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Abstract 
 
Plate-type structural members are commonly used in engineering applications like aircraft, ships nuclear re-
actors etc. These structural members often have cracks arising from manufacture or from material defects or 
stress concentrations. Designing a structure against fracture in service involves consideration of strength of 
the structure as a function of crack size, dimension and the applied load based on principles of fracture me-
chanics. In most of the engineering structures the plate thickness is generally small and in these cases though 
the classical plate theory has provided solutions, the neglect of transverse shear deformation leads to the 
limitation that only two conditions can be satisfied on any boundary whereas we have three physical bound-
ary conditions on an edge of a plate. In this paper this incompatibility is eliminated by using Reissner plate 
theory where the transverse shear deformation is included and three physically natural boundary conditions 
of vanishing bending moment, twisting moment and transverse shear stress are satisfied at a free boundary. 
The problem of estimating the bending stress distribution in the neighbourhood of a crack located on a single 
line in an elastic plate of varying thickness subjected to out-of-plane moment applied along the edges of the 
plate is examined. Using Reissner’s plate theory and integral transform technique, the general formulae for 
the bending moment and twisting moment in an elastic plate containing cracks located on a single line are 
derived. The thickness depended solution is obtained in a closed form for the case in which there is a single 
crack in an infinite plate and the results are compared with those obtained from the literature. 
 
Keywords: Reissner Plate Theory, Integral Transform, Stress Intensity Factor, Singular Integral Equation. 

1. Introduction 
 
In the classical theory of bending of thin plates, it is pos-
sible to satisfy stress-free conditions at an edge only in 
an approximate way, since only two boundary conditions 
may be enforced in connection with the bi-harmonic dif-
ferential equation. It is the purpose of this paper to ex-
amine the crack problem by using the theory of bending 
of elastic plates developed by Reissner[1] in which the 
three physically natural boundary conditions of vanish-
ing bending moment, twisting moment and transverse 
shear stress must be satisfied at a free boundary. 

The present problem is concerned with the problem of 
an infinite plate under uniform uniaxial bending far from 
the crack (Figure 1). In the present work the complete 
solution is obtained for bending stresses in the vicinity of 
a crack tip in a plate taking transverse shear deformation 
into account through the use of Reissner’s plate theory. 

Using Reissner’s theory and integral transform tech-  
niques, the general formulae for the bending mo-
ment,twisting moment and bending stress distribution in 
an elastic plate containing cracks located on a single line 
are derived. 

The procedure employed here is to formulate the 
problem in terms of Reissner’s equations. The stress in-
tensity factor is obtained for the case in which there is a 
single crack in an infinite plate and the results are com-
pared with those given in the literature. 

The mechanical behavior near the crack tip is modeled 
using Reissner’s plate theory in the case of an elastic 
plate in [2,3].Effect of plate thickness on the bending 
stress distribution is included by Hartranft and Sih [2]. 
The general solution for bending stress in the vicinity of 
a crack tip in a plate taking shear deformation into ac-
count through the use of a sixth order plate bending the-
ory of Reissner’s theory is developed by Viswanath [3].  
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Figure 1. Plate containing a single crack and subjected to 
symmetric bending load. 
 
The solution of the thin plate-bending problem was pio-
neered by Williams [4], who made use of the eigen func-
tion expansion technique and determined the stress dis-
tribution in the neighborhood of a crack. Sih et al. [5] 
applied a complex variable method for evaluating the 
strength of stress singularities at crack tips in plate ex-
tension and bending problems. The general solution for 
finite number of cracks using anisotropic elasticity is 
presented by Krenk[6]. Alwar and Ramachandran [7] 
showed that the stress intensity factor is nearly linear 
through the thickness for thin plates, in the absence of 
crack closure. Using finite element method, Mark et al. 
[8], Alberto Zucchini et al. [9] computed stress intensity 
factors for thin cracked plates. Using complex variable 
method Zehnder et al. [10] calculated stress intensity 
factor for a finite crack in an infinite isotropic plate. The 
present method uses an integral transform technique and 
does not assume any symmetry about the co-ordinate 
axes. Also the constants appearing in the solution of the 
governing differential equations are obtained from the 
displacement boundary conditions by defining the de-
rivative of the displacement discontinuities on the crack 
surfaces apart from the moment boundary conditions and 
continuity conditions. In the present study, the general 
formulae for the stress distribution in an infinite elastic 
plate containing cracks are derived and the stress inten-
sity factor is determined in a closed form in the case of a 
single crack when the plate is subjected to out-of-plane 
moments and the results are compared with those from 
the literature. 
 
