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Abstract 
In the mathematical applications, ideal concepts are involved. They have been studied and ana-
lyzed in various ways. Already ideal and α-ideal concepts were discussed in BF-algebras. In this 
paper the idea of bipolar valued fuzzy α-ideal of BF algebra is proposed. The relationship between 
bipolar valued fuzzy ideal and bipolar valued fuzzy α-ideal is studied. Some interesting results are 
also discussed.  
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1. Introduction 
After the concept of fuzzy sets of Zadeh [1], Lee [2] proposed an extension of fuzzy sets namely Bipolar Valued 
Fuzzy Sets (BVFS). Their range of membership degree has been extended from the interval [0, 1] to [−1, 1] and 
in [3]. He made a comparison with other fuzzy settings. These Bipolar valued fuzzy sets possess degrees of 
membership that denote the degree of satisfaction to the property corresponding to a fuzzy set and its counter- 
property in a bipolar valued fuzzy set. The membership degree 0 refers that the elements are irrelevant to the 
corresponding property. Further, the membership degrees (0, 1] show that the elements somewhat satisfy the 
property, and the membership degrees [−1, 0) denote that the elements somewhat satisfy the implicit counter 
property. 

There are two kinds of representations in the definition of bipolar valued fuzzy sets. They are canonical re-
presentation and reduced representation. In this work, the canonical representation of bipolar valued fuzzy sets is 
utilized.  

In 2011, Bipolar valued fuzzy K-subalgebras are discussed by Farhat Nisar [4]. The authors of [5] studied the 
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concepts of Intuitionistic L-fuzzy p-ideals of BF-algebras and their related results. 
Inspired by the concepts recently, the concept of Filters of BCH-Algebras Based on Bipolar-Valued Fuzzy 

Sets [6] has been discussed. In this paper, these concepts are intended to α-ideal of BF-algebras and bipolar va-
lued fuzzy α-ideal of a BF-algebra is proposed. The nature of the homomorphic images of bipolar valued fuzzy 
α-ideal of a BF-algebra is also analyzed. 

The paper is organized as follows: Section 2 provides the preliminaries. In Section 3, Bipolar valued fuzzy 
α-ideal is discussed and in Section 4, homomorphism on Bipolar valued fuzzy α-ideal is studied. Section 5 gives 
the conclusion.  

2. Preliminaries 
In this section, some basic definitions and results that are required in the sequel are recalled. The notations 

( )min ,a b a b= ∧  and ( )max ,a b a b= ∨  are used.  

2.1. Basic Results on BF-Algebras 
Definition 2.1. [7] A BF algebra is a non-empty set X with a constant 0 and a single binary operation * which 

satisfies the following axioms: 
 1. 0x x∗ =  
 2. 0x x∗ =  
 3. ( )0  for all , .x y y x x y X∗ ∗ = ∗ ∈  

Example 2.2. Let { }0,1, 2,3, 4X =  be a set which comprises the following table. 
 

* 0 1 2 3 4 

0 0 4 3 2 1 

1 1 0 4 3 2 

2 2 1 0 4 3 

3 3 2 1 0 4 

4 4 3 2 1 0 

 
Then (X, *, 0) is BF-algebra. 
Definition 2.3. [7] A BG-algebra is a non-empty set X with a constant 0 and a single binary operation * satis-

fying the following axioms: 
 0x x∗ =  
 0x x∗ =  
 ( ) ( )* 0 for all , .x y y x x y X∗ ∗ = ∈  

A binary relation ≤ in a BF-algebra X can be defined as x y≤ , if and only if 0.x y∗ =  
A subset S of a BF-algebra X is called a subalgebra of X, if  for all , .x y S x y S∗ ∈ ∈  
An ideal of a BF-algebra X is a subset I of X consisting 0 such that, if x y I∗ ∈  and ,y I∈  then .x I∈  
An ideal I of a BF-algebra X is called closed, if 0 .x I x I∗ ∈ ∀ ∈  
A non-empty subset I of a BF-algebra X is α-ideal, if for all , ,x y z X∈ , ( ) ( )x z y z I∗ ∗ ∗ ∈  and 

