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Abstract

This paper considers the problem of delay-dependent robust optimal /., control for
a class of uncertain two-dimensional (2-D) discrete state delay systems described by
the general model (GM). The parameter uncertainties are assumed to be norm-
bounded. A linear matrix inequality (LMI)-based sufficient condition for the exis-
tence of delay-dependent jy-suboptimal state feedback robust H,, controllers which
guarantees not only the asymptotic stability of the closed-loop system, but also the
H,, noise attenuation y over all admissible parameter uncertainties is established.
Furthermore, a convex optimization problem is formulated to design a delay-de-
pendent state feedback robust optimal H,, controller which minimizes the H,, noise
attenuation y of the closed-loop system. Finally, an illustrative example is provided to
demonstrate the effectiveness of the proposed method.
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1. Introduction

In the past decades, research on two-dimensional (2-D) discrete systems has rapidly
increased due to their extensive practical applications in circuits analysis [1], digital
image processing [2], signal filtering [3] and thermal power engineering [4], etc. Thus,
the study of 2-D systems is an attractive problem and a number of results have been
presented in the literature. Among these results the stability analysis of 2-D discrete
systems has been given in [5]-[15]. In [5], the problem of robust stability analysis and
stabilization for 2-D discrete uncertain systems described by the Fornasini-Marchesini
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(FM) second model has been studied and the sufficient conditions for 2-D discrete un-
certain systems to be robustly stable have been given in terms of linear matrix inequali-
ties (LMIs). A necessary and sufficient condition for the stability of 2-D discrete sys-
tems described by the FM first model has been derived in [13]. The problem of stability
for linear discrete 2-D singular general model (GM) has been discussed in [14] and a
sufficient condition for the internal stability of the 2-D singular GM has been derived in
terms of LMIs. In [15], the robust stability analysis problem for a class of uncertain 2-D
discrete systems described by the FM second model has been studied and sufficient
conditions in terms of LMIs have been derived to ensure the robust stability of the un-
certain 2-D discrete systems. Lately, the solution to the guaranteed cost control prob-
lem for 2-D discrete uncertain systems has been presented by many authors [16]-[22].

In recent years, the H, control problem for 2-D discrete systems has gained a great
deal of interest and many important results have been obtained [23]-[26]. A major ad-
vantage of H,, control is that its performance specification takes account of the worst-
case performance for system in terms of the system energy gain. This is appropriate for
system robustness analysis and robust control with modeling uncertainties and distur-
bances than other performance specifications, such as the LQ-optimal control specifi-
cation [23]. In [24], the solutions for the H,, control and robust stabilization problems
for 2-D systems described by the Roesser model using the 2-D system bounded realness
property have been presented. The problem of H, static output feedback control for
2-D discrete systems described by the Roesser model and the FM second model has
been addressed in [25]. In [26], the problem of robust H, control for uncertain 2-D
discrete systems described by the GM via output feedback controllers has been investi-
gated.

Since, delay is encountered in many dynamic systems and is often a source of insta-
bility, much attention has been focused on the problem of stability analysis and con-
troller design for 2-D discrete state-delayed systems in the last decades. Presently, the
stability results for 2-D discrete state-delayed systems fall in two groups: delay-inde-
pendent stability conditions [27]-[35] and delay-dependent ones [36]-[45]. The former
refers to the stability conditions which do not depend on delay; the latter contains in-
formation on the size of delay. Generally speaking, the delay-dependent stability condi-
tion is less conservative especially when the sizes of the delays are small [45]. The prob-
lem of stability analysis for 2-D discrete state-delayed systems in the GM has been con-
sidered in [33] and sufficient condition for the stability has been derived via Lyapunov
approach. In [27], a solution to the problem of delay-independent H,, control for 2-D
state-delayed systems described by the FM second model has been presented. The
problem of robust reliable control for a class of uncertain 2-D discrete switched systems
with state delays and actuator faults represented by a model of Roesser type has been
studied by [28]. In [35], the problem of robust guaranteed cost control via memoryless
state feedback for uncertain 2-D discrete state-delayed systems described by the FM
second model has been considered. Several technical errors that have occurred in the

main results of [35] were corrected in [30]. A solution to the guaranteed cost control
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problem via memory state feedback control laws for a class of uncertain 2-D discrete
state-delayed systems described by the FM second model has been presented in [31].
The problem of delay-dependent guaranteed cost control via memoryless state feed-
back for uncertain 2-D discrete state-delayed systems described by the FM second
model has been studied in [43]. In [41], a delay-range dependent /,, control and stabi-
lization problem for a class of uncertain 2-D state-delayed systems described by the
Roesser model has been proposed. The delay-dependent H,, control problem via a de-
lay-dependent bounded real lemma for a class of 2-D state-delayed systems described
by the FM second model has been addressed in [40]. Recently, the problems of delay-
dependent H,, control for 2-D discrete state-delayed systems described by the FM
second model and Roesser model have been considered in [42] [44], respectively and a
delay-dependent optimal state feedback H., controller has been obtained for both the
models. It may be mentioned here that the criteria presented in [42] [44] do not con-
sider the uncertainty in system parameters. In real-time applications, the parametric
uncertainties cannot be ignored as they are the main source of instability and poor sys-
tem performance. Hence, the delay-dependent robust optimal /,, control for uncertain
2-D discrete state delay systems is an important and challenging problem. However to
the best of authors’ knowledge, the delay-dependent robust optimal H,, control prob-
lem for uncertain 2-D discrete state delay systems represented by the GM which is
structurally distinct from FM second model and Roesser model has not been addressed
so far in the literature.