2. Formulation of the Problem 
 
Let us consider the cases of bending or twisting actions 
of an infinite plate by moments that are uniformly dis-

tributed along the edges of the plate containing collinear 
cracks. We take xy-plane to coincide with the middle 
plane of the plate before deformation. The z-axis is as-
sumed to be perpendicular to the middle plane. We de-
note the bending moment per unit length about x-axis by 
Myy and about y-axis by Mxx and the twisting moment per 
unit length by Mxy. Let Qxand Qy be the shear forces 
components. The thickness of the plate is h and we con-
sider it to be small in comparison with other dimensions. 
Let us assume that during bending, the plate undergoes 
the displacement w perpendicular to xy-plane. In the 
present analytical method, we consider the problem in 
which an infinite elastic plate, contains cracks located on 
a single line is acted upon by applied moments. Let the 
co-ordinate system be so chosen that the x-axis coincides 
with the line on which the cracks are located. Let L de-
note the union of intervals occupied by the cracks on the 
x-axis and M is the interval not occupied by the cracks. 
Suppose that a thin plate containing a crack is subjected 
to uniform bending or twisting moments at infinity. 
Since the crack surface is traction-free the boundary 
conditions along the crack surface permitting all of the 
free edge conditions for the present problem is given by 
the following equations: 

The free boundary conditions on the crack surface are 
given by, 

 ,0 0,xyM x x  L              (1) 

 ,0 0,yyM x x  L              (2) 

 ,0 0,yQ x x L               (3) 

The solution to this problem may be obtained by su-
perposing the simple solution of an uncracked plate un-
der uniform bending moment or twisting moment to that 
of a cracked plate with bending or twisting moment ap-
plied to the crack surfaces. That is, the solution may be 
obtained by using standard superposition technique and 
thus for the purpose of evaluating the crack tip singular 
stresses it is sufficient to consider the problem in which 
self-equilibrating crack surface loads are the only exter-
nal loads. Thus, it suffices to solve the problem of speci-
fying uniform bending and twisting moment on the crack 
segment of the plate. Let the desired system be com-
posed of two parts, one the uniform moment field and the 
other a perturbation field due to the crack which dies out 
at infinity. While the boundary conditions along the free 
edges of the crack require traction free conditions, it is 
possible to formulate the problem as one of finding solu-
tions for the perturbation solutions satisfying the field 
equations and the boundary conditions 

   *

,0 ,
2xy

G x
M x x L           (4) 
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   *

,0 ,
2yy

H x
M x  x L          (5) 

 ,0 0yQ x   

The equilibrium equations are given by, 

0xy y
y

M M
Q

x y

 
  

 
           (6) 

0yx x
x

M M
Q

y x

 
  

 
            (7) 

0yx
QQ

x y


 

 
              (8) 

Also, the stress components are the linear combination 
of the variable z. 

3 3

12 12 12
σ ;σ ;σxy yy

3
xx

xy yy xx

M z M z M z

h h
  

h
    (9) 

The strain compatibility equation is given by, 
2 22

2 2

yy xyxx

x yy x

   
 

  
            (10) 

If we define the moment resultants in terms of the bi-
harmonic function ),( yx  as given by 

2 2 2

2 2
; ;x y xyM M M

x yy x

    
  

  
      (11) 

then the governing Equations (6)-(8) are satisfied. From 
the compatibility conditions (10), the present problem 
reduces to that of solving the bi-harmonic equation in 

( , )x y  
4 0                  (12) 

where,       
4 4

4
4 2 2

2
4

4x x y y

     
   

   
       (13) 