.y I x I∈ ⇒ ∈  
An α-ideal I of X is called closed, if 0 .x I x X∗ ∈ ∀ ∈  
A fuzzy set µ  in a BF-algebra X can be called as a fuzzy subalgebra of X, if it satisfies: 

( ) ( ) ( ) for all ,x y x y x y Xµ µ µ∗ ≥ ∧ ∈                             (1) 

A fuzzy set µ  in a BF-algebra X can be called as a fuzzy ideal of X, if it satisfies: 

( ) ( )0 for allx x Xµ µ≥ ∈                                 (2) 

( ) ( ) ( ) for all ,x x y y x y Xµ µ µ≥ ∗ ∧ ∈                             (3) 
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A fuzzy set µ  in a BF-algebra X can be called as a fuzzy α-ideal of X, if it satisfies: 

( ) ( ) ( )0 0 for allx x Xµ µ≥ ∈                                 (4) 

( ) ( ) ( )( ) ( ) for all , ,x x z y z y x y z Xµ µ µ≥ ∗ ∗ ∗ ∧ ∈                       (5) 

Definition 2.4. [6] A function :f X Y→  of BF-algebras is considered to be homomorphism of X, if  

( ) ( ) ( ) , .f x y f x f y x y X∗ = ∗ ∀ ∈  

Remark 2.5. If :f X Y→  is a homomorphism on BF-algebras, ( )0 0 .X Yf =  
Definition 2.6. [6] A function :f X Y→  of BF-algebras is said to be anti-homomorphism of X if 

( ) ( ) ( ) , .f x y f y f x x y X∗ = ∗ ∀ ∈  

2.2. Basic Results on Bipolar Valued Fuzzy Set 
Fuzzy sets are generally useful mathematical structures which represent a collection of objects whose boundary 
is vague. Several kinds of fuzzy set extensions are there in the fuzzy set theory. The examples are intuitionistic 
fuzzy sets, interval-valued fuzzy sets, vague sets, etc. This section starts with the definition of Bipolar Valued 
Fuzzy Set. 

Definition 2.7. Let X be a non empty set. A Bipolar Valued Fuzzy Set (BVFS) B in X is an object with the 
form 

( ) ( )( ){ }; , |B x x x x Xµ ν+ −= ∈  

where [ ]: 0,1Xµ+ →  and [ ]: 1,0Xν − → −  are mappings. 

The positive membership degree ( )xµ+  denotes the satisfaction degree of an element x to the property cor-

responding to a bipolar valued fuzzy set ( ) ( )( ){ }; , |B x x x x Xµ ν+ −= ∈  and the negative membership degree  

( )xν −  denotes the satisfaction degree of an element x to some implicit counter-property corresponding to a bi- 
polar valued fuzzy set ( ) ( )( ){ }; , | .B x x x x Xµ ν+ −= ∈  If ( ) 0xµ+ ≠  and ( ) 0,xν − =  x is regarded as pos-

sessing only positive satisfaction for ( ) ( )( ){ }; , |B x x x x Xµ ν+ −= ∈ . If ( ) 0xµ+ =  and ( ) 0,xν − ≠  it de-

notes that x does not satisfy the property of ( ) ( )( ){ }; , |B x x x x Xµ ν+ −= ∈  but somewhat satisfies the counter 

property of ( ) ( )( ){ }; , |B x x x x Xµ ν+ −= ∈ . It is possible for an element x to be such that ( ) 0xµ+ ≠  and 

( ) 0xν − ≠  when the membership function of the property overlaps that of its counter property over some por-

tion of X. For the sake of simplicity, the symbol ( ); ,B X µ ν+ −=  shall be used for the bipolar valued fuzzy set 

( ) ( )( ){ }; , | .B x x x x Xµ ν+ −= ∈  

Definition 2.8. A BVFS B in a set X with the positive membership [ ]: 0,1Xµ+ →  and negative member-

ship [ ]: 0,1Xν − →  is indicated to have Sup-Inf property, if for any subset T of X, there exists 0x T∈  such 

that ( ) ( )0 supt Tx tµ µ+ +
∈=  and ( ) ( )0 inft Tx tν ν− −

∈= . 

