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Abstract 
 
Damage reliability analysis is an emerging field of structural engineering which is very significant in struc-
tures of great importance like arch dams, large concrete gravity dams etc. The research objective is to design 
and construct an improved method for damage reliability analysis for concrete gravity dam. Firstly, pseudo 
excitation method and Mazar damage model were used to analyze how to calculate damage expected value 
excited by random seismic loading and deterministic static load on the condition that initial elastic modulus 
was deterministic. Moreover, response surface method was improved from the aspects of the regression of 
sample points, the selection of experimental points, the determined method of weight matrix and the calcula-
tion method of checking point respectively. Then, the above method was used to analyze guarantee rate of 
damage expected value excited by random seismic loading and deterministic static load on the condition that 
initial elastic modulus was random. Finally, a test example was given to verify and analyze the convergence 
and stability of this method. Compared with other conventional algorithm, this method has some strong 
points: this algorithm has good convergence and stability and greatly enhances calculation efficiency and the 
storage efficiency. From what has been analyzed, we find that damage expected value is insensitive to the 
randomness of initial elastic modulus so we can neglect the randomness of initial elastic modulus in some 
extent when we calculate damage expected value. 
 
Keywords: Gravity Dam, Damage, Probability Analysis, Pseudo Excitation Method, Mazar Damage Model, 

Response Surface Method 

1. Introduction 
 
The theory and methods of reliability analysis have been 
developed significantly during the last twenty years and 
have been documented in an increasing number of pub-
lications. These improvements in structure reliability 
theory and the attainment of more accurate quantification 
of the uncertainties associated with structural loads and 
resistances have stimulated the interest in the structure 
reliability analysis. Although from a theoretical point of 
view the field has reached a stage where the developed 
methodologies are becoming widespread, the quantita-
tive assessment and classification of the reliability is still 
a complex and difficult task. In order to assess the relia-
bility, a rigorous series of tests has to be carried out. 

As early as 1986, Ross B. Corotis [1] developed the 
analysis of effects of parameter uncertainty on the re-
sponse of vibratory systems to random excitation. Bena- 
roya H, Rehak M [2] and Spanos PD, Ghanem RG [3] 
extended the stochastic finite element method (SFEM) to 
incorporate the uncertainties in structural parameters. 
Leger [4] presented guidelines for dam-safety assessment 
based on the gravity method. Compared with the rigid- 
body limiting equilibrium method, the FEM used in the 
calculation of deep anti-sliding measures did not require 
the assumption of any slide plane. Wang Fei-Yue and Xu 
Zhi-Sheng [5] studied the stability of tailing dams. Their 
studies showed that both the fuzziness and the random-
ness of dam failure need to be considered. A comprehen-
sive review of studies on fuzzy reliability was presented 
by Ross Reinhard Viert [6], who combined fuzzy set 
theory and reliability research to evaluate the risk in civil 
engineers. Motivated by the development of various re-
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liability theories, Enrique Castillo and Carmen Castillo 
[7] gave the main results that allowed a sensitivity analy-
sis to be performed in a general optimization problem, 
including sensitivities of the objective function, the 
primal and the dual variables with respect to data. Using 
a numerical procedure, Junho Song and Won-Hee Kang 
[8] proposed matrix-based system reliability (MSR) me-
thod to compute the probabilities of general system 
events efficiently by simple matrix operations. Kwai- 
Sang Chin and Ying-Ming Wang [9] used failure mode 
and effects analysis (FMEA) to evaluate a system for 
possible ways in which failures could occur. 

The basic purpose of structural reliability analysis is to 
obtain the probabilistic responses of structural systems 
with uncertain design parameters, such as loadings, ma-
terial parameters (strength, elastic modulus, Poisson's 
ratio, etc.), and shape dimensions. Among the methods 
available for such problems, the response surface me- 
thod is a powerful tool [10]. The response surface me-
thod, was originally proposed by Box and Wilson [11] as 
a statistical tool, to find the operating conditions of a 
chemical process at which some response was optimized. 
Subsequent generalizations developed this method. Khuri, 
Cornell [12] and Myers, Montgomery [13] all introduced 
the response surface method in their books. Wong [14,15] 
and Faravelli [16,17] and Jiang [18] improved the me- 
thod to fit the indeterminate coefficients of response sur-
face. Bucher [19] and Rajashekhar [20] researched the 
convergence and stability of the response surface method. 
Guan [21] evaluated the effect of response surface para-
meter variation on structural reliability. Gupta [22] used 
the response surface method to study the extremes of 
Von Mises stress in nonlinear structures under Gaussian 
excitations. 