Let  be the Fourier transform   of  1 ( , )G  y  ,x y  for 
. Then 0y 

       1 1, , e d ,i xG y x y x y 




  0



      (14) 

Taking Fourier transformation of the bi-harmonic 
equation w. r. t the variable x, we get the ordinary differ-
ential equation in  as given by  ,G y

 
22

2
2

d
,

d
G y

y
 

 
 

 
0            (15) 

whose solutions are given by 

       1
1 1, e yG y P yQ y       0    (16) 

       2
2 2, e yG y P yQ y     

where is the Fourier transformation of  2G  ,x y  for 
0y  , and       1 2 1 2, , ,P P Q Q      are the unknown 

functions to be determined. From the moment boundary 
conditions we have the following equations, 

       1 2,0 ,0 0,yy yyM x M x x            (18) 

       1 2,0 ,0 0,xy xyM x M x x            (19) 

The bending and twisting moments in terms of 
 for  are given by   1 ,G  y 0y 

   
   12

1

2

,1
, e

2π
i x

x

G y
M x y y

y










d , 0 

   (20) 

       1 121
, , e

2π
i x

yM x y G y y  






d , 0     (21) 

   
   1

1 ,
, e

2π
i x

xy

G yi
M x y y

y


 







d , 0  

  (22) 

Similarly we get the bending and twisting moments 

for 0y   in terms of     2 ,G y
The bending and twisting moments in terms of 

 for   2 ,G  y 0y   are given by 

   
   22

2

2

,1
, e

2π
i x

x

G y
M x y y

y


d , 0






    (23) 

       2 221
, , e

2π
i x

yM x y G y y  






d , 0     (24) 

   
   2

2 ,
, e

2π
i x

xy

G yi
M x y y

y


 







d , 0  

  (25) 

The displacement components are given by the follow-
ing expressions: 

x

w
u z

x


 


                (26) 

y

w
u z

y


 


              (27) 

The displacement boundary conditions are given by 

  0,A x x M               (28) 

  0,B x x M                (29) 

where the displacement discontinuities are defined by the 
functions A(x), B(x) 

         1 2,0 ,0 ,x xA x u x u x x
x

   L   
    (30) 

0     (17)          1 1,0 ,0 ,y yB x u x u x x L
x

     
    (31) 
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and the superscripts (1) and (2) denote the components in 
the upper half plane  and lower half plane 0y  0y   
respectively. 

From the continuity conditions and the moment 
boundary conditions we get the four simultaneous equa-

tions for solving       1 2 1 2, , ,P P Q Q    

2

 

1P P                 (32a) 

1 1 2Q P Q P2              (32b) 

        2 2
1 1 22

1 2P P Q Q A D 1                                (32c) 

         2
1 1 22

1 3i P P i Q Q B D 1                               (32d) 
 
Solving the above equations we obtain the un-

knowns  as given by, 1 2 1 2, , ,P P Q Q
  2,y ,M y G    y          (34a) 

 
2

2
,xx

G
M y

y
 




              (34b) 
   2

1 2 2
sgn 1

4

i
P P BD  




         (33a) 

 ,xy
G

M y i
y

  


             (34c) 

   2
1

1
sgn 1

4
Q A iB D  


           (33b) 

Substituting the values of    1 1,P Q  into (21), we 
get the bending moment resultants in the upper half plane 

, in the transformed co-ordinates as given by the 
following equation, 

0y    2
2

1
sgn 1

4
Q A iB D  


          (33c) 

   
 

   
2

1
1

, sgn 1 e
8π

i x y
y

D
M x y Ay Bi y y 


   


 



 
   d , 0              (35a) 

Performing the inner integral in terms of A(s) and B(s) 
we get the bending moment resultants in the upper 

half-plane , in terms of the unknown displacement 
functions A(s) and B(s) as given by 

0y 

       
 

 
  

 

 

2 22 22
1

22 2 2 2

31
, d

4πy

y x s x s yD
M x y A s y s B s x s s y

x s y x s y

  

 

                                     

  d 0
 


    (35b) 

Substituting the values of    2 2,P Q  into (24), we 
get the bending moment resultants in the lower half plane 