Definition 2.9. Let :f X Y→  be a function and let ( ); ,A AA X µ ν+ −=  and ( ); ,B BB Y µ ν+ −=  be the bipolar 

valued fuzzy sets of X and Y, respectively. Then, the image of A under f is defined as ( ) ( ) ( )( ); ,f A f Af A Y µ ν+ −=

such that  

( ) ( ) ( )
( ) ( ) ( ){ }

1

1sup if :

0 otherwise

A
z f y

f A

z f y x f x y
y

µ φ
µ −

+ −

+ ∈

 = = ≠= 

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and 

( ) ( ) ( )
( ) ( ) ( ){ }1

1inf if :

0 otherwise

A
z f y

f A

z f y x f x y
y

ν φ
ν −

− −

− ∈
 = = ≠= 


 

Definition 2.10. Let :f X Y→  be a function and let ( ); ,A AA X µ ν+ −=  and ( ); ,B BB Y µ ν+ −=  be the bipolar 
valued fuzzy sets of X and Y, respectively. Then, the inverse image of B under f is defined as 

( ) ( ) ( )( )1 1
1 ; ,

f B f B
f B X µ ν− −
− + −=  

such that ( ) ( ) ( )( )1 Bf B
x f xµ µ−

+ +=  and ( ) ( ) ( )( )1 .Bf B
x f x x Xν ν−

− −= ∀ ∈  

3. Bipolar Valued Fuzzy α-Ideal  
In this section, Bipolar valued fuzzy α-ideal of a BF-algebra is defined. It is also proved that any Bipolar valued 
fuzzy α-ideal in X is a Bipolar valued fuzzy BF-ideal and the sufficient condition is derived for the converse. 

Definition 3.1. A BVFS ( ); ,B X µ ν+ −=  in X is called a bipolar valued fuzzy subalgebra of X, if it satisfies: 

( ) ( ) ( )x y x yµ µ µ+ + +∗ ≥ ∧  

( ) ( ) ( ) ,x y x y x y Xν ν ν− − −∗ ≤ ∨ ∀ ∈                           (6) 

Definition 3.2. A BVFS ( ); ,B X µ ν+ −=  in X is called a bipolar valued fuzzy ideal (BVF-ideal) of X, if it 
satisfies:  

( ) ( ) ( ) ( )0 and 0x xµ µ ν ν+ + − −≥ ≤                             (7) 

( ) ( ) ( )x x y yµ µ µ+ + +≥ ∗ ∧  

( ) ( ) ( ) , .x x y y x y Xν ν ν− − −≤ ∗ ∨ ∀ ∈                          (8) 

Definition 3.3. A BVFS B in a BF-algebra X, is to be a Bipolar Valued Fuzzy Closed BF-ideal (BVFC-BF- 
ideal) of X, if 
 ( ) ( ) ( )x x y yµ µ µ+ + +≥ ∗ ∧  

 ( ) ( ) ( )x x y yν ν ν− − −≤ ∗ ∨  
 ( ) ( )0 x xµ µ+ +∗ ≥  
 ( ) ( )0 , .x x x y Xν ν− −∗ ≤ ∀ ∈  

Definition 3.4. A BVFS A in a BF-algebra X is called to be a Bipolar Valued Fuzzy α-ideal (BVF-α-ideal) of 
X, if 
 ( ) ( )0A A xµ µ+ +≥  and ( ) ( )0A A xν ν− −≤  

 ( ) ( ) ( )( ) ( )A A Ax x z y z yµ µ µ+ + +≥ ∗ ∗ ∗ ∧  

 ( ) ( ) ( )( ) ( ) , , .A A Ax x z y z y x y z Xν ν ν− − −≤ ∗ ∗ ∗ ∨ ∀ ∈  

Example 3.5. The BF-algebra X = {0, 1, 2, 3} is considered with the Cayley table as given below. 
 