This paper, therefore, investigates the problem of delay-dependent robust optimal
H,, control for a class of uncertain 2-D discrete state delay systems described by the GM.
The approach adopted in this paper is as follows: We first derive an LMI-based suffi-
cient condition for the existence of delay-dependent y-suboptimal state feedback robust
H,, controllers in terms of feasible solution to a certain LMI. Further, a convex optimi-
zation problem with LMI constraints is formulated to design a delay-dependent robust
optimal H,, controller which minimizes the H,, noise attenuation y of the closed-loop
system. The paper is organized as follows. Section 2 formulates the problem of delay-
dependent robust H,, control for a class of uncertain 2-D discrete state delay systems
described by the GM and recalls some useful results. In Section 3, a solution to the
problem of delay-dependent robust optimal H,, control is presented. An example illu-
strating the potential of the proposed technique is given in Section 4.

Notations:

Throughout the paper, the following notations are used: R” denotes real vector space
of dimension n; R™™ is the set of n x m real matrices; the superscript 7 stands for
matrix transposition; 0 denotes null matrix or null vector of appropriate dimension; 7 is
the identity matrix of appropriate dimension; G < 0 stands for the matrix G which is
symmetric and negative definite; diag{....} stands for a block diagonal matrix; ||||

denotes the Euclidean vector norm. The |, norm of a 2-D signal (i, j) is given by

ol = |33 | (i, )|

i=0 j=0

? . where oi,j) issaidtobein |, if ||w||2<oo.
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2. Problem Formulation and Preliminaries

Consider an uncertain 2-D discrete state delay system described by the GM [46].

x(i+1 j+1)= Ax(i, j+1)+ Ax(i+1 j)+ Ax(i, )+ Agx(i—d,, j+1)

+AX (141 j—d, )+ Aggx (i—k;, j—k,)+Bw(i, j+1) (1a)
+B,w(i+1, j)+Byw(i, j)+Cuu(i, j+1)+Cou(i+1 j)+Cou(i, j).
z(i, j)=Hx(i, j)+ Lw(i, j), (1b)
where
A =(A+AA) A =(A+AA), A =(A +AA),
Ay =(Ag +AA,), Ay = (A +AA,), Aoy = Ay +Ay), (10)
B,=(B,+AB,), B, (B +AB,), B, =(B, +AB,),
C,=(C,+AC,),C, =(C,+AC,),C, =(C, +AC,),

and 0<i,jeZ are horizontal and vertical coordinates, respectively, X(i, j)eR",
u(i, j) e R™ are state and control input, respectively, Z(i, j) e R? is the controlled
output, W(i,j)eR" is the noise input with bounded energy ie, it belongs to

,{[0,%),[0,0)} . The matrices A, A, A, Ay, Ay, Ay eR™, B, B, B eR™,

C,,C,,C, eR™, HeR"™ and LeR™ are known constant matrices represent-
ing the nominal plant; d;, d,, k; and k, are unknown constant positive integers
representing delays. The matrices AA, AA,, AA,, AA,, AA,,, AA,, AB,,
AB,, AB,, AC,, AC, and AC, represent parameter uncertainties in the system

matrices which are assumed to be of the form
[AA1 AAz AAO AAid AAzu AAOd ] =DF (i, j)[El Ez Eo Eld Ezd an]
[AB1 AB, ABO] =DF (i, j)[Ebl E,, Ebo] , (1d)
[ACl AC, ACO]: DF (i, j)[Ecl E., Eco]

where DeR™, E, E,,E,, Ey, E,y, Epy €R™, E,, E,,, E,p €R™ and

E., E. E,, € R"™™ are known structural matrices of uncertainty and F (i, j) e R

is an unknown matrix representing parameter uncertainty which satisfies

FT(i,j)F(i,j)Sl (or equivalently, "F(i,j)"Sl). (1e)

For system (1), suppose a finite set of initial conditions [33], ie., there exist positive
integers I, and f,, such that

x(i,j)=hy, ie[-d,0], 0<j<n

x(i,j)=vj, Jje[-d,,0], O<i<r,

x(i,j) =, ie[k,0], je[k,.0]

hoo = Voo = @go-

(2)

Denote X, = Sup{”X(i, j)" Ni+j=rije Z}, we first present the definition of
asymptotic stability for the system (1).
Definition 1. [42] The system (1) is asymptotically stable if limX, =0 with
r—oo

K2
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u(i, j)=0, w(i, j)=0 and the initial condition (2).
Introduce the following state feedback controller
u(i, j)=Kx(i, j). (3)
Applying the controller (3) to system (1) will result in the closed-loop system:
X(i+1 j+1)= A, x(i, j+1)+ A x (i +1 j) + Ay x (i, J)
+ A (i —dp, j+ )+ Ax(i+1 j—d,)+ Ax(i—k, j—k,) (4
+Bw(i, j+1)+Bw(i+1 j)+Byw(i, j),
where
A,=A+CK, A, =A+C,K, A, =A +C/K.
To investigate the delay-dependent H_ control problem, we first define the vectors
s(i,j).t(i,).a(i,j)eR" such that
x(i+1 j+1)=x(i, j+1)+s(i, j+1),
x(i+1 j+1)=x(i+1 j)+t(i+1 j), (5)
x(i+1 j+1)=x(i, j)+a(i j).

The following well known lemmas are needed in the proof of our main result.
Lemma 1. [42] [44] For any matrices M;,M, e R™ and 0< X € R™", and any

integer d >0, the following summation inequality holds
-1
=Y sT(i+] j+1) Xs(i+l, j+1)
I=—d

. M/ +M, -M;+M
I
2 2

+dp" (i, j+1)Y XY (i, j+1),

};(i, j+1) ©)

where

ﬂ(i,j+1)={x(xi(_i'dj,:i)l)}, Y=[M, M,].