However, until now, most of reliability methods such 
as the first order reliability method (FORM) [23], the se- 
cond-order reliability method (SORM) [24-27], weighted 
regression method (WRM) and space reduced weighted 
regression method (SRWRM) [28] can not be used to 
analyze large structure, because the traditional reliability 
methods have two aspects of deficiencies: On the one 
hand, limited state function is usually implicit when we 
use finite element method (FEM) to analyze structure. It 
leads to that the implicit limited state function’ partial 
derivatives for basic random variables are difficult to 
obtain. On the other hand, in order to overcome the 
above defects, some reliability methods use polynomial 
response surface function to fit implicit limited state 
function, but the number of basic random variables is 
very big when we analyze large structure. And these re-
liability methods need more experimental points to con-
firm the indeterminate coefficients of these basic random 

variables. It leads to that, during the process, the calcula-
tion efficiency and the storage efficiency of these me-
thods are very low. Even, in some large structure, it is 
impossible to obtain such many experimental points. 
There- fore, most of reliability methods only can be used 
to analyze small structures but inability to large structure. 

Furthermore, when traditional methods analyze the 
damage of gravity dam, the seismic load is considered to 
deterministic acceleration time course. But, in fact, the 
acceleration time courses of seismic load are different 
although they have the same power spectrum density. So 
the traditional method ignores the randomness of seismic 
load. In addition, most of traditional probability analysis 
methods only consider the randomness of load but not 
consider the randomness of parameters of model at the 
same time. So these methods for gravity dam probability 
analysis are not complete. 

In this paper, we analyze not only the randomness of 
load but also the randomness of parameters of gravity 
dam model for the influence of tension damage factor of 
elements in gravity dam model. The research route of 
this paper is as follow: to begin with, based on pseudo 
excitation method and Mazar damage model, we calcu-
late damage expected value excited by random seismic 
loading and deterministic static load on the condition that 
initial elastic modulus is deterministic. In addition, we 
establish the improved response surface method based on 
weighted regression which can be used to analyze large 
structure. And then we use this method to analyze guar-
antee rate of damage expected value excited by random 
seismic loading and deterministic static load on the con-
dition that initial elastic modulus is random. Finally, we 
give a test example to verify and analyze the conver-
gence and stability of this paper’s method. 
 
2. Probabilistic Approach to Evaluate  

Gravity Dam Damage Excited by Random  
Seismic Load and Deterministic Static  
Load under the Condition of  
Deterministic Initial Elastic Modulus  

 
The seismic load is considered to deterministic accelera-
tion time course when we analyze the damage of gravity 
dam by the conventional method. However, in fact, the 
acceleration time courses of seismic load are different 
although they have the same power spectrum density. So 
the conventional method ignores the randomness of 
seismic load. In the method of this paper, we analyze the 
randomness of seismic load directly from power spec-
trum density.  

Firstly, we analyze the element strains of dam model 
excited by deterministic static load. These element strains 
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are considered to the expected value  E   of element 
strains.  

Then, we begin to analyze square variance  D   of 
element strains. 

According to the vibration equation of gravity dam 
multi-degree-of-freedom system, we have 

 t   MV CV KV F            (1) 

where V , V and V  are acceleration, velocity and dis- 
placement of nodes in dam model, respectively; K , C  
and M  are stiffness matrix, damping matrix and mass 
matrix of dam model, respectively. 

By mode-superposition method, set seismic load is 
non-stationary process  tF  as 

     st J t tF F                (2) 

where  tsF  and  J t  are stationary process and 
time envelope curve, respectively. 

According to pseudo excitation method, construct vir-
tual force as 

    i( )e t
fF t J t S             (3) 

where  F t  and  fS   are virtual force and power 
spectrum density of stationary process  tsF , respec-
tively. 