* 0 1 2 3 

0 0 1 2 3 

1 1 0 3 2 

2 2 3 0 1 

3 3 2 1 0 

 
( ) ( ){ }, , |A AA x x x x Xµ ν+ −= ∈  is the BVFS of X defined as  
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( )
1; 0,1
0.5; 2,3A

x
x

x
µ+ =

=  =
 and ( )

1; 0,1
0.6; 2,3A

x
x

x
ν − − =

= − =
 

is a BVF-α-ideal of X. 
Definition 3.6. A BVFS A in a BF-algebra X is considered to be a Bipolar valued fuzzy closed α-ideal 

(BVFC-α-ideal) of X, if 
 ( ) ( ) ( )( ) ( )A A Ax x z y z yµ µ µ+ + +≥ ∗ ∗ ∗ ∧  

 ( ) ( ) ( )( ) ( )A A Ax x z y z yν ν ν− − −≤ ∗ ∗ ∗ ∨  
 ( ) ( )0A Ax xµ µ+ +∗ ≥  
 ( ) ( )0 , , .A Ax x x y z Xν ν− −∗ ≤ ∀ ∈  

Example 3.7. Consider the BF-algebra X = {0, 1, 2, 3} with the Cayley table given below. 
 

* 0 1 2 3 

0 0 1 2 3 

1 1 0 3 2 

2 2 3 0 1 

3 3 2 1 0 

 

( ) ( ){ }, , |A AA x x x x Xµ ν+ −= ∈  is the BVFS of X defined as 

( )
0.8; 0,1
0.1; 2,3A

x
x

x
µ+ =

=  =
 and ( )

0.5; 0,1
0.1; 2,3A

x
x

x
ν − − =

= − =
 

is a BVFC-α-ideal of X. 
Trivially, the following can be proved: 
Proposition 3.8. Every BVFC-α-ideal is a BVF-α-ideal. 
In general, the converse of the above proposition is not true from the following: 
Example 3.9. Consider the BF-algebra X = {0, 1, 2, 3} with the Cayley table given below 

 
* 0 1 2 3 

0 0 3 0 1 

1 1 0 1 3 

2 2 3 0 1 

3 3 1 3 0 

 

( ) ( ){ }, , |A AA x x x x Xµ ν+ −= ∈  is the BVFS of X defined as 

( )
0.6; 0,1
0.2; 2,3A

x
x

x
µ+ =

=  =
 and ( )

0.7; 0,1
0.3; 2,3A

x
x

x
ν − − =

= − =
 

is a BVF-α-ideal of X but not BVFC-α-ideal. 
Since ( ) ( )0 1 1A Aµ µ+ +∗ <  and ( ) ( )0 1 1 .A Aν ν− −∗ ≤  
Proposition 3.10. If A is Bipolar valued fuzzy α-ideal of X with x y≤  for any , ,x y X∈  then ( ) ( )A Ax yµ µ+ +≥  

and ( ) ( ).A Ax yν ν− −≤  That is Aµ
+  is order-reversing and Aν

−  is order-preserving.  
Proof: Let , ,x y z X∈  such that .x y z≤ ≤   
Then, by the partial ordering if ≤  is defined in X, 0x y∗ =  and 0.y z∗ =  
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Thus, 
( ) ( ) ( )( ) ( )

( ) ( )( ) ( ) ( ) ( )0 0 0 .

A A A

A A A A A

x x y y z y

y y y

µ µ µ

µ µ µ µ µ

+ + +

+ + + + +

≥ ∗ ∗ ∗ ∧

≥ ∗ ∧ = ∧ =
 

And 
( ) ( ) ( )( )

( ) ( )( ) ( ) ( ) ( )
( )

0 0 0 .

