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ABSTRACT 

Voltage stability has become an important issue in planning and operation of many power systems. This work includes 
multi-objective evolutionary algorithm techniques such as Genetic Algorithm (GA) and Non-dominated Sorting Genetic 
Algorithm II (NSGA-II) approach for solving Voltage Stability Constrained-Optimal Power Flow (VSC-OPF). Base 
case generator power output, voltage magnitude of generator buses are taken as the control variables and maximum 
L-index of load buses is used to specify the voltage stability level of the system. Multi-Objective OPF, formulated as a 
multi-objective mixed integer nonlinear optimization problem, minimizes fuel cost and minimizes emission of gases, as 
well as improvement of voltage profile in the system. NSGA-II based OPF—case 1—Two objective-Min Fuel cost and 
Voltage stability index; case 2—Three objective—Min Fuel cost, Min Emission cost and Voltage stability index. The 
above method is tested on standard IEEE 30-bus test system and simulation results are done for base case and the two 
severe contingency cases and also on loaded conditions. 
 
Keywords: Voltage Stability; Optimal Power Flow; Multi Objective Evolutionary Algorithms 

1. Introduction 

GA, invented by Holland in the early 1970s, is a stochas- 
tic global search method that mimics the metaphor of 
natural biological evaluation.Genetic Algorithms (GA) [1] 
operates on a population of candidate solutions encoded 
to finite bit string called chromosome. In order to obtain 
optimality, each chromosome exchanges the information 
using operators borrowed from natural genetic to produce 
the better solution. The combined Economic-Emission 
multiobjective problem seeks to simultaneously mini- 
mize both fuel costand the emissions produced by power 
plants. Environmental concerns on the effect of SO2 and 
NOX emissions producedby the fossil-fueled power 
plants led to the inclusion ofminimization of emissions as 
an objective in the OPF formulation. 

1.1. Voltage Stability 

Voltage instability stems from the attempt of load dy- 
namics to restore power consumption beyond the capa- 
bility of the combined transmission and generation. Vol- 
tage stability constrained OPF—Voltage stability indica- 
tor is incorporated in the OPF formulation through the 
L-index value. The voltage stability index is an appropri- 
ate measure of the closeness of the system to voltage 
collapse. NSGA-II is a popular non-domination based  

genetic algorithm for multi-objective optimization which 
has a better sorting algorithm and incorporates elitism 
and no sharing parameter needed to be chosen as com- 
pared to the original NSGA. Emission cost of generators 
also play a vital role and is thus formulated in the mini- 
mization OPF problem. Since OPF was introduced in 
1968, several methods have been employed to solve this 
problem, e.g. Gradient base, Linear programming me- 
thod and Quadratic programming. However all of these 
methods suffer from three main problems. Firstly, they 
may not be able to provide optimal solution and usually 
getting stuck at local optima [2]. Secondly, all these me-
thods are based on assumption of continuity and differen- 
tiability of objective function which is not actually al- 
lowed in a practical system. 

1.2. VSC-OPF 

The Contingencies such as unexpected line outages in a 
stressed system may often result in voltage instability, 
which may lead to voltage collapse. After a voltage col- 
lapse, the system becomes dismantled owing to the 
widespread operation of protective devices. Studies have 
been performed to predict the voltage instability with 
both static and dynamic approaches. 

In this paper three different cases along with the sys- 
tem loaded conditions are considered. In the first case 
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base case OPF as a single objective optimization problem 
is solved using GA [3]. In the second case VSC-OPF 
problem is formulated in MOGA with minimization of 
fuel cost and L-index value. In the third case economic 
emission of gases along with VSC-OPF problem is con- 
sidered as a multi-objective problem and L-index is 
solved using the NSGA-II approach in an IEEE 30 bus 
system. NSGA [4] is a popular non-domination based 
genetic algorithm for multi-objective optimization. It is a 
very effective algorithm but has been generally criticized 
for its computational complexity, lack of elitism and for 
choosing the optimal parameter value for sharing pa- 
rameter σ share. A modified version, NSGA-II [5] was 
developed, which has a better sorting algorithm, incur- 
porates elitism and no sharing parameter needs to be 
chosen a priori. 

