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Abstract 
A new voltage-mode quadrature sinusoidal oscillator (QSO) using two voltage 
differencing-differential input buffered amplifiers (VD-DIBAs) and only three 
passive components (two capacitors and a resistor) is presented. The pro-
posed QSO circuit offers advantages of independent electronic control of both 
oscillation frequency and condition of oscillation, availability of two quadra-
ture voltage outputs and low active and passive sensitivities. SPICE simulation 
results have been included using 0.35 µm MIETEC technology to confirm the 
validity of the proposed QSO oscillator. 
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1. Introduction 

Quadrature sinusoidal oscillators (QSOs) are important blocks in the synthesis 
of modern transceivers. A QSO provides two sinusoids with a 90˚ phase differ-
ence. QSOs are useful in telecommunications for quadrature mixers and single 
sideband generators [1], in direct-conversion receivers, used for measurement 
purposes in vector generators and selective voltmeters [2]. Because of these ap-
plications number of QSOs has been realized employing different active building 
blocks in the open literature [3]-[8]. VD-DIBA is one of the active building 
blocks among the various active building blocks introduced in reference [9] 
which is emerging as a very flexible and versatile building block for analog signal 
processing/signal generation and has been used earlier for realizing a number of 
functions. VD-DIBA has been used in single resistance controlled oscillators, 
simulation of inductors, realization of active filters [10]-[17]. Recently VD-DIBA 
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has also been used in the realization of QSO where independent electronic con-
trol of CO and FO is not available [18]. Therefore, the purpose of this paper is to 
propose a new QSO having electronic control of both CO and FO by separate 
transconductance of the VD-DIBAs. This property is very attractive for realizing 
current controlled oscillators as FO can be controlled independently without 
disturbing CO, whereas the flexibility of being able to adjust CO independently 
is useful in amplitude stabilization. The proposed configuration also offers low 
active and passive sensitivities. The validity of proposed structure has been con-
firmed by SPICE simulation with 0.35 µm MIETEC technology. 

2. The Proposed New Oscillator Configuration 

The symbolic notation and the equivalent circuit model of the VD-DIBA are 
shown in Figure 1(a) and Figure 1(b) respectively. The circuit model includes 
two controlled sources: the voltage source controlled by differential voltage
( )z vV V−  with the unity voltage gain and the current source controlled by diffe-
rential voltage ( )V V+ −− , with the transconductance mg . The corresponding 
voltage-current relationship of input-output terminals of VD-DIBA can be ex-
pressed by the following matrix: 
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A straight forward circuit analysis of the circuit of Figure 2 yields the follow-
ing characteristic equation (CE): 

CE: 1
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From Equation (2), the CO and FO are given by 
CO: 
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Figure 1. (a) Symbolic notation of; and (b) Equivalent circuit model of VD-DIBA. 
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Figure2. Proposed electronically controllable quadrature sinusoid-
al oscillator. 

 
FO: 

1
0

0 1 2

mg
R C C

ω = .                        (4) 

Thus from Equations (3) and (4), it is clear that CO is electronically controlla-
ble by the transconductance gm2, whereas FO is electronically controllable 
through the transconductance gm1. Therefore both CO and FO are independently 
controllable by two separate transconductance of VD-DIBAs. 

3. Non-Ideal Analysis and Sensitivity Performance 
Considering ZR  and ZC  as parasitic resistance and parasitic capacitance re-
spectively of the Z-terminal of the VD-DIBA, taking the non-idealities into ac-
count, namely the voltage of W-terminal ( )W Z VV V Vβ β+ −= −  where β+ = 1 − εp 
(εp  1) and β− = 1 − εn (εn  1) denote the voltage tracking errors of Z-terminal 
and V-terminal of the VD-DIBA respectively, then the expressions for CE, CO 
and FO can be given as: 

CE: 
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The passive and active sensitivities can be expressed as: 
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In the ideal case, the various sensitivities of ω0 with respect to C1, C2, R0, Cz, Rz, 
gm1, gm2 and β+ are found to be 

0 0 0 0 0 0 0 0
1 2 0 1 2

1 1, ,
2 2

.0
z m z mC C R R g C gS S S S S S S Sω ω ω ω ω ω ω ω

β+
= = = = − = = = =       (9) 

Considering the typical values of various parasitic e.g. Cz = 0.81 pF, Rz = 53 
kΩ, β+ = β− = 1 along with gm1 = 310.477 µƱ, gm2 =291.186 µƱ, C1 = C2 = 10 nF, 
and R0 = 4 kΩ, the various sensitivities are found to be 0

1
0.006CSω = − , 

0
2

0.006CSω = − , 0 0.987
ZCSω = − , 0

0
0.533RSω = − , 0 0.535

ZRSω = − , 0

1
0.502

mgSω = , 
0

2
0.0355

mgSω = − , and 0 0.466Sω
β+

=  which are all quite low. 