A A A

A A A A A

x x y y z y

y y y

ν ν ν

ν ν ν ν ν

− − −

− − − − −

≤ ∗ ∗ ∗ ∨

≤ ∗ ∨ = ∨ =
 

It completes the proof. 
Theorem 3.11. If A is BVFC-α-ideal of X, then the sets ( ) ( ){ }; 0A AJ x X xµ µ+ += ∈ =  and  

( ) ( ){ }; 0A AK x X xν ν− −= ∈ =  are α-ideals of X. 
Proof: Clearly, 0 J∈  and 0 K∈ . Hence, J φ≠  and K φ≠ . 
Let ( ) ( )  and .x y y z J y J∗ ∗ ∗ ∈ ∈  

( ) ( )( ) ( ) 0A Ax y y z yµ µ+ +⇒ ∗ ∗ ∗ = =  
( ) ( ) ( )( ) ( ) 0 0 0.A A Ax x y y z yµ µ µ+ + +⇒ ≥ ∗ ∗ ∗ ∧ = ∧ =  

But ( ) ( ) ( )0 0.A A Ax xµ µ µ+ + +≥ ⇒ =  
Hence, J is an α-ideal of X. Similarly, it can be proved that K is an α-ideal of X. 
Theorem 3.12. Any BVF- α-ideal of X is a Bipolar valued fuzzy BF-ideal of X. 
Proof: It is trivial by putting 0z =  in the definition of BVF-α-ideal. 
The converse of the above theorem may not be true. 
Now, a sufficient condition is derived for a Bipolar valued fuzzy BF-ideal to be a BVF-α-ideal as follows: 
Theorem 3.13. Let A be a BVF-BF-ideal of X. If ( ) ( ) ( )( )A Ax y x z y zµ µ+ +∗ ≥ ∗ ∗ ∗  and  
( ) ( ) ( )( ) , , ,A Ax y x z y z x y z Xν ν− −∗ ≤ ∗ ∗ ∗ ∀ ∈  then A is BVF- α-ideal of X. 

Proof: Let A be a Bipolar valued fuzzy BF-ideal of X and assign , , .x y z X∈  
So, we have ( ) ( )0A A xµ µ+ +≥  and ( ) ( )0 .A A xν ν− −≤  
Then,  

( ) ( ) ( ) ( ) ( )( ) ( )A A A A Ax x y y x z y z yµ µ µ µ µ+ + + + +≥ ∗ ∧ ≥ ∗ ∗ ∗ ∧  

and  
( ) ( ) ( ) ( ) ( )( ) ( ).A A A A Ax x y y x z y z yν ν ν ν ν− − − − −≤ ∗ ∨ ≤ ∗ ∗ ∗ ∨  

Hence, A is BVF- α-ideal of X. 
Theorem 3.14. The intersection of any two Bipolar valued fuzzy α-ideals of X is also a Bipolar valued fuzzy 

α-ideal. 
Proof: Let A and B be any two Bipolar valued fuzzy α-ideals of X. 
Let ( ) ( ){ }, , |A AA x x x x Xµ ν+ −= ∈  and ( ) ( ){ }, , |B BB x x x x Xµ ν+ −= ∈ .  

Consider  

( ) ( ){ }, , |C CC A B x x x x Xµ ν+ −= = ∈  

where ( ) ( ) ( )C A Bx x xµ µ µ+ + += ∧  and ( ) ( ) ( )C A Bx x xν ν ν− − −= ∨ . 
Let , .x y X∈  
Now, ( ) ( ) ( ) ( ) ( ) ( )0 0 0C A B A B Cx x xµ µ µ µ µ µ+ + + + + += ∧ ≥ ∧ =  and 

( ) ( ) ( ) ( ) ( ) ( )0 0 0C A B A B Cx x xν ν ν ν ν ν− − − − − −= ∨ ≤ ∨ = . 

( ) ( ) ( )
( ) ( )( ) ( )( ) ( ) ( )( ) ( )( )
( ) ( )( ) ( ) ( )( )( ) ( ) ( )( )
( ) ( )( ) ( )

*
C A B

A A B B

A B A B

C C

x x x

x z y z y x z y z y

x z y z x z y z y y

x z y z y

µ µ µ

µ µ µ µ

µ µ µ µ

µ µ

+ + +

+ + + +

+ + + +

+ +

= ∧

≥ ∗ ∗ ∗ ∧ ∧ ∗ ∗ ∧

= ∗ ∗ ∗ ∧ ∗ ∗ ∗ ∧ ∧

= ∗ ∗ ∗ ∧

 