2. Voltage Stability Index 

The voltage stability analysis involves determination of an 
index known as voltage collapse proximity indicator. This 
index is an approximate measure of the closeness of the 
system to voltage collapse. There are various methods of 
determining the voltage collapse proximity indicator. One 
such method is the L-index method proposed in Kessel 
and Glavitsch. It is based on load flow analysis. Its value 
ranges from 0 (no load condition) to 1 (voltage collapse). 
The bus with the highest L-index value will be the most 
vulnerable bus in the system. The technique is incorpo- 
rated from [6]. The L-index calculation for a power sys-
tem is briefly discussed below. 

Consider an N-bus system in which there are Ng gen- 
erators. The relationship between voltage and current can 
be expressed by the following expression: 

·bus bus busI Y V             (1) 

By segregating the load buses (PQ) from generator 
buses (PV), Equation (1) can write as 

GG GLG

LG LL

G

L L

Y YI V

Y YI V

    
     

    
          (2) 

where IG, IL and VG, VL represent currents and voltages at 
the generator buses and load buses.  

Rearranging the above equation we get: 

L LL LG L

G GL GG G

V Z F I

I K Y V

     
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          (3) 

where: 

   1
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   

The L-index of the jth node is given by the expression: 

 1
1 gN i

j JI ji i ji
j

V
L F

V
  


         (4) 

where: 

Vi Voltage magnitude of ith generator 

Vj Voltage magnitude of jth generator 

θji Phase angle of the term Fji 

δi Voltage phase angle of ith generator unit 

δj Voltage phase angle of jth generator unit 

Ng Number of generating units. 

VL, IL: Voltages and Currents for PQ buses; VG, IG: Voltages and Currents 
for PV buses; Where, ZLL, FLG, KGL, YGG: sub matrices generated from Ybus 
partial inversion. 

 
Lj: L-index voltage stability indicator for bus k. 
The values of Fji are obtained from the matrix FLG. The 

L-indices for a given load condition are computed for all 
the load buses and the maximum of the L-indices (Lmax) 
gives the proximity of the system to voltage collapse. 
The L-index has the advantage of indicating voltage in- 
stability proximity of the current operating point without 
calculation of the information about the maximum load- 
ing point. 

3. Problem Formulation 

In general, the OPF problem is formulated as an optimi- 
sation problem in which a specific objective function is 
minimised while satisfying a number of equality and 
inequality constraints[7]. The objectives of the OPF pro- 
blem considered here are minimisation of fuel cost in the 
normal state and the minimisation of the voltage stability 
index Lmax in the emergency state. Power flow equations 
are the equality constraints of the problem, while the 
inequality constraints include the limits on real and reac- 
tive power generation and bus voltage magnitude as fol- 
lows. 

 1
1

Minimise
GN

i Gi i Gi i
i

F a P b P c


          (5) 

max.
2Minimise F L              (6) 

 3 1
Minimise GN

i Gi i Gi ii
F d P e P g


  

D

     (7) 

min. max.Inequality constraints Gi Gi Gi GiP P P      (8) 

min. max.
i i iV V V               (9) 

min. max.
Gi Gi GiQ Q Q              (10) 

Equality Constraints GP P         (11) 
where: 

N the number of total buses 
NG the number of generator buses 
NL the number of load buses 
Nb the number of transmission lines 
Pi,Qi real and reactive power injected at bus i 

iV  Voltage magnitude at bus i  
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The equality constraints given by the above equations 
are satisfied by running the power flow program. The 
active power generation (Pgi) (except the generator at the 
slack bus) and generator terminal bus voltages (Vgi) are 
the optimization variables and they are self-restricted by 
the optimization algorithm. 

4. Non-Dominated Sorting Genetic  
Algorithm II (NSGA-II) 

NSGA introduced by Srinivas and Deb [8], implements 
the idea of a selection method based on classes of domi- 
nance of all solutions. This algorithm identifies non- 
dominated solutions in the population, at each generation, 
to form non-dominated fronts, based on the concept of 
non-dominance of Pareto. After this, the usual selection, 
crossover, and mutation operators are performed.  