Substituting (3) into (1) and we have 

      i

1

( )e
n

t
z j j fzj

j

V H J t S    


       (4) 

where zV  and  zj
  are fictive motion response and j 

vibration mode value of node z, respectively; 
 jH   and j  are frequency response function and 

mode shape participation coefficient, respectively. 
And we can obtain  jH   from (1). 
Based on random vibration theory, we have 

 
       

 2
1 1
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n n i jzj zi
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   

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 
 
 
 

  



  

     (5) 

where  
zVS   is power spectrum density of displace-

ment response of node z 
Through (5), we have 

   
0

d
zz VD V S  


             (6) 

Give the strain of element q as 

 q ql l      B V              (7) 

where ql  B  and  lV  are strain matrix of element q 
and displacement vector of nodes in element q. 

So we can write the square variance  D   of ele-
ment strains as 

   2
q ql lD D          B V           (8) 

Through assuming element strains obey normal dis-
tribution, we can obtain probability distribution of ele-
ment strains.  

Regard Mazar damage model which is only related to 
strain as damage constitutive equation of concrete and 
write the tension damage factor of element as 

 
  

0

1
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T f

f T T
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B
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 
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≤

  (9) 

where f  is damage threshold and 0.7 ≤AT ≤ 1, 104 ≤ 
BT ≤ 105, 0.5 × 10−4 ≤ f  ≤ 1.5 × 10−4. 

In which, we only consider element strain at x direc-
tion and give the tension damage expected value through 
probability distribution of element strains and the tension 
damage factor of element as 

        
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(10) 

where  TE   and  ,N    are tension damage expec- 
ted value and normal distribution function, respectively. 

Substituting (10) into (11) and we have 

    T t     MV CV I E KV F       (11) 

where  TE  and I  are tension damage expected 
value matrix and unit matrix, respectively. 

We repeat the above steps until reaching a certain 
convergence criteria. Then we can obtain the iterative 
process of expected value  E   and square variance 
 D   of element strains. And finally we can obtain 

tension damage expected value matrix  TE . 
 
3. Probabilistic Approach to Evaluate  

Gravity Dam Damage Excited by Random  
Seismic Load and Deterministic Static  
Load under the Condition of Random  
Initial Elastic Modulus  

 
We have analyzed the randomness of load. Then we con-
sider the randomness of initial elastic modulus. In this 
part, we improve response surface method based on 
weighted regression and make this method can be used in 
large structure such as gravity dam. It shows that the 
algorithm has good convergence and stability and greatly 
enhances calculation efficiency and the storage efficien-
cy compared with other conventional algorithm. 
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3.1. Implicit Limited State Function  g x   
Setting 

 
We write implicit limited state function  g x  as 

        min T T xxg    Ex
x E E        (12) 

where    T x EE  and  T xE  are tension dam-
age expected value matrix under the condition of deter-
ministic and random initial elastic modulus, respectively.  
And  min 

x
 is the minimum value of matrix elements.  

x  is basic random variables vector (in this paper, the 
basic random variables are random initial elastic modu- 
lus of elements of gravity dam model) 
 
3.2. The Establishment of Improved Response  

Surface Method Based on Weighted  
Regression 

 
Use second-order polynomial response surface function 
 g x  to fit implicit limited state function  g x , we have 

  2
0

1 1

n n

j j j j
j j

g b b x c x
 

   x        (13) 

where jx  and n  are basic random variables and the 
number of basic random variables, respectively; 0b , jb  
and jc  are indeterminate coefficients. 

However, the number of basic random variables is very 
big when we analyze large structure. It is impossible to 
obtain the indeterminate coefficients by the traditional 
response surface method because we can only obtain m 
sample points which can not reach the number 2n + 1 to 
fit second-order polynomial response surface function 
 g x . Thus, we try to use second-order polynomial re-

sponse surface function  g x  to best approximate im-
plicit limited state function  g x  by m sample points. 

Select m (m < 2n + 1) experimental points ix  (i = 1, 
2, ···, m), and calculate implicit limit state function value 
 ig x  which corresponds to the experimental points 

 T

1 2, , ,i i inx x x ix , and then obtain the sample vector  

      T

1 2, , , mg g g  y = x x x .  

Set  T0 1 1, , , , , ,n nb b b c c b =  as the solution vector  

which is to be determined, and use m experimental points 

ix  to compose experimental matrix A  as 

2 2 2
11 12 1 11 12 1

2 2 2
21 22 2 21 22 2

2 2 2
1 2 1 2

1

1

1

n n

n n

m m mn m m mn

x x x x x x

x x x x x x

x x x x x x

 
 
   
 
  

 
 

        
 

A  (14) 

By singular value decomposition of experimental ma-
trix A , we have 

H 
  

 

Σ 0

0 0
A U V               (15) 

where   is m × m diagonal matrix; U  and V are m- 
order and (2n + 1) -order unitary matrix, respectively. 