Similarly, ( ) ( ) ( )( ) ( ) ,C C Cx x z y z yν ν ν− − −≤ ∗ ∗ ∗ ∨  and it completes the proof. 
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The above theorem can be generalized as follows. 
Theorem 3.15.The intersection of a family of Bipolar valued fuzzy α-ideals of X is a Bipolar valued fuzzy 

α-ideal of X. 
The following can be analogously proved. 
Theorem 3.16. Intersection of any two Bipolar valued fuzzy closed α-ideal of X is also a Bipolar valued fuzzy 

closed α-ideal of X. Hence, the intersection of a family of Bipolar valued fuzzy closed α-ideal of X is also a Bi-
polar valued fuzzy closed α-ideal of X. 

Remark 3.17. ( ); ,B X µ ν+ −=  is a BVFS defined on any universe X, if and only if µ+  and ν −−  are the 
fuzzy subsets of X.  

Theorem 3.18. A BVFS ( ); ,B X µ ν+ −=  is a BVF-α-ideal of X, if and only if the fuzzy subsets µ+  and 
ν −−  are fuzzy α-ideals of X. 
Proof: Let ( ); ,B X µ ν+ −=  be a BVF-α-ideal of X. 
Further, clearly µ+  is a fuzzy α-ideal of X. 
Also ( ) ( )0 xν ν− −≤  and ( ) ( ) ( )( ) ( ) , ,A A Ax x z y z y x y z Xν ν ν− − −≤ ∗ ∗ ∗ ∨ ∀ ∈ .  

( ) ( ) ( ) ( ) ( )( ) ( )0 and A Ax x x z y z yν ν ν ν ν− − − − −⇒ − ≥ − − ≥ − ∗ ∗ ∗ ∧ −  

Therefore, ν −−  is a fuzzy α-ideal of X 
Conversely, assume µ+  and ν −−  are fuzzy α-ideals of X. 
It is enough to prove that, ( ) ( )0 xν ν− −≤  and ( ) ( ) ( )( ) ( ) , , .A A Ax x z y z y x y z Xν ν ν− − −≤ ∗ ∗ ∗ ∨ ∀ ∈  

For, ( ) ( ) ( ) ( ) ( )( ) ( )0 and .A Ax x x z y z yν ν ν ν ν− − − − −− ≥ − − ≥ − ∗ ∗ ∗ ∧ −  

( ) ( ) ( ) ( ) ( )( ) ( )0 and .A A Ax x x z y z yν ν ν ν ν− − − − −⇒ ≤ ≤ ∗ ∗ ∗ ∨  

It fulfills the proof. 
The following can be obtained using this theorem. 
Theorem 3.19. A BVFS ( ) ( ){ }, , |A AB x x x x Xµ ν+ −= ∈  is a BVF-α-ideal of X, if and only if  

 ( ); ,B X µ µ+ += −  and 

 ⟡B ( ); ,X ν ν− −= −  are also BVF-α-ideals of X. 

Proof: ( ) ( ){ }, , |A AA x x x x Xµ ν+ −= ∈  is a Bipolar valued fuzzy α-ideal of X, if and only if, the fuzzy sub-

sets µ+  and ν −−  are fuzzy α-ideals of X by the theorem 3.18. 
That is, if and only if, B  and ⟡B are also Bipolar valued fuzzy α-ideal of X by the definition of B  and 

⟡B. 
The following is analogously true. 
Theorem 3.20. A BVFS ( ) ( ){ }, , |A AB x x x x Xµ ν+ −= ∈  is a BVFC- α-ideal of X if and only if 

 ( ); ,B X µ µ+ += −  and  

 ⟡B ( ); ,X ν ν− −= −  are also BVFC-α-ideals of X. 

4. Homomorphism on Bipolar Valued Fuzzy α-Ideal 
Here, the image and pre-image of Bipolar valued fuzzy α-ideals under the action of homomorphism and anti- 
homomorphism on BF-algebras are discussed. 