Lemma 2. [5] Let M, E, F and Y, be real matrices of appropriate dimension
with Y, satisfying Y, =Y," then

Y,+MFE+E'F'M' <0, (7a)
holds for all F satisfying F'F < |, if and only if there exist &>0 such that
Y, +eMMT +&£'ETE <0. (7b)

The H_ performance measure for system (1) with the initial condition (2) is de-
fined as follows:

Definition 2. [42] Given a scalar y >0, integers d, >0, d, >0, k >0, k; >0
and symmetric positive definite weighting matrices Q,,Q,,Q,,2Z,,Z,,Z, € R™". The
closed-loop system (4), formed by system (1) with the initial condition (2) and state-

feedback controller (3), is said to have an H_ noise attenuation y for any delays d,,
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d,, k,, k, satisfying 0<d, <d;, 0<d,<d,, O<k <k and O<k, <k, if it is
robustly stable and satisfies

|21 .
J = sup — - — <y, (8)
o wers | @[[s + Dl(dl, j)+ Dz(l,d2)+ D, (k. K;)
where
I TR Cwa iy
2l =22l zG+1 i) || o Wl = 22 fl w(i+s i) ||
i=0 j=0 Z(l,]) i=0 j=0 W(l,J)

8

Il
o

D,(d;, )= [XT(O,j+1)Q1x(O,j+1)+ i leT(l,j+1)zls(|,j+1)1,

6=—d; +11=0-1

r

n
IS

D, (i.d;)=

{XT(i+1,O)Q2x(i+1,O)+ 3 Zl“tT(i+1,I)Zzt(i+1,I)1,

0=—dy+11=6-1

Dg(kl*,k;)zZ[XT(i,O)Q3x(i,O)+ DS iqT(i+m,n)Zaq(i+m,n)1

o0
=0 o=k +1M=1 -1 ) ——k; +1N=0p -1

© 0 -1 0 -1
+Z{XT (0.1)Qx(0 1)+ 2 2 2 X qT(m,J+“)23Q(m,J+”)1,
j=0 o=k +1M=01 -1 ) =3 +1N=0p -1
and d;, k/, d,, k, areupper bounds of delays in states.
In the case when the initial condition is known to be zero, then the H_ perfor-
mance measure (8) reduces to
[z,

J, = sup 1—& <. 9)
0=wel, W"2

Using the 2-D Parseval’s theorem [3], (9) is equivalent to

||G (z, 22)"0o = SUp O [G (ej“’l el )] <7, (10)

wl,(uze[o,Zn]

where o, () denotes the maximum singular value of the corresponding matrix and

x X _% -4, R RN Kok &
G(z,2,)=H (Z1zzln “ LA LA A L L Ay — 02 PRy =2 Ay

1
) (11)
x(2,B,+2,B,+B,)+L

is the transfer function from the disturbance input W(i, j) to the controlled output
z(i, j) for the system (4).

The objective of this paper is to design a controller of the form (3) such that the
closed-loop system (4) is asymptotically stable and the H_ norm of the transfer
function (11) from the noise input w(i, j) to the controlled output z(i, j) for the
closed-loop system (4) is smaller than y. Such controller is said to be a y~suboptimal
state feedback robust H_ controller for the uncertain 2-D discrete state delay system

(1) with any state delays d,, d,, k,, k, satisfying 0<d, <d;, 0<d,<d,,

K2
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O<k <k and O<k,<k;.

3. Main Results

In this section, we first present a delay-dependent approach to solve the H_ control
problem for the uncertain 2-D discrete state delay system (1) with any state delays d,
d,, k;, k, satisfying 0<d, <d;, 0<d,<d,, O<k <k and O<k, <k,. Based
on Lemma 1, a sufficient condition for the existence of y-suboptimal state feedback ro-
bust H_ controllers is obtained in terms of an LMI. Further, a delay-dependent state
feedback robust optimal H_ controller is obtained by solving a convex optimization

problem which minimizes the H_ noise attenuation y of the closed-loop system (4).

Theorem 1. The closed-loop system (4), formed by system (1) with the initial condi-
tion (2) and state-feedback controller (3), is robustly stable and has a specified H
noise attenuation p if there exist matrices M;;,M;,,M,,M,,,M;;,M,, € R™ and
symmetric positive definite matrices P,P,P,,S,,S,,S, e R™ satisfying P, < )/ZQ1 s

P,<7°Q,, 0<P-P -P,<7°Q,, S, <7*Z,, S,<y’Z,, S,<y°Z, such that

KD
+%%, Scientific Research Publishing

Q o o o o a4l o\ o) Q9 Q)
* -1 0 0 0 0 0 0 0 0 0
* x 1 0 0 0 0 0 0 0 0
S 0 0 0 0 0 0
* ox % % _pl 0 0 0 0 0
* ok ox k% _(igHt 0 0 0 0 0 <0, (12)
ok ox x ok x gt g 0 0 0
* ok % x * * k'St 0 0 0
*  x x % * * * * -d, 'S, 0 0
o w x o= x « * *  _ds, o0
% x ok ox * * * * * kkgts,
where
B Mu,-M] 0 0 0 0 0 0 0]
* —M,-M) 0 0 0 0 0 0 0
* * B M,-M; 0 0 0 0 0
* * * -Mj,-M, 0 0 0 0 0
Q= * * * * B M;,-M; 0 0 0 |
* * * * * -Mg,-M, O 0 0
* * * * * * 21 0 0
* * * * * * * 2 0
* * * * * * * S
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B, =-P +M]+M,,

B, =-P,+MJ] +M,,

By=-P+P +P,+Mj +M,,

Q,=[H 00000O0TL 00

Q,=[0 0 H 0O0OOO L 0],

Q,=[0 000 H 00O L],

O =[Ac Ay Ay Ay Ax A, B B B
ﬁez[ﬂik_l 'Kid 'sz 'E‘Zd '&Ok Kod B B o:l
Q,=[A, A, A,-I A, A, A, B B, B
ﬁ8:[ﬂik 'Km 'sz 'E‘Zd AOk_I Aou B B Bo]
Q,=[M,;, M, 00000 0 0],

Q,=[0 0 My M, 0 0 0 0 0],

Q,=[0 000 My M, 0 0 0.