Give the solution vector b  as 

 -1
H

 
  

  

0

0 0
b V U y


            (16) 

Set weight matrix M  is m × m diagonal matrix 
which gives m experimental points ix  weight value. 

1

2=

m m m

w

w

w


 
 
 
 
 
 


M           (17) 

Rewrite the solution vector b  as 

   
-1

H 
  

  

0

0 0
b V MU y


        (1) 

 
3.3. The Establishment of Weight Matrix M  
 
We want to achieve two goals when using second-order 
polynomial response surface function  g x  to appro- 
ximate implicit limited state function  g x . The first 
goal is that we want the value of implicit limited state 
function  g x  to be zero. The second goal is that we 
want to approximate implicit limited state function 
 g x  around checking point 0x . Thus, we establish 

weight matrix M  as 

 1

1
min

best

m

i
i

g g


 x              (19) 

2
1 21

max
best

m

i
i

g


 x x              (20) 

 
 

1 2
1 2

2
   1best best

best

i
i

i

g g
w

gg
   

 
   

x x

x
 (21) 

 = idiag wM                (22) 

where 1x  is center point. 
 
3.4. The m Experimental Points ix  Selection in  

the Initial Iterative Step 
 
In the initial iterative step, we select m experimental 
points ix  as  
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 0
1 1 2, , ,

T

nu u u x               (23) 

 0
1 1 1 2 2 2, , , , ,

2, ,     1, ,

T

i i i j ij j n in nu r u r u r u r

i m j n

       

 

 

 

x
 

(24) 

where ju  and j  are expected value and mean square 
deviation of basic random variables jx , respectively; 

ijr  is random number in the interval  ,v v  where v  
is deviation factor.  
 
3.5. Deviation Factor Adjusting 
 
Deviation factor has an influence on convergence speed 
in iterative procedure. Thus, in order to improve conver-
gence speed, we adjust deviation factor in each iterative 
step as 

1 01 2

1 1
1 0 2

k k

k k

k k
v v 

 






x x

x x
            (25) 

where k  is the iterative step number. 
 
3.6. Calculation Method of Checking Point 0x  

 
Derivation calculus to second-order polynomial response 
surface function  g x  is complex. Thus, we adopt im-
proved method based on Lagrange multiplier rule as fol-
low. 

We can obtain the design checking point 0x  through 
solving the constrained optimization problem (26) as 

 

 

0

22 2

01 1 02 2 0

1 2

0

min   
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                          





x

x

 

(26) 

where   is reliability index. 
Substitute (13) into the constrained optimization prob-

lem (26) and rewrite constrained optimization problem 
(27) as 

 
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

       
               
    

 



x

x

  (27) 

Based on Lagrange multiplier rule, we can rewrite the 
constrained optimization problem (27) as 

   
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 

01 01

0 0

0 0

0 0

0

0

0

0
n n

x x

x x

f g

f g

g





  


  
 



x x

x x

x

          (28) 

Unfold (28) as 
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   
   
       
  

   
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




x

 (29) 

Solve (29) as 

0,

21
2

2

1, 2, ,

j j
j j

j
j

u
x b

c

j n






  
    

  

  

        (30) 

From (29) and (30), we find the second-order poly-
nomial  0g x  is the single-variable λ function. Thus 
we have 

   0 0g g  x              (31) 

By Binary Search, we can solve (31) as follow: 
First step: Taking two values λ1, λ2 to fit the conditions  

   1 2 0g g   , and making 1 2

2

 



 . 

Second step: When    1 0g g   , making λ2 = λ  

and 1 2

2

 



 . 

Third step: When    2 0g g   , making λ1 = λ  

and 1 2

2

 



 . 

Through above iterative process, we can obtain the 
value of the variable λ. Substituting λ into (30), we can 
obtain the value of the design checking point 0x . 
 