Theorem 4.1. Let f be a homomorphism from BF-algebras X onto Y. A be a bipolar valued fuzzy α-ideal of X 
with Sup-Inf property. Then, the image of A, ( ) ( ) ( ) ( ){ }, , |f A f Af A y y y Yµ ν+ −= ∈  is a bipolar valued fuzzy α- 

ideal of Y. 
Proof: Let , ,a b c Y∈  with ( ) ( ) ( )1 1 1

0 0 0, andx f a y f b z f c− − −∈ ∈ ∈  such that 
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( )
( )

( ) ( )
( )

( ) ( )
( )

( )
1 1 1

0 0 0sup ; sup ; supA A A A A A
t f a t f b t f c

x t y t z tµ µ µ µ µ µ
− − −

+ + + + + +

∈ ∈ ∈
= = =  

and 

( )
( )

( ) ( )
( )

( ) ( )
( )

( )
1 1 10 0 0inf ; inf ; infA A A A A A

t f a t f b t f c
x t y t z tν ν ν ν ν ν

− − −

− − − − − −

∈ ∈ ∈
= = =  

Now, by the definitions 2.8, 2.9 and 2.4, the following is framed 

( ) ( )
( )

( ) ( ) ( )
( )

( ) ( ) ( )
1 1

0
0

0 sup 0 supA A A Af A f A
t f t f a

t x t aµ µ µ µ µ µ
− −

+ + + + + +

∈ ∈
= ≥ ≥ = =  

and  

( ) ( )
( )

( ) ( ) ( )
( )

( ) ( ) ( )
1 10

0
0 inf 0 infA A A Af A f At f t f a

t x t aν ν ν ν ν ν
− −

− − − − − −

∈ ∈
= ≤ ≤ = =  

Now, 

( ) ( ) ( )( ) ( ) ( )
( ) ( )( )

( )
( )

( )

( ) ( )( ) ( )
( ) ( ) ( ) ( ) ( )

1 1

1

0 0 0 0 0

0

sup sup

sup

A Af A f A
t f a c b c t f b

A A

A A f At f a

a c b c b t t

x z y z y

x t a

µ µ µ µ

µ µ

µ µ µ

− −

−

+ + + +

∈ ∗ ∗ ∗ ∈

+ +

+ + +
∈

∗ ∗ ∗ ∧ = ∧

≤ ∗ ∗ ∗ ∧

≤ = =

  

( ) ( ) ( )( ) ( ) ( )
( ) ( )( )

( )
( )

( )

( ) ( )( ) ( )
( ) ( ) ( ) ( )

1 1

1

0 0 0 0 0

0

inf inf

inf ( )

A Af A f A t f a c b c t f b

A A

A A f At f a

a c b c b t t
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−

− − − −

∈ ∗ ∗ ∗ ∈

− −

− − −
∈

∗ ∗ ∗ ∨ = ∨

≥ ∗ ∗ ∗ ∨

≥ = =

  

Hence, the image ( )f A  is a bipolar valued fuzzy α-ideal of Y. 
Theorem 4.2. Let f be a homomorphism from BF-algebras X onto Y and A be a Bipolar valued fuzzy closed 

α-ideal of X with Sup-Inf property. Then, the image of A, ( ) ( ) ( ) ( ) ( ){ }, , |f A f Af A y y y y Yµ ν+ −= ∈ is a bipolar 

valued fuzzy closed α-ideal of Y. 
Proof: Let x Y∈  with ( )1

0x f x−∈  such that  

( )
( )

( ) ( )
( )

( )
11

0 0sup ; inf .A A A A
t f xt f x

x t x tµ µ ν ν
−−

+ + − −

∈∈

= =  

Then, we have 

( ) ( )
( )

( ) ( ) ( )
( )

( ) ( ) ( )
1 1

0 0
0

sup 0 sup 0A A A Af A f A
t f x t f x

x t x x t xµ µ µ µ µ µ
− −

+ + + + + +

∈ ∈ ∗
= ≤ ≤ ∗ = = ∗  

( ) ( )
( )

( ) ( ) ( )
( )