However, there are some disadvantages in NSGA. It 
has been generally criticized for its computational com- 
plexity, lack of elitism and for choosing the optimal pa- 
rameter value for sharing parameter σshare. A modified 
version, NSGA-II was developed, which has a better 
sorting algorithm, incorporates elitism and no sharing 
parameter needs to be chosen a priori [9]. In this algo- 
rithm, the population is initialized as random, and the 
number of population is N. Once the population in ini- 
tialized the population is sorted based on non-domina- 
tion into each front. The first front being completely 
non-dominant set in the current population and the sec- 
ond front being dominated by the individuals in the first 
front only and the front goes so on. Each Individual in 
the each front are assigned rank values or based on front 
in which they belong to. Then, crowding distance is cal- 
culated for each individual. The crowding distance is a 
measure of how close an individual is to its neighbours. 

The NSGA-II procedure is also shown in Figure 1. 
Parents are selected from the population by using binary 
tournament selection based on the rank and crowding 
distance. The individual with lesser rank or greater 
crowding distance is selected. The selected population 
generates offspring from crossover and mutation opera- 
tors. The population with the current population and cur- 
rent offspring is sorted again based on non-domination 
 

 

Figure 1. NSGA-II procedure. 

and only the best N individuals are selected. The selec- 
tion is based on rank and on crowding distance on the 
last front. Then the new population will be selected as 
parents at the next round. 

4.1. Population Initialization 

The population is initialized based on the problem range 
and constraints if any. 

4.2. Non-Dominated Sort 

The The initialized population is sorted based on non- 
domination.The fast sort algorithm is described as below. 
 For each individual p in main population P do the 

following 
Initialize Sp = . this set would contain all the indi- 
viduals that are being dominated by p. 
Initialize np = 0. This would be the number of indi- 
viduals that dominate p. 
For each individual q in P 
If p dominated q then 
Add q to the set Sp 
Else if q dominated p then 
Increment the dominated counter for p i.e. np = np + 1. 
If np = 0 i.e. no individual dominate p then p belongs 
to the first front, set rank of individual p to one i.e. 
prank = 1. Update the first front set by adding p to front 
one i.e.  1 1F pF   

 This is carried out for all the individuals in main 
population P. 

 Initialize the front counter to one I = 1. 
 Following is carried out while the ith front is non- 

empty i.e. Fi ≠ . 
Q = . The set for storing the individuals for (i + 1)th 
front. 
For each individual p in front Fi 
For each individual q in Sp (Sp is the set of individuals 
dominated by p) 
nq = nq − 1, decrement the domination count for indi- 
vidual q. 
If nq = 0 then none of the individuals in the subse-
quent fronts would dominate q. hence set qrank = i + 1. 
Update the set Q with individual q i.e. . Q Q q 
Increment the front counter by one. 
Now the set Q is the next front and hence Fi = Q. 

This algorithm is better than NSGA [10] since it utilize 
the information about the set that an individual dominate 
(Sp) and number of individuals that dominate the indi- 
vidual (np). 

4.3. Crowding Distance 

Once the non-dominated sort is complete the crowding 
distance is assigned. Since the individuals are selected 
based on rank and crowding distance all the individuals 
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in the population are assigned a crowding distance value. 
Crowding distance is assigned front wise and comparing 
the crowding distance between two individuals in differ- 
ent front is meaningless. The crowing distance is calcu- 
lated as below 
 For each front Fi, n is the number of individuals. 
 Initialize the distance to be zero for all the individuals 

i.e. Fi(dj) = 0, where j corresponds to the jth individ- 
ual in front Fi. 

 For each objective function m. 
 Sort the individuals in front Fi based on objective m 

i.e., i = sort (Fi, m). 
 Assign infinite distance to boundary values for each 

individual in Fi i.e.  1I d    and  I Dn   . 
 For k = 2 to (n − 1)  

       
max min

1 1
.k k

m m

I k m I k m
I d I d

f f

    
 


     (12) 

 I(k)·m is the value of the mth objective function of the 
kth individual in I. 

The basic idea behind the crowing distance is finding 
the euclidian distance between each individual in a front 
based on their m objectives in the m dimensional hyper 
space. The individuals in the boundary are always se- 
lected since they have infinite distance assignment. 

4.4. Selection 

Once the individuals are sorted based on non-domination 
and with crowding distance assigned, the selection is 
carried out using a crowded-comparison-operator (an). 
The comparison is carried out as below based on  

1) Non-domination rank prank i.e. individuals in front Fi 
will have their rank as prank = i.  