Proof. To prove that the closed-loop system (4) with w(i, j)=0 is asymptotically

stable, we define a Lyapunov-Krasovskii function

V(x(i,§))=Vy (x (i, §))+V, (x (i, )+ V5 (x (i J)). (13)

where
v, (x(i. )= X" i, ) Px i, j)+9__Z::m§15T(i+l, D)Ss(i+,j)

VZ(X(i’ J)) = XT(i’ i) Px(i, j)+9—zod:+1|§1tT (L i+1)S,t(i, j+1),
Va (x(i,1)) =X (i, ))(P =P =P) x(i. })

+ > iqT(i+m,j+n)SSq(i+m,j+n)

o =—k +1m=¢p -1y =—ky +1n=¢, -1

and P, >0, P,>0, (P-P,—P,)>0, S;>0, S,>0 and S;>0. Thus, it is ex-
plicit that V(X(i,j))>0.

Along any trajectory of the system (1) with w(i, j) =0, the increment
AV (i+1, j+1) is given by

K2
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AV (i+1, j+1) =V, (X (i+1, j+1))+V, (x(i+1 j+1))+V; (x(i+1, j+1))

({0 J+2)) Vo (x(+1.3)) Vs (x(. )

-T -~ -

x(i,j+1) T([AAT AT [-r, 0 0 0 0 0
X(i—dl,j-i-l) ﬂfd Ale 0O 0 0 O 0 0
3 X(i+1,j) 'E‘sz P 'Z‘sz N 0 0 -P, O 0 0
I x(i+1j-d,) | || AL | | AL 0 0 0 O 0 0
x(i, j) Al Al 0 0 0 0 -P+P+P, 0
| x(i-k,j-k)| ||AL] |A] [0 0o o o 0 0
x(i, j+1)
i—d,j+1
X(:( i+11].+) s(i,j+1)] [d,S, © 0 [s(i,j+1)
X(i'(f'l j’J()j ) +{t(i+Lj)[| 0 d,S, 0 | t(i+L])
X(;,J) 2 q(I'J) O O I(II(ZSZS q(llj)
| X(i=k, i—k;) |
—2 sT(i+1, j+1)S;s(i+1, j+1)— 2 t(i+1 j+1)St(i+1 j+1)
I=—d I=—d;
Lo (14)
= > > g (i+m, j+n)S,q(i+m, j+n).
m=—k; n=—k,
Applying (5), we get
s(i, J+1) ds, 0 0 [s(i,j+1)
t(i+1,j) 0 d,S, 0 |[t(i+1])
Q(lyl) 0 0 kik, S, q( )
x(ii+) [[A-1 AL A
o —
X(I d11j+1) éde Aid Aid dlsl 0 0
_ X(I+1’J) Azk Azk_l Azk 0 d.s 0
- R . — — 2%2
X(H'l’J_dZ) Asz Asz A2d
' K i 0 0 kk,S,
X(I’J) é;rk é{;rk AOE_I
_X(i_kbj_kZ)_ L Aon Aon Aon ]

A1 A A x(ie
'E&Td Ald Aid X(i —d, j+1)
A M-l A x(i+1 )
Azu 'E‘sz 'E‘sz X(i+1'j_d2) .
AOk AOk 'E‘oTk_I X(i'j) (15)

L Aou Aoa 'K‘on _X(i_kl’j_kZ)_

Now applying Lemma 1, we get the following summation inequalities

K2
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NGO ETINE It | RS v B

1=—d; _Msz_Mlz '_d1'1+1)

+d{ i (id:’:lzl)y{mﬂsll[mn Mlz]{X()i((—i’dij?g}’ (16)

_I__z:Z(tT(nl,j+|)Szt(i+1,j+|)) { +lj d :||:M21+M21 _miimiﬂx(ﬁ'f,lf;z)}
Dl Lo wl ()

—i i(qT(i+m,j+n) s(i+m, j+n))< () }T{M;JFM“ _M3T1+M3ZH () }

m=—k n=—k, X(I—kl,j—kz) * _|\/|3-)'—2_|\/|32 X(|_k1,J_k2)
(18)

L S e

+d2 (
( i+1,j-

and

where My, M,,,M,;,M,,, M., M,, e R™".
Now, substituting (15)-(18) in (14) yields

x(i,j+1) T([8 My,-MI 0 0 0 0o ]
x(i—d,, j+1) * -M,-M, 0 0 0 0
x(i+1, j * * M,,—M] 0 0
AV (i+l,j+l)$ ( - J) :32 22 21
X(H'l'J_dZ) * * * _Msz_Mzz 0 0
X(i'j) * * * * :63 M32—M3T1
_x(i—kl,j—kz)_ | * * * * * —Mg My, |
- -—— =T - —. — — A
Al || Ak A-1 A Al
AT AT AT AT AT
A A A A A

+ /fik P ész + fﬁk AZET_' éik 0 dS, 0 (19a)
el el B L T

AOk Aﬂk AOk A()k AOk_I
Aos] | A As Ay A

- _ T - _
A=l A AL Mi 0 0
P Au-l Ay LA (A
AT AT AT + 0 MLI 0 0 dzsz_l 0
AR A I PSS
Ao Pac Ayl 0 0 My
LA A Aw ] L0 0 Mg