( ) ( ) ( )
1 10 0

0
inf 0 inf 0A A A Af A f At f x t f x

x t x x t xν ν ν ν ν ν
− −

− − − − − −

∈ ∈ ∗
= ≥ ≥ ∗ = = ∗  

Hence, by the above theorem, the image ( )f A  is considered as a Bipolar valued fuzzy closed α-ideal of Y. 
Theorem 4.3. Let f be a homomorphism from BF-algebras X onto Y and B be a bipolar valued fuzzy α-ideal 

of Y. Then, the inverse image of B, ( )1f B−  is a bipolar valued fuzzy α-ideal of X. 
Proof: Let , .x y X∈  
Now, it is clear that  

( ) ( ) ( )( ) ( )( ) ( ) ( )1 100 B Bf B f B
f f x xµ µ µ µ− −

+ + + +≥ ==  and ( ) ( ) ( )( ) ( )( ) ( ) ( )1 10 0B Bf B f B
f f x xν ν ν ν− −

− − − −= ≤ =  

Then, ( ) ( ) ( )( ) ( ) ( )( ) ( ) ( )( )( ) ( )( )
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1

1 1

B B Bf B

f B f B

x f x f x f z f y f z f y

x z y z y

µ µ µ µ

µ µ

−

− −
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+ +

= ≥ ∗ ∗ ∗ ∧

= ∗ ∗ ∗ ∧
 

Also ( ) ( ) ( )( ) ( ) ( )( ) ( ) ( )( )( ) ( )( )
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Then, the inverse image of B, ( )1f B−  is a bipolar valued fuzzy α-ideal of X. 
Theorem 4.4. Let f be a homomorphism from BF-algebras X onto Y and B be a Bipolar valued fuzzy closed 

α-ideal of Y. Then the inverse image of B, ( )1f B−  is a Bipolar valued fuzzy closed α-ideal of X. 
Proof: Let .x X∈  Then, we have 

( ) ( ) ( )( ) ( ) ( )( ) ( )( ) ( ) ( )1 10 0 0B B Bf B f B
x f x f f x f x xµ µ µ µ µ− −

+ + + + +∗ = ∗ = ∗ ≥ =  

( ) ( ) ( )( ) ( ) ( )( ) ( )( ) ( ) ( )1 10 0 0 .B B Bf B f B
x f x f f x f x xν ν ν ν ν− −

− − − − −∗ = ∗ = ∗ ≤ =  

Hence, through the above theorem, the inverse image ( )1f B−  becomes a Bipolar valued fuzzy closed α- 
ideal of X. 

In the same way, the following can be proved. 
Theorem 4.5. Let f be an anti-homomorphism from X onto Y and A be a bipolar valued fuzzy α-ideal of X 

with Sup-Inf property. Then, the image of A, ( )f A  is a bipolar valued fuzzy α-ideal of Y. 
Theorem 4.6. Let f be an anti-homomorphism from X onto Y and B be a bipolar valued fuzzy α-ideal of Y. 

Then, the inverse image of B, ( )1f B−  is a bipolar valued fuzzy α-ideal of X. 
Theorem 4.7. Let f be an anti-homomorphism from X onto Y and A be a bipolar valued fuzzy closed α-ideal 

of X with Sup-Inf property. Then, the image of A, ( )f A  is a bipolar valued fuzzy closed α-ideal of Y. 
Theorem 4.8. Let f be an anti-homomorphism from X onto Y and B be a bipolar valued fuzzy closed α-ideal 

of Y. Then, the inverse image of B, ( )1f B−  is a bipolar valued fuzzy closed α-ideal of X. 

5. Conclusion 
From the preliminaries of this research work, Bipolar valued fuzzy sets of various researchers are analyzed. Es-
pecially, for the present work stated in this paper, an investigation on the Bipolar valued fuzzy α-ideals of 
BF-algebras has been carried out. From the investigation, several interesting results are observed. As a result, 
the research has been focused on this way and all the possible ways are found out to prove this strategy. The 
surprising point is that in [7] Andrzej Walendziak, theorem 2.11 says that the structure of BF algebra becomes a 
BG-algebra and the proof is followed directly from the definition. Hence, it is concluded that all the results 
prove here for BF-algebras can directly be carried over to BG-algebras.  
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