0y  , in the transformed coordinates as given by the 
following equation 

   
 

   
2

2
1

, sgn 1 e
8π

i x y
y

D
M x y Ay Bi y y 


   


 



 
   d , 0               (35c) 

Performing the inner integral in terms of A(s) and B(s) 
we get the bending moment resultants in the lower 

half-plane 0y  , in terms of the unknown displacement 
functions A(s) and B(s) as given by 

   
 

 
 

 
  

 

 

2 22 22

2

22 2 2 2

31
, d

4πy

y x s x s yD
M x y A s y s B s x s s y

x s y x s y

  

 

                                       

  d 0,     (35d) 

Combining the Equations (35b) and (35d) we get the expression for bending moment resultant, 

 
 

 
 

 
  

 

 

2 22 22

22 2 2 2

31
, d

4πy

y x s x s yD
M x y A s y s B s x s s y

x s y x s y

  

 

                                       

  d 0,     (36) 
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Similarly the expression for the twisting moment   ,xyM x y  as given by 

 
 

  
 

 
 

 

 

2 22 22

2 22 22 2

31
, d

4πxy

x s y x s yD
M x y A s x s s B s y s y

x s y x s y

  

 

                      
               

  d 0,


 



    (37) 

 
where ( )A s and  are the unknown functions to be 
determined from the given boundary conditions. The 
limiting values as y 0  and y 0  of the bending and 
twisting moments along the crack line are given by, 

( )B s

 
   21

,0 d
4πy

D B s
M x s

x s

 



 


       (38a) 

 
   21

,0 d
4πxy

D A s
M x s

x s

 



 


       (38b) 

By using the conditions (4)-(5) in the above expres-
sions, the interval of integration reduces to L. From the 
boundary conditions (4) and the above relations we get 
the singular integral equations 

   1
d

L

L

A s
,s G x x L

x s 




              (39) 

   1
d

L

L

B s
,s H x x L

x s 




               (40) 

where 
 21

2π

D 


 
 , for the determination of un-

known functions A and B on the interval L. Once the 
functions A(s) and B(s),  are known, the bending 
and twisting moments for the crack problem are deter-
mined. 

Lx

 
3. Single Crack Problem 
 
In order to illustrate the present procedure, we give the 
details in the case of a single crack opened by the action 
of symmetric bending load applied at the edges of the 
plate. In this section, we consider the problem of deter-
mining the distribution of bending stress in the vicinity 
of a Griffith crack of length 2c, occupying the interval (-
c, c) on the x-axis in an infinite isotropic elastic plate. 
The bending moment resultants and the transverse shear 
force components are given by, 

2 2 2
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 
2 2

2 2

1

1y

w w
Q D

y xx y




    
        

    (44) 

Taking Fourier transform of the above equations w. r. t. 
x, we get the displacement component in terms of the 
bending moment components in the transformed 
co-ordinate system as given by, 
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The transverse shear force yQ  are given by, 
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where   is calculated from the equation, 
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Taking Fourier Transform of the above Equation (47) 
we get 

 
2

2 2
2

0
d

y dy

  
 
      

        (48) 

2 2 2 22 2 2 2
1 2e ey ycc                (49) 

where 
10

h
   

Since and  as  we have 0xQ  0yQ  y 

2 0c   

2 22 2
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The constant 0is determined from 
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Substituting  ,xM y ,  ,y M y  and  , y   in 

(46) and using the crack surface boundary condition, 

 ,0 0,yQ x x c   
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the constant is given by, 
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             (52) 

From (50), (52) the function  ,x y  is given by, 

     2 2
1, e

2π

c
i x sy

c

C
d dx y B s e   


  

 

s
 

  
 

    (53) 

     
 

  2 2

2
2 2

1

1
, d

8π

c

x s yc

D y
x y B s K x s

  
 


y s

 
   

 
                   (54) 

     
 2 2222 2 1

2

2 2
0

0

, 1
d

5 8π 5

c

cy
y

K x s yx y Dh h
B s s

x y x x s y

 
 




          


       
      

              (55) 