0
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x(i, j+1)
x(i—d;, j+1
My M, 0 0 0 0 (_1_)
x(i+1])
x| 0 0 M, M, O 0 o . (19a)
x(i+1,j—d,)
0 0 0 0 My, M, o
x(i, j)
_X(i—kl,j—kz)_
Applying Schur complement, it follows from matrix inequality (12) that
_ﬂ1 MlZ_MlTl 0 0 0 0 ] _'&i-ll-(_ _'&JJT
¥ =Mp-M; 0 0 0 0 A | | A
* * ﬂZ MZZ M;l 0 O + '&;—k P '&;—k
* * * _Msz_Mzz 0 0 'K‘sz 'Z‘sz
* * * * ﬂB M3Z Mi;rl '&(-)rk '&(-)rk
_* * * * * M;Z_M32 _Kon_ _Aon_
_ _ R - _ — T
A=l A k A=l A A
AR ORI
-1 -1
T /jik AZET /jik 0 ds, o | AZET /jik (19b)
éZd _d _AZd 0 0 kk,S, _d _d B d
Ao A Ayl ok As ok — |
LA A A LA A A
M, 0 0]
M, 0 0
. dS* o0 0 M, M, O 0 0 0
0 M, O
+ 0 d,S,! 0 0 0 M, M, O 0 |<O.
T
0 M, O
. 0 0  kkS;'|| 0 0 0 0 My, M,
0 0 My
|0 0 My
Thus, from (19b), it implies that
AV (i+1,j+1)<0, (20)

holds for any delays d,, d,, k, and k, satisfying O<d,<d;, 0<d,<d,,
0<k <k and 0<k,<k;.
Hence, the closed-loop system (4) with W(i, j) =0 is asymptotically stable.

Next, we establish the H_ performance measure of the closed-loop system (4) for

w(i, j) e, {[0,20),[0,0)}.

We consider
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x(ii+1) (A7 [AT]
X(i_d1'j+1) 'K&Td 'Ki-[j
x(i+13) || Ax| | A
2(i, j+0) | [2(, j+0)] [w(i,j+1)] [w(i,j+1)] | x(i+Lj-d,) ||| AL | | AL
AV (i+1 j+1)+| z(i+L ) | |z(i+L ) |72 w(i+L )| |w(i+L])|= x(i, ) Al |P| AL
2(i, j) 2(i, ) w(i, J) w(i, j) x(i—ky J—k;) || | Asg Ass
w(i, j+1) B/ B/
w(i+Lj) ||| 8| | B!
Cowi) ey e
[, M,-M] 0 0 0 0 HTL 0 0 |
0 -M,-M] 0 0 0 0 0 0 0
0 0 m, M,-ML 0 0 0 HTL 0
0 0 0 -ML-M, 0 0 0 0 0
+ 0 0 0 0 7, M,-ML 0 0 HTL
0 0 0 0 0 -ML-M, 0 0 0
L"H 0 0 0 0 0 L'L—521 0 0
0 0 L'H 0 0 0 0 L'L -2 0
| 0 0 0 0 L'H 0 0 0 L"L— 771 |
A1 A A A1 A A =
Ay A Al Ay A A
A, Rl A A, Rl A,
AT AT

ézu ’§sz _'E‘sz dlsl 0 0 'ﬁzd '§sz _’Ksz
+ AoTk AoTk AoTk =1 0 dzsz 0 AoTk AoTk AoTk -1
A A, A, Lo 0 kks A, A, A,

B, B/ B/ B/ B/ B/

B, B, B, B, B, B,

By By B | | By By By |
ML 0 0] ™ML 0 o [ x(ij+D)
M, 0 0O M, 0 O x(i—dp, j+1)

0 ML o© 0 ML o x(i+1, )

o ML o |[dS o 0 0 ML 0 x(i+1j-d,)

+ 0 0 ML| 0 dS; o0 0 0 M] x(ii) |,

0 0 ML|l O 0 kkS*|| 0 0 ML| || x(i-k,i-k,)

o 0 0 0 0 0 w(i, j+1)

0 0 0 0 0 0 w(i+1,j)
0 0 0| L0 0 0| w(i, j)

where
m=(-P+ HTH+ M +M,,),

m,=(-P,+ HTH + MJ, + M, ),

K2
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y=(-P+ P+ P+ H'H + MJ + My).
It follows from inequality (12) that

2(i, j+1)] [2(i, j+1) w(i, j+1)] [w(i, j+2)
AV (i+1 j+2)+| z(i+L§) | |z(i+L ) |- 72| w(i+L )| |w(i+1 j)|<O. (22)

z(i, j) z(i, j) w(i, j) w(i, j)

Summing the inequality (22) over i, j=0-—> gives

AV (i+1, j+1)+ [z - ] <o. (23)
i=0 j=0
Now,
S AV (i 41, j+1)
i=0 j=0
ii[vl( X(i+1 j+1))+V, (x(i+1, j+1))+ V5 (x(i+1, j+1)) (24)

=0 j:O

=V, (x (i, j+1)) =V, (x(i+1, )= Vs (x(i, J))J
=i{_{xT(0,j+l)P1X(0,j+1)+ i _ZIST(|,j+1)sls(|,j+1)H

0=—d; +11=0-1

+3| - X7 (i +1,0)Px(i+1,0)+ Y itT(i+1,I)Szt(i+1,l)J]

i=0 O=—dy+11=6-1

_ (25)

B orP-R-PxOr S S Y qT<i+m,n>sgq<i+m,n>H

i=0 or=—ks F1M=01 1 g, = k3 +1N=p -1

+i - x7(0,j)(P-P,—P,)x(0, j)+ Zi:ﬂ 3 ZO: i qT(m,j+n)SSq(m,j+n)J].

j=0 o= - m:‘Pl_lt/)2=—k;+1 n=p,—1

Thus, by using (25) in (23), we get

[zl =7, <=2 2,av (i+L j+1)
i=0 j=

M

]
o

[[XT(O,j+1)P1x(O,j+1)+ 3 leT(I,j+1)Sls(I,j+l)J]

i 0=d; +11=0-1

+
‘M8

I
o

_ X7 (i+1,0)Px(i+1,0)+ 3 zlﬂ(i+1,|)szt(i+1,|)]] (26)

6:d5+1|:9*1

+
'M8

I
o

CO)(P-P-P)x(0)r ¥ 3

P== =

Zokl > qT(i+myn)Ssq(i+mln)J]

S+LN=p-1

+
.MS

Il
o

X7 (0, J)(P—P,—P,) x(0, j)+ i“z:ll ik 3 qT(m,j+n)SBq(m,j+n)ﬂ.