4. Frequency Stability 

Frequency stability is an important figure of merit of an oscillator. The frequen-
cy stability factor is defined as ( )d dFS u uϕ= , where 0ω ω  is the normalized 
frequency, and ( )u uϕ=  represents the phase function of the open loop trans-
fer function of the oscillator circuit. With C1 = C2 = C, R0 = 1/gm2 = 1/g, gm1 = ng, 
SF for the proposed SECO is found to be: 

2FS n= .                          (10) 

Thus, the new proposed configuration offers very high frequency stability 
factor larger values of n. 

5. Simulation Results 

The proposed QSO was simulated using CMOS VD-DIBA (as shown in Figure 
3) to verify its theoretical analysis. The passive elements are selected as R0 = 4 
kΩ, and C1 = C2 = 10 nF. The transconductances of VD-DIBAs were controlled 
by bias voltages VB1, VB2 respectively. The simulated output waveforms for tran-
sient response and steady state response are shown in Figure 4 and Figure 5 re-
spectively. These results, thus, confirm the validity of the proposed structure. 
Figure 6 shows the simulation results of the output spectrum, where the total 
harmonic distortion (THD) is found to be about 1.9% for both outputs Vo1 and 
Vo2. The generated waveforms relationship within quadrature circuit has been 
confirmed by Lissajous pattern shown in Figure 7. The CMOS VD-DIBA is  
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Figure 3. A CMOS transistor implementation of VD-DIBA, VB2 = VB3 = −0.22 V and VB4 = −0.9 V, VDD = −VSS = 2 V [16]. 

 

 
Figure 4. Transient response of proposed QSO. 

 

 
Figure 5. Steady state response of proposed QSO. 

 
implemented using 0.35 µm MIETEC technology. The transistor model parame-
ters used for CMOS VD-DIBA are listed in Table 1 and aspect ratios (W/L ra-
tios) of the MOSFETs used in Figure 3 are shown in Table 2. Comparisons of 
previously known quadrature sinusoidal oscillators are Table 3. 

6. Conclusion 

In this communication, an electronically tunable voltage-mode quadrature si-
nusoidal oscillator enabling independent electronic control of frequency of os-
cillation and condition of oscillation is presented. The proposed QSO circuit 
employs only two VD-DIBAs, two grounded capacitors and a resistor. The  
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Figure 6. Frequency response of proposed QSO. 

 

 
Figure 7. Lissajous pattern of proposed QSO. 

 
Table 1. Transistors process parameters in SPICE simulations. 

.MODEL N NMOS (LEVEL = 3; TOX = 7.9E−9; NSUB = 1E17; GAMMA = 0.5827871; PHI = 0.7;   
VTO = 0.5445549; DELTA = 0; UO = 436.256147; ETA = 0; THETA = 0.1749684; KP = 
2.055786E−4; VMAX = 8.309444E4; KAPPA = 0.2574081; RSH = 0.0559398; NFS = 1E12; TPG = 1; 
XJ = 3E−7; LD = 3.162278E−11; WD = 7.046724E−8; CGDO = 2.82E−10; CGSO = 2.82E−10  
CGBO = 1E−10; CJ = 1E−3; PB = 0.9758533; MJ = 0.3448504; CJSW; = 3.777852E−1; MJSW = 
0.3508721) 

.MODEL P PMOS (LEVEL = 3; TOX = 7.9E−9; NSUB = 1E17; GAMMA = 0.4083894; PHI = 0.7;  
VTO = −0.7140674; DELTA = 0; UO = 212.2319801; ETA = 9.999762E−4; THETA = 0.2020774; KP  
= 6.733755E−5; VMAX = 1.181551E5; KAPPA = 1.5; RSH = 30.0712458; NFS = 1E12; TPG = −1;  
XJ = 2E−7; LD = 5.000001E−13; WD = 1.249872E−7; CGDO = 3.09E−10; CGSO = 3.09E−10; CGBO 
= 1E−10; CJ = 1.419508E−3; PB = 0.8152753; MJ = 0.5; CJSW = 4.813504E−10; MJSW = 0.5) 

 
Table 2. Aspect ratios of CMOS transistors used in Figure 3. 
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Table 3. Comparison of previously known quadrature sinusoidal oscillators. 

Reference Active Elements 
No. of Passive Components Electronic Controllability of: 

No. of 
Grounded C 

No. of 
C + R 

CO FO 

[18] 2VD – DIBA + UGC 2 0 + 0 NO YES 

[19] 2CDBA 1 1 + 3 NO NO 

[20] 2OTRA 2 0 + 4 NO NO 

[21] 2CDBA 2 0 + 3 NO NO 

[22] 2VDIBA + 2MOS 1 1 + 0 YES YES 

[23] 3CFTA 2 0 + 0 YES YES 

proposed 2VD − DIBA 2 0 + 1 YES YES 

 
proposed QSO is capable of simultaneously providing two explicit quadrature 
voltage outputs. The condition of oscillation and the frequency of oscillation of 
the proposed circuit are controllable electronically through separate transcon-
ductance of the VD-DIBAs. The workability of the proposed structure has been 
demonstrated by PSPICE simulations using 0.35 µm MIETEC technology. 
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