3.7. The Basic Steps of Improved Response  

Surface Method Based on Weighted  
Regression 

 
The basic steps of improved response surface method 
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based on weighted regression are as follow: 
First step: in k iterative step, we obtain m experimental 

points ix  through (23), (24). We calculate implicit limit 
state function value  ig x  which corresponds to the ex- 
perimental points  T

1 2, , ,i i inx x x ix , and then obtain 

the sample vector       T

1 2= , , , mg g g  y x x x . We  

obtain weight matrix M  by (19-22), and then obtain 
solution vector b  by (1). 

Second step: We obtain checking point 0
kx  by im-

proved method based on Lagrange multiplier rule, and 
then we calculate center point 1

1
kx  at next iterative step 

as 

   
   

01
1 1 0 1

0 1

k

k k k k

k k

g

g g
   



x
x x x x

x x
      (32) 

Third step: We obtain deviation factor 1kv   by (25) 
and obtain m experimental points ix  through (23), (24). 
If reliability index 1k k    , we stop iterative 
procedure. If reliability index 1k k    , we return 
the first step. 
 
3.8. Numerical Example 
 
We give a numerical example in order to verify and ana-
lyze the convergence and stability of this method.  

Set implicit limited state function  
     , exp 0.2 6.2 exp 0.47 5.0g x y x y     where basic 

random variables x  and y  obey standard normal dis- 

tribution and 0.7,  0.3   . We use 2 experimental 
points in this paper’s method compared with 3-5 experi-
mental points in other conventional algorithm. We obtain 
the comparison result when using the same initial devia-
tion factor 0v  as Table 1 [19]. We obtain the iterative 
process when initial deviation factor 0 3.00v   as Ta-
ble 2. 

From Table 1 and Table 2, we can obtain the conclu-
sion that this algorithm has good convergence and stabil-
ity and greatly enhances calculation efficiency and the 
storage efficiency compared with other conventional 
algorithm. 
 
4. Numerical Analysis of Gravity Dam  

Model 
 
The gravity dam is 160 m high. The normal pool level 
(NPL) is 155 m deep. The level of back of dam is 10 m 
deep. The elevation of upstream and downstream bro-
ken-line sloping surface relative to foundation plane are 
80 m and 140 m respectively. The concrete strength of 
gravity dam is C20. The finite element model of the 
gravity dam is divided into 2432 elements. The model 
consisted of 8-node iso parametric plane elements for the 
dam and foundation. The density of dam is 2450 kg/m3, 
and Poisson ratio λ = 0.18. The initial elastic modulus of 
dam E = 3.50 Gpa. The density of rock foundation is 
2700 kg/m3, and Poisson ratio is 0.25.The initial elastic 
modulus of rock foundation E = 4.00 Gpa. And parame-  

 
Table 1. Final result of example. 

Method 
Initial deviation factor  

0v  
The iterative step number

k  
Reliability index  

  
Relative error of reliability 

index (%) 

FOSM   2.3493 0 

TLM 

2 4 2.0944 10.85 

3 6 1.8421 21.59 

10 60 0.3939 83.23 

WRM 

2 4 2.3494 0.00 

3 6 2.3508 0.06 

10 8 2.4279 3.35 

SRWRM 

2 4 2.3496 0.01 

3 6 2.3504 0.05 

10 5 2.4270 3.31 

The method of this paper 

2 4 2.3492 0.00 

3 6 2.3502 0.04 

10 8 2.3557 0.27 
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Table 2. Iterative procedure of example (initial deviation factor = 3). 

Method 
Deviation factor  

kv  
The iterative step number 

k  
Reliability index 

  
Relative error of reliability 

index (%) 

The method of this paper 

1.8371E-01 1 2.9446 25.33946 

3.3100E-02 2 2.3664 0.72788 

1.8370E-03 3 2.3504 0.04682 

2.5969E-04 4 2.3503 0.04257 

2.6841E-05 5 2.3503 0.04257 

8.2334E-06 6 2.3502 0.03831 

8.2334E-06 7 2.3499 0.02554 

8.2334E-06 8 2.3493 0.00000 

 
ters 0.9,  0.1   . 

Deterministic static load includes gravity load and hy-
dro static and uplift pressure while random load includes 
seismic load. The power spectrum density of seismic 
load is given as 

    22 1

π π
2ln ln

2π

1, 2,3, ,

T
f k a k

k

k d

d

k

d

S S

p
T

T

k k N

T
N

t

 





 

           
 

   






  (33) 

where  T
a kS   and   are target response spectrum 

and damping ratio, respectively; p (p ≤ 0.15)and dT  are 
exceeding response spectrum probability and duration of 
ground motion, respectively; N  and t  are the num-
ber of trigonometric series and time step, respectively. 