2) Crowding distance Fi(dj)  
 p an q if 
 prank < qrank 
 or if p and q belong to the same front Fi then Fi(dp) > 

Fi(dq) i.e. the crowing distance should be more.  
The individuals are selected by using a binarytourna- 

ment selection with crowed-comparison-operator. 

4.5. Genetic Operators 

NSGA-II use Simulated Binary Crossover (SBX) 
[10,11] and polynomial mutation [10,12]. 

4.5.1 Simulated Binary Crossover 
The Simulated binary crossover simulates the binary 
crossover observed in nature and is give as below. 

   

   

1, 1, 2,

2, 1, 2,

1
1 1

2
1

1 1
2

k k k k

k k k k

C p

C p

 

 

   

where Ci,k is the ith child with kth component, Pi,k is the- 
selected parent and βk (≥) is a sample from a random 
number generated having the density 

   
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1 ,if 0 1

2
1 1
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2

c
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


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 
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


     (14) 

This distribution can be obtained from a uniformly 
sampled random number u between (0, 1). ηc is the dis- 
tribution index for crossover. That is 

    
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1

1

1

1

2

1 2 1

u u
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
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
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
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
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         (15) 

4.5.2. Polynomial Mutation  

 u l
k k k kc p p p k             (16) 

where ck is the child and pk is the parent with  being 
the upper boundon the parent component,  is the 
lower bound and k

u
kp

l
kp

  is small variation which is calcu- 
lated from a polynomial distribution by using 
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1

1

1

1

2 1, if 0.5

1 2 1 , if 0.5

m

m

k k k
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




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



   

      

      (17) 

rk is an uniformly sampled random number between (0,1) 
and ηm is mutation distribution index. 

4.6. Recombination and Selection 

The offspring population is combined with the current 
generation population and selection is performed to set 
the individuals of the next generation. Since all the pre- 
vious and current best individuals are added in the popu- 
lation, elitism is ensured. Population is now sorted based 
on non-domination. The new generation is filled by each 
front subsequently until the population size exceeds the 
current population size. If by adding all the individuals in 
front Fj the population exceeds N then individuals in 
front Fj are selected based on their crowding distance in 
the descending order until the population size is N. And 
hence the process repeats to generate the subsequent 
generations. 

5. Best compromised Solution 

k

k

p

p

 

    

   (13) 

Upon having the pareto-optimal set of non-dominated 
solution, the proposed approach [8] presents a best com- 
promise solution tothe decision maker. Due to the impre- 
cise nature of the decision maker’s judgement, the ith 
objective function Ji is represented bya membership 
function defined as 
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 
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where max
iJ  and min

iJ  are the maximum and minimum 
values of the ith objective function among all non-domi- 
nated solutions. 

For each non-dominated solution k, the normalized 
membership function K

D  is calculated as  

 
 

1

5

1 1

K

K K
iI

K K
ik

D

i

J

J




 

 




 
           (19) 

6. Simulation Results 

The proposed NSGA-II approach has been applied to 
solve the VSC-OPF problem in an IEEE 30-bus test sys- 
tem. The system has six generator buses, 24 load buses 
and 41 transmission lines.The generator cost coefficients 
and the transmission line parameters are taken from [12]. 
Three different cases were considered for simulation, one 
without considering the voltage stability i.e, to solve the 
VSC-OPF problem using MOGA and the second one is 
solved having economic emission of gases including 
VSC-OPF in NSGA-II.These simulations were imple- 
mented using the MATLAB program. The results of 
these simulations are presented, Figure 2. 

In this case the two objectives are minimization of fuel 
cost and minimization of L-index using multi-objective 
Genetic Algorithm. The results of VSC-OPF using 
MOGA is shown in Table 1. 

