, f1 and α are material parameters depending 
of the stretch . Numerical values of parameters are 
drawn out of tensile vibration test, Figure 6, and are ex-
hibited in Table 3. 

Results presented by forward-looking updating tech-
nique (tests and fractional derivative model) are in keep-
ing with viscoelastic properties of materials [21]: the 
Young modulus gain increases with increasing loading 
while the damping factor decreases (the frequency of 
maximum damping increases with increasing loading). 
 
5. Concluding Remarks 
 
The whole interest of this nonlinear viscoelastic model is 
in engineering sciences: model can predict the effect of 
static loading of viscoelastic behavior of materials. Ex-
perimental complex Young modulus and complex Cou-
lomb modulus can be obtained over a large frequencies 
range, to include the static and high frequencies moduli 
under various loading. Furthermore, the effect of loading 
is quantized in relaxation behavior of material. 

 

 

Figure 6. Young modulus of fluorosilicone rubber material 
versus frequency at various modeling. Curves are drawn 
from relation (12) and updated (Table 3). 

 
Table 3. Numerical values of fractional derivative model of 
fluorosilicone rubber material under static load. 

 Elongation E0 (MPa) α f0 (Hz) f1 (Hz) 

1 5.8 0.96 17.5 120 

0.8 8 0.75 5.6 127 
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Some problems are open-ended. Is it allowed to use 
only lagrangian configuration? And vibrations tests? Fi-
nally is the model thermodynamically correct (by con-
sidering negative energetic constants)? These are among 
others perspectives to be looking at for sharpen the re-
sults awaited. 
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