The dam model is shown in Figure 1. The probability 
distributions of all random parameters of each element 
are shown in Table 3. And the expected values of ten-
sion damage factors of each element are shown in Figure 
2. The reliability index, guarantee rate about damage 
expected value and deviation factor under the condition 
of random initial elastic modulus iterative procedure are 
shown in Figure 3, Figure 4 and Figure 5. The values of 
Figure 3, Figure 4 and Figure 5 are shown in Table 4. 

In each iterative step of the method of this paper, we 
use only 10 experimental points to approximate implicit 
limited state function  g x  while the traditional re-
sponse surface method needs 4865 experimental points. 
So the method of this paper saves large storage space and 
can be accepted in analyzing large structure such as 
gravity dam. 

From what has been analyzed above, we have the con-
clusion that the damage locations of gravity dam are jetty  

 

Figure 1. Gravity dam model. 
 

 

Figure 2. Damage contour map of gravity dam model. 
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Figure 3. Reliability index iterative procedure. 
 

 

Figure 4. Guarantee rate iterative procedure about damage 
expected value. 
 

 

Figure 5. Deviation factor iterative procedure. 

 
head and the heel of gravity dam so we should strengthen 
these locations above. From Figure 3, we have the con- 

Table 3. The probability distribution of all random para- 
meters of each element. 

Elastic modulus of rock foundation 

probability distribution 
expected  
value (pa) 

coefficient  
of variation 

normal distribution 4.00E+10 0.1 

Elastic modulus of dam 

probability  
distribution 

expected  
value (pa) 

coefficient  
of variation 

normal distribution 3.50E+10 0.1 

 
clusion that, under the condition of deterministic initial 
elastic modulus, the convergence rates of the expected 
values of tension damage factors of each element are fast. 
They generally turn to be stable at third iterative step. It 
shows the method of calculating expected values of ten-
sion damage factors has good convergence and stability. 
From Figure 4, Figure 5 and Table 4, we have the con-
clusion that, under the condition of random initial elastic 
modulus, the convergence rates are also fast. The devia-
tion factor decreases exponentially which shows that the 
improved response surface method based on weighted 
regression also has good convergence and stability and 
greatly enhances calculation efficiency and the storage 
efficiency. And the method of analyzing large structure 
such as gravity dam is very applicable. The deviation 
factor reaches 0.16495 at the first iterative step. It shows 
that damage expected value is insensitive to the random-
ness of initial elastic modulus so we can neglect the ran-
domness of initial elastic modulus in some extent when 
we calculate damage expected value. And we can obtain 
the guarantee rate about damage expected value is 
75.755%.  
 
5. Conclusions 
 
In this paper, we analyze the probability of gravity dam 
damage. To begin with, based on pseudo excitation me-
thod and Mazar damage model, we calculate damage 
expected value excited by random seismic loading and 
deterministic static load on the condition that initial elas-
tic modulus is deterministic. Furthermore, we establish 
the improved response surface method based on 
weighted regression to analyze guarantee rate of damage 
expected value excited by random seismic loading and 
deterministic static load on the condition that initial elas-
tic modulus is random. At last, we give a test example to 
verify and analyze the convergence and stability of this 
method. And it shows this algorithm has good conver-
gence and stability and greatly enhances calculation effi-
ciency and the storage efficiency. Through analysis of  
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Table 4. The iterative procedure of improved response surface method based on weighted regression. 

Method 
Deviation factor 

kv  
The iterative step number 

k  
Reliability index 

  
Guarantee rate about damage expected value 

 P    

The method of  
this paper 

0.16495 1 0.73619 0.76919 

0.10102 2 0.69619 0.75684 

0.06065 3 0.69786 0.75737 

0.03349 4 0.69835 0.75752 

0.01766 5 0.69832 0.75751 

0.00975 6 0.69845 0.75755 

 
examples, we find that damage expected value is insensi-
tive to the randomness of initial elastic modulus so we 
can neglect the randomness of initial elastic modulus in 
some extent when we calculate damage expected value. 
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