6.1. (Case 1): VSC-OPF Using NSGA-II 

The voltage stability index (L-index) was included as the 
second objective function of the OPF problem along with 
the base fuel cost. The NSGA-II based algorithm was 
applied to solve this VSC-OPF problem. The optimal 
control variable setting obtained in this case is presented 
in Table 2 alongwith the L-index value. In Figure 4 
shows the pareto optimal front of generation cost and 
L-index is shown and the Table 2 shows the line outage 
27 - 28 along with line outage 27 - 30 is shown in Table 
3.The solution is a set of non-dominated solutions. The 
comparison of the results obtained in NSGA-II and three 
objective is shown in Table 5. From this table it is clear 
that the performance of NSGA-II is better than MOGA in 
VSC-OPF problem. 
  Contingency analysis was conducted on the system 
with 125% loaded condition by simulating the single line 
outages and in each case the maximum L-index value 
was evaluated. From the contingency analysis it was 
found that line outage 28 - 27 is the most severe one  

Table 1. NSGA-II base case. 

Control  
Variables 

Min F1  
(Fuel cost)

Min F2  
(L-index) 

Best  
compromised sol. 

P1 169.6545 140.9243 168.6642 

P2 50.0000 80.0000 50.4760 

P5 23.9893 42.9811 24.1108 

P8 22.0474 18.9395 22.1680 

P11 13.2559 17.0000 13.4598 

P13 14.8000 20.4000 14.8000 

V1 1.0000 1.0000 1.0000 

V2 1.0000 1.0040 1.0000 

V5 0.9826 1.0000 0.9991 

V8 0.9884 1.0000 0.9891 

V11 0.9899 0.9903 0.9918 

V13 0.9874 0.9888 0.9933 

Fuel cost, F1 807.1765 872.7911 807.9227 

L-index , F2 0.1101 0.1075 0.1095 
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0.108
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0.109
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E
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FUEL COST 
 

Figure 2. NSGA-II base case. 
 
from the voltage security point of view during this con- 
tingency state. 

Table 6 gives the fuel cost, Lmax and minimum voltage 
value of the contingency constrained VSC-OPF using 
NSGA-II. This reduction in Lmax is obtained at the ex- 
pense of increased fuel cost. Figure 5 shows the pareto 
optimal front of contingency constrained VSC-OPF.  

The line outage for 27 - 30 as shown in Figure 4, in 
Tables 4, 5 and is also performed along with the same 
loaded condition as in line outage 27 - 28 as shown in 
Figure 3 and results are tabulated. The reduction in 
L-max is obtained at the extent of increased fuel cost. 
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Table 2. NSGA II—Line outage 27 - 28. 

Control  
Variables 

Min F1  
(Fuel cost) 

Min F2  
(L-index) 

Best  
compromised sol. 

P1 174.9058 112.3927 149.0853 

P2 50.000 80.0000 61.6056 

P5 22.0000 41.7412 27.7161 

P8 22.500 22.4915 19.6752 

P11 12.8957 16.1521 16.8888 

P13 14.8000 20.3995 20.4000 

V1 1.000 1.0000 1.0000 

V2 1.000 0.9901 0.9988 

V5 0.9874 0.9874 0.9856 

V8 0.9917 1.0040 0.9911 

V11 0.9903 0.9902 1.0000 

V13 0.9866 0.9866 0.9859 

Fuel cost, F1 814.0790 876.6776 814.2402 

L-index, F2 0.2905 0.2877 0.2895 

 
Table 3. NSGA-2—Line outage 27 - 30. 

Control  
Variables 

Min F1  
(Fuel cost) 

Min F2  
(L-index) 

Best  
compromised sol. 

P1 173.2358 107.6728 147.3212 

P2 50.0000 80.0000 55.1566 

P5 22.2229 42.9728 30.5305 

P8 19.2142 22.5000 22.3421 

P11 15.1615 17.0000 17.0000 

P13 14.8000 20.4000 20.2354 

V1 1.0000 1.0000 1.0000 

V2 1.0000 0.9990 0.9984 

V5 0.9793 0.9876 0.9844 

V8 0.9866 1.0020 1.0020 

V11 0.9875 0.9930 0.9914 

V13 0.9835 0.9902 0.9886 

Fuel cost, F1 810.0262 876.3660 812.5044 

L-index , F2 0.1989 0.1953 0.1964 

6.2. (Case 2): Economic Emission Based 
VSC-OPF Using NSGA-II 

The economic emission of the gases are included as the 
third objective along with the voltage stability index and  

810 820 830 840 850 860 870 880 890
0.288

0.289

0.29

0.291

0.292

0.293

0.294

0.295

0.296

0.297

L
-I

N
D

E
X

 

FUEL COST  

Figure 3. NSGA-II—Line outage 27 - 28. 
 