       
222 2

2
2

0

, 1
d

5 8π 5

c

cy

x y D B sh h
s K x

x y x s

 
 



   
 

    
                        (56) 

     222 2
2

2 2

0

, 1 1 2
d

0 05 8π 5 2

c

cy

x y D B sLt Lth h
s

h hx y x s x

 




                    
               (57) 

     222

0

, 1
d

0 5 8π

c

cy

x y D B sLt h
s

h x y x

 



  
 

     
 s



                            (58) 

The bending moment  ,0yM x  along the crack line 0y  , as  is given by 0h 

 
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Making use of the boundary condition (4) we get the 
singular integral equation for the determination of B(s) 
as given by, 

   
 

 
 

 21 3
d

8π 1 2

c

c

D B s H x
s x c

x s

 






 
 

     (60) 

Solving for B(s), we get the following expression for 
B(s), 

   
   
   

2 2 2

2 2

1 1 4

3 1 π

d
c

c

B s
D a s

H x c t
x

x s


 






 

  





          (61) 

Substituting the value of B(s) in (38a), the bending 
moment for a single crack problem in the limiting case as 

is given by, 0h 
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The bending moment resultant along the crack line 
from the above equation is given by, 

   
 

 
  0

2 2

sgn 1
,0

3y

x x
M x M

x c








         (63) 

The bending stress  ,0y x  along the crack line  

0y  , as  is given by 0h 
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The bending stress intensity factor KI due to bending 
moment at z = h/2 is given by
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For small 
h

a
, the bending moment on the crack line 

y = 0 is calculated as follows: 
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 (66) Hence the bending moment along the crack line y=0 is 

given by, 
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Substituting the value of B(s) from (61) into the above 

equation and performing the inner integral we get the  
bending moment along the crack line y = 0 as given by, 
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The bending stress  ,0y x  along the crack line  0y  , is given by 
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Stress intensity factor KI at z = h/2 ,due to bending mo- ment is given by 

      
 

 
    

2

0
2 2

116 1
lim [2 ] ,0 2 ln

3 4 1 3I yy
x c

M c
K x c x c

h c


 

    2


          
     

         (70) 

 
The graph of non-dimensional stress intensity factor vs. 

thickness for 0.3  is plotted in Figure 2 and the stress 
intensity factor is in good agreement with the results in 
[2] and [3]. The stress variation near the crack tip, calcu-
lated from Equation (69) is plotted in Figure 3. For ex-
ample, a value of c/h = 5.0 is assumed for calculation. 
 

 

Figure 2. Variation of non-dimensional stress intensity with 
thickness of the plate. 

4. Results and Discussion 
 
The variation of non-dimensional stress intensity stress 
intensity factor with thickness of the plate is shown in 
Figure 2. The small differences between the present re-
sults and in the references [2] and [3] may be due to two  
 

 

Figure 3. Stress   ,0y x  distribution near the crack tip 

for x c , c/h = 5.0. 
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different approaches being used in [2] and [3]. Hartranft 
and Sih [2] used more rigorous method using eigenfunc-
tion expansions for plate bending problem introducing 
the effect of plate thickness on crack-tip stress distribu-
tion. The approximate method based partly on finite 
element analysis and partly on a continuum analysis us-
ing Irwin’s [11] solution for an infinite plate is used in 
[3]. Figure 3 shows the exponential variation of normal 
stress component near the crack tip for x c , z = h/2. It 
decreases away from the crack tip as expected. Future 
work in this direction is planned to solve composite plate 
problems with delamination. 
 
5. Conclusions 
 
A simple method for determining the analytical expres-
sion for the bending stress distribution, in the vicinity of 
a crack in an infinite elastic plate using Reissner plate 
theory is explained. The general formulae for the bend-
ing moment and twisting moment in an elastic plate con-
taining cracks located on a single line are derived. The 
solution is obtained in a closed form for the case in 
which there is a single crack in an infinite plate and the 
stress intensity factor is calculated as a function of plate 
thickness, when the plate is subjected to symmetric 
bending loads. The stress intensity factor is compared 
with that obtained in the literature. 
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