=—ky+1N=¢p-1
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Since, P <y°Q,, P,<yQ,, 0<P-P-P,<y’Q,, S,<7°Z,, S,<y*Z, and
S; < 7/223, therefore, it follows from Definition 2 that the closed-loop system (4) guar-
antees the H_ noise attenuation y . This completes the proof of Theorem 1.

In the following, we will show that the above derived sufficient condition for exis-
tence of delay-dependent robust H_ controllers can be transformed to the solvability
of an LMI.

Theorem 2. Consider the closed-loop system (4) with the initial condition (2). Given
scalars >0, £>0 andintegers d, >0, d, >0, k >0 and k; >0, if there exist
matrices Ny;, Npp, Ny, Ny, Ny, Ngy e R™, N e R™ and symmetric positive defi-

viovlovs vl ovl dyl dyl Kk dyg dyn Kkl v 0
* -1 0 0 0 ©0 0 0 0 0 0 0 0
* x ] 0 0 0 0 0 0 0 0 0 0
* % x| 0 0 0 0 0 0 0 0 0
* % x x _p 0 0 0 0 0 0 0  eD’
* % % x % _4'§5 0 0 0 0 0 0 d;VeD’
* k% kx4 0 0 0 0 d,J/eD" [<O, (27)
* ok x oxox *  KKS, 0 0 0 0 kk;v/eDT
* k& xox % * *  d'S, 0 0 0 0
* ox & xx % * * * 45, 0 0 0
T * % KKS, 0 0
k& xx % * * * * gl 0
f x % x x % . N * . N x 0
where
P, P+N] 0 0 0 0 0 0 0 |
N,-Nj, 0 0 0 0 o 0 0
* * P, P+NJ 0 0 0o 0 0
* * *  N,,—Nj, 0 0 0 0 0
v, =| * * * * _1+_2—§ |5+N3Tl 0 0 0 |
* * * * * N,-N, 0 0 0
* * * * * * 10 0
* * * * * * * 0
* * * * * * * * _7/2|

w,=[HP 0 000 0 L 0 0],

w,=[0 0 HP 0 0 0 0 L 0],

K2
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w,=[0 00 0 HP 00 0 L],

'//5=|:A1§+C1N_A1dN11 AgN, AP+CN-A N, AN,
A0|5+CON_A0dN31 AOdN32 Bl Bz Bo]!

WGZ[A1§+C1N_AMN11_IS AgN, AP+C,N-A N, AN,
A0|3+C0N_A0dN31 AOdN32 Bl Bz Bo]'

'//7:[A&IS+C1N_AMN11 AgN, AP+C,N-A N, -P A N,
Ab|3+CoN_A0dN31 AOdN32 Bl Bz Bo]'

V/8:|:A1IS+C1N_A1dN11 AmNu A2|3+C2N_A2dN21 A2dN22
AOIS"'CON_At)stl_l3 AOstz B1 Bz Bo]

w,=[0 S5, 000 00 0 0]

¥,=[0 0 0S5, 0000 0],

w,=[0 0000 S, 00 0]

WlZ:[(ElF_)+E01N_E1dN11) BN, <E2§+ ECZN_EZdN21) Eo Ny,
(Eo|3+EcoN_E0dN31) EOdN32 Ebl Eb2 Ebo]'

then the closed-loop system (4) with O<d, <d,, 0<d,<d,, O<k <k and
0<k, < k; has a specified H_ noise attenuation y and the controller (3) with
K = NP is a y-suboptimal state feedback robust H_ controller for the uncertain
2-D discrete state delay system (1).

Proof. It follows from matrix inequality (12) that M,,, M,, and M,, are reversi-

ble. So, let us assume that

. {P OT { pt o} (283)

= = s a
Mll M12 _M1721M11P71 M{Zl
P o] p 0

p2 = = -1 -1 -1 | (28b)
MZl MZZ _MZZMZlP MZZ
P o " p-L 0

M, = = 5 5 o (28c¢)
M31 M32 _M32M31P M32

Pre-multiplying and post-multiplying both sides of matrix inequality (12) by
diag { K, b, b, 1, 1,1, 1, 1,1, 1 diag {d]1,d;1,kk; 1}, diag {d]'S; ", d;S;", k'k; S5}

and its transpose, respectively, we get
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(-PPP) (P‘1+(M1‘21M11P‘1)T) 0 0 0
* —((M;;)T —M;;) 0 0 0
* * (-PP,PY) (P‘1+(M2'21M21P‘1)T) 0
* » * (M) - mz) 0
* * * * (-P*(P-P-P,)P)
* * * * *
. . . . .
* * * * *
* * * * *
« « « « .
* * * * *
« . . . .
* * * * *
* * * * *
* * * * *
* * * * *
. « « . .
* * * * *
« . . . «

0 0 0 0 P 0 0
0 0o 0 0 0 0 0
0 0 0 0 0 P'™H" 0
0 0o 0 0 0 0 0
(Pre(mimp?)) 0 0 0 0 0 P
—((M;;)T—M;;) 0o 0 0 0 0 0
* -1 0 0 L’ 0 0
* * %0 L 0
* x %20 0 L
* x«x * - 0
* * * * * * _I
* * * * * * *
* * * * * * *
« ©  x ox « « .
. ©  x ox « « .
. ©  x o= « . .
. ©  x o= . . .
. ©  x ox « . .