 

Figure 4. NSGA-2—Line outage 27 - 30. 
 

 

Figure 5. NSGA 2—3 Objective base case. 
 
base fuel cost. The NSGA-II based algorithm was applied 
to solve this VSC-OPF problem. The optimal control 
variable settings are similar to that of the two objective 
case. In Figure 5 shows the pareto optimal front of gen- 
eration cost, L-index and economic emission dispatch of 
gases for base case and in Figures 6, 7 the line outage 27 
- 28 and line outage 27 - 30 are also included. 
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Table 4. NSGA-II—3 objective line outage 27 - 28. 

Control  
Variables 

Min F1  
(Fuel cost) 

Min F2 
(L-index)

Min  
Emission, F3 

Best  
compromised sol.

P1 160.3011 165.1097 169.5373 162.3011 

P2 65.7505 60.3991 57.8956 66.7505 

P5 23.3074 25.8083 22.000 24.3172 

P8 16.6748 14.5257 15.4874 16.6738 

P11 12.8745 13.0869 14.3629 12.6730 

P13 14.8000 14.9005 14.8981 14.8230 

V1 1.000 1.000 1.000 1.000 

V2 1.000 1.000 1.000 1.000 

V5 0.9999 1.000 0.9999 0.9999 

V8 0.9999 1.000 0.9999 0.9899 

V11 0.9999 1.000 1.000 0.9994 

V13 0.9999 0.9999 1.000 0.9999 

Fuel cost,  
F1 

807.0019 853.6211 856.5133 809.0019 

L-index,  
F2 

0.1102 0.1077 0.1083 0.1099 

Emission, 
F3 

1424.5 1324.0 1316.2 1386.5 

 
Table 5. NSGA-2—Line outage 27 - 30. 

Control  
Variables 

Min F1  
(Fuel cost) 

Min F2  
(L-index) 

Min  
Emission, F3 

Best  
compromised sol.

P1 170.8424 167.0531 145.6723 168.5707 

P2 50.000 57.9636 69.0360 57.4857 

P5 23.1042 23.8583 23.2324 23.0908 

P8 21.3731 16.0485 20.4102 15.9655 

P11 14.2896 12.6677 15.5218 12.8070 

P13 14.8000 16.8955 19.3528 16.6933 

V1 1.000 1.000 1.000 1.000 

V2 1.000 1.000 1.000 1.000 

V5 0.9989 1.000 0.9999 0.9999 

V8 0.9883 0.9991 0.9999 1.000 

V11 0.9914 1.000 0.9999 0.9999 

V13 0.9925 0.9999 1.000 0.9999 

Fuel cost, 
F1 

809.9571 874.2141 844.7509 810.5175 

L-index , 
F2 

0.1978 0.1944 0.1961 0.1954 

Emission , 
F3 

1413.7 1305.8 1325.7 1316.8 

 

Figure 6. NSGA-2—Line outage 27 - 28. 
 

 

Figure 7. NSGA-2—Line outage 27 - 30. 

7. Conclusion 

In this paper, the various aspects of single-objective op- 
timal power flow and multi-objective voltage stability 
constrained optimal power flow are studied. An efficient 
and diversified approach using NSGA-II algorithm is 
identified to solve the above multi-objective optimization 
problems. Several case studies have been employed 
separately for single & multi-objective optimization 
problem. Firstly, the results are obtained for single ob- 
jective OPF and contingency constrained VSC-OPF us- 
ing genetic algorithm for the optimization of Fuel cost 
which are then compared with the power flow results of 
other papers. The multi-objective VSC-OPF problem is 
formulated using NSGA-II algorithm. The proposed al- 
gorithm occupies less memory space and takes CPU time 
than conventional GA approach. Simulation results of the 
IEEE 30-bus system have been presented to illustrate the 
effectiveness of the proposed approach to solve the 
VSC-OPF problem. This simulation results were carried 
out using NSGA-II and are found that voltage stability is 
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improved in NSGA-II than multi-objective GA of the 
proposed algorithm than the other approaches. 
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