K2
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(PAL (MM, P ) AL )l (PPAL P (MM AL| d;(PAL (MM, ) A
(M3 AL d; (M) Ay 6;(M3)' A,

(P’lﬂ;k—(Mz’leﬂP’l)T K;d) df(P’lﬂgk—(Mz’leZlP’l)T K;d) d;(P’lﬂsz—P’l—(Mz’lezlP’l)T K;d)
(M2) A, d; (M) A d;(M33) A

(P'lﬂgk—(Mggl\/lslP-l)T ,&Jd) dj(P'l,&Jk—(Mggl\/lslP-l)T ,&Jd) d;(P‘lﬂJk—(M;ZIMMP‘l)T /:gd)

(M) A d; (M;2) A d; (M) A,
B d, B/ d,B/
B, d,B] d,B;
By d, By d,B,
0 0 0
0 0 0
0 0 0
-p* 0 0
* —d, s 0
* * _d;—lsz—l
kfk;(P’lﬂfk ~(MgmP ) /:;d) 0 0 0
i (M) A a(st) o 0
(PR -(M2MLPY) AL ) 0 0 0
i (M) A& 0 d(s?) o
(PR -P - (MMLPY) AL 0 0 0
kk; (M) Al 0 0 Kk(s?)
k kB 0 0 0
kik;B; 0 0 0 <0. (29)
N 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
—k kSt 0 0 0
* —d; s 0 0
* * -d;'s;t 0
* * * _kl*—lk;—l 53—1
3661

KD
+%%, Scientific Research Publishing



A. K. Singh et al.

Denoting P=P*, P=P'PP*, P,=P'P,P*, S/'=S, S,'=S,, S;'=S,,
Ny = IVllizllvlul:)il’ Ny, = Mﬁl’ N, = szlenP*l » Ny = Mgzl » Ng = MailealPil ’
N, =M, and N =KP , we can re-write (29) as

voovl v vl e dyl Ayl Ky dyg dwr Kk |
* -1 0 0 0 0 0 0 0 0
* * 1 0 0 0 0 0 0 0 0
* o0 * —-1 0 0 0 0 0 0 0
* o*x x  * P 0 0 0 0 0 0
* ok ox % x _4'S 0 0 0 0 0 [<0,(30)
* * * * * * _d;_z 0 0 0 0
* * * * * * * _kl*k; _3 0 0 0
* * * * * * * * _d;_l 0 0
* * * * * * * * * _d;_z 0
* * * * * * * * * * —kszgsj
where
'/;5 :['Kils"'élN _'Km Ny 'Km N, '&2 N3, Azu
KO§+CON_KOdN31 'E‘OdN3Z §1 B
'/;6 :[Ails"'élN Am Ny — P Aid 'KzIS C. Az a Py

2
Kols"'c_:oN_'KOdNu AOdN32 Bl E §

v, = [Z&|3+CN Ald 1 Ald 12 AZP +C,N
’K‘OF_)+CON _AOdN3l AOdN32 El B

'/}a ['E&IS"'CN Am 11 E&lez A2P+CN
AP+CN-A N, -P AyN;, B B, B]

Using (1d) and (1e), (30) can be expressed as

I
,\;l>l Z ‘—‘?'

Y, +MFE,+E/F'MT <0, (31)
where
vi vi v vl vl dwl dyg Kkyd o diyg dyrn Kk |
* ] 0 0 0 0 0 0 0 0
* * ] 0 0 0 0 0 0 0 0
* ok x| 0 0 0 0 0 0 0
* % x  x _p 0 0 0 0 0
Y,=|* * * x * _4'5 0 0 0 0 0o |
* %k oxoxox x 4’5 0 0 0 0
ook ok x ok x * kS, 0 0 0
ook ok x k % * * 4’5, 0 0
I T T * 45, 0
*ooRoox Xk o * * * * —kk;S,

0
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M=[0 00000000000 D dD" dD" kkD 0 0 0]

T
>

Ec :|:(El§+ EclN - Eld Nn) Eld le (E2|5+ EczN - EZdNZI) EZdNZZ

(EoP+E,N—EoNy) EgNg, E,; E, E, 00 0000000 0].

Therefore, using Lemma 2, (31) can be rearranged as

VAR 7 AR i diyg

* -1 0 0 0 0

* * -1 0 0 0

* * * _I 0 0

* * * *  ¢DD'-P d, eDD’

* * * x  d°¢DD"  d;’sDD"-d,S,

* * x x  d¢DD' d,d,eDD"

* * * % (kk;)eDD" (d/k/k;)eDD’

* * * * * *

* * * * * *

* * * * * *
i ) (32)

dy; krkaws A

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

d;eDD" (kk;)eDDT 0 0 0
d;d;eDD" (d;kk;)DDT 0 0 0 |<o

d;2sDD" - d,5, (d;k;k; ) DD’ 0 0 0
(dsk;k;) ¢DD™  (Kk;) ¢DDT-Kk;S, 0 0 0

* * -d;S, 0 0

* * * 45 0

* * * * _k1*k2*53_

The equivalence of (32) and (27) follows trivially from Schur complements. This
completes the proof of Theorem 2.

Theorem 2 provides a parameterized representation of a set of y-suboptimal robust
H_ state feedback controllers (if they exist) in terms of feasible solutions to the LMI

(27). Based on Theorem 2, the design problem of a delay-dependent robust optimal

H_ controller can be formulated as

minimize

s.t. (27), (33)

which ensures the minimization of H_ noise attenuation y of the closed-loop sys-
tem (4).

KD
+%%, Scientific Research Publishing

3663



A. K. Singh et al.

4. An Illustrative Example

In this section, we present an application example to demonstrate the effectiveness of
our proposed result.

Example 1. In this example, we shall illustrate the applicability of Theorem 2 to the
control of thermal process in heat exchanger [4] [47] which can be expressed by the

partial differential equation with time and space delays:

oT (x,t oT (x,t
(gx ):_ ((3t )—aoT(X,t)—aiT(th_Tl)_azT(X_Xd1’t)

—aeT(x—xdz,t—rz)+bu(x,t),

(34)

where T (x,t) is the temperature at space X E[O,XJ and time te[0,0), u(x,t)
is input function, 7, and 7, are the time delays, X, and X, are the space delays,

and a,, &, a,, a;, bare the real coefficients. Taking

T(i,j)=T(iAx, jAt), u(i, j)=u(iAx, jAt), (35a)
T (xt) _T(ii)-T(i-1 j), or(xt) T(ii+1)-T(, j)’ (35)
oX AX ot At

(34) can be expressed in the following form:

T(i,j+l)=(1—%—aoAth(i, j)+%T(i—1, J)-aAtT (i, j—d,)

—a,ALT (i—d,, j) - a,ALT (i—k,, j —k, ) +bAtu(i, j),

(36)

where d, =int(x, /Ax), d, =int(z,/At+1), k =int(x, /AX) and, k, =int(z,/At+1),
int(.) is the integer function.

It is assumed that the surface of the heat exchanger is insulated and the heat flow
through it is in steady state condition, then we could take the boundary conditions as
aT (x,1) aT (x,1)

OX
Denote X' (i, j) = [TT (i -1, j) TT (i, j)], it is easy to verify that (36) can be con-

verted into the following discrete form:

=0 and =0, respectively.

0 0

. . . . 01 .. 0 0 ..
x(i+1 j+1)= At l—ﬂ—aoAt x(i+1, j)+|:0 0}x(|,1+1)+{0 O}X(I, i)
AX AX
0 0 0 0
— o 37
+{0 _%AJX(HLJ d2)+{0 —azAt}((l dy, j+1) (37)

+B —a(:At}X(i—kl,j—k2)+[bzt}u(i,j)_

Next, consider the problem of delay-dependent H_ control for uncertain two-
dimensional (2-D) discrete state-delayed systems characterized by (37). Let a, =1,
a=12, a,=01, a,=-09, b=1.2, At=01, Ax=04, d, =3, d,=1, k =1,
k, =1 and the initial state satisfies the condition (2) with =3, r,=2.

3664
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To consider the problem of H_ disturbance attenuation, the thermal process is
modeled in the form (1) with

Bl{ 0 } Bz=|: 0 } Bo=|: 0 } H=[t 1], L=05. (38)
0.004 0.004 0.003

It is also assumed that the above system is subjected to the parameter uncertainties of
the form (1¢) and (1d) with

0.002 0.001 0.004 0 0003 O 0.002 0
D = ! El = 1 EZ = 1 EO = )
0.01 0.02 0 0.004 0 0.003 0 0.002

e 0002 0 £ 0.003 0 _ 0006 O £ -05 (39)
0 0002 | 0o 0003 ™ | 0o -0006| ™ | 0|

e [0 ]e [0 g _[08] ¢ _[o7] g _[01
b2 ™ _0.4’ b0_0.007' cl — 0 ' =e2 T 0 ' =c0 T 0 '

Using the MATLAB LMI toolbox [48] [49], it is found that the optimization problem
(33) is feasible for the present example and the optimal solution is given by
_ _{ 0.0646 —0.0083} — _{ 0.0197 —0.0029} 5 { 0.0169 —0.0009}
| -0.0083 0.0160 | * |-0.0029 0.0083 | -0.0009 0.0028 |’
3.7202 —0.0003} — ; {5.1206 0.0000} — ; [5.1236 0.0000}
, S, =10" x , S, =10" x ,

) =

—0.0003 3.7219 2 0.0000 0.0000| 0.0000 0.0000

-0.1294 0.0334 s | 8.0094 —0.0007 —-0.0649 0.0084
1= Ny, =10 x » Ny = ) (40)
0.0334 -0.0091 —-0.0007 8.0134 0.0084 -0.0160

5.9719 0.0000 -0.0938 0.0177 . [ 59734 —0.0000
1 = 1 = X 1
0.0000 0.0000| ** | 0.0177 -0.0189| * —-0.0000 0.0000

N = [—0.1141 —0.0445], &= 6.8287x10°, y = 0.5793,

§1:106{

N,, =106>{

and a delay-dependent optimal H_ state feedback controller
u(i, j)=[-2.2779 -3.9781]x(i, j). (41)

When d, =3, d, =1, k =1, k, =1, the frequency response G (ej”’l,ej"’z) from the
disturbance input w(i, j) to the controlled output z(i, j) for the system (4) is shown
in Figure 1. It is apparent from Figure 1 that the maximum value of ‘G (ej“’l,ej“’2 )‘ is
0.5081, which is below the specified level of attenuation y =0.5793.

5. Conclusion

A solution to delay-dependent robust optimal H_ control problem for a class of un-
certain 2-D discrete state delay systems described by the GM with norm-bounded un-
certainties has been presented. A sufficient condition for the existence of delay-de-
pendent y-suboptimal state feedback robust H_ controllers has been established un-
der the LMI framework. A delay-dependent state feedback robust optimal H_ con-
troller is obtained through a convex optimization problem which can be solved by us-
ing MATLAB LMI toolbox [48] [49]. Finally, an application example has been provided

to illustrate the effectiveness of the proposed technique.
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Figure 1. The frequency response G (ej“’l el ) .
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