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ABSTRACT 

In this paper, a robust DWPT based adaptive bock algorithm with modified threshold for denoising the sounds of musi-
cal instruments shehnai, dafli and flute is proposed. The signal is first segmented into multiple blocks depending upon 
the minimum mean square criteria in each block, and then thresholding methods are used for each block. All the blocks 
obtained after denoising the individual block are concatenated to get the final denoised signal. The discrete wavelet 
packet transform provides more coefficients than the conventional discrete wavelet transform (DWT), representing ad-
ditional subtle detail of the signal but decision of optimal decomposition level is very important. When the sound signal 
corrupted with additive white Gaussian noise is passed through this algorithm, the obtained peak signal to noise ratio 
(PSNR) depends upon the level of decomposition along with shape of the wavelet. Hence, the optimal wavelet and level 
of decomposition may be different for each signal. The obtained denoised signal with this algorithm is close to the 
original signal. 
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1. Introduction 

In the field of denoising the sounds of musical instru-
ments, time frequency based transforms play an impor-
tant role. They allow us to work with a sound signal from 
both time and frequency perspectives simultaneously. 
Such transforms have traditionally been useful in study-
ing the nature of the sound signal, noise, and in facilitat-
ing the application of aesthetically interesting and novel 
modification to specific sound signals [1]. We are inter-
ested in a transform that is useful in working with musi-
cal instrument sound signals, and we look at the applica-
tion of the discrete wavelet packet transform (DWPT) to 
remove the additive white Gaussian noise. There are 
several reasons for choosing the DWPT, it is inherently 
multi-resolution, making it more suited to human psyc-
hoacoustics than fixed resolution transforms as short time 
Fourier transform (STFT) [2]. It is easily reconfigured to 
allocate time frequency resolution in different ways 
through various basis selection approaches. Furthermore, 
efficient discrete time algorithms are available, and the 
transform basis function is inherently time localized 
without the introduction of a separate window function. 

Signals may be transformed, modified and re-synthesized 
using DWPT without affecting the quality of the signal 
[3]. 

Noise has been a major problem for all signal proc-
essing applications. An unwanted signal gets superim-
posed over clean undisturbed signal. Noise exists in high 
frequency, but the sound signal is primarily low fre-
quency. Since the wavelet transform decomposes the sig- 
nal into approximation (low frequency) and detail (high 
frequency) coefficients [4,5], much of the noise is con-
centrated in detail coefficients. This suggests a method to 
denoise the signal, simply reducing the size of the detail 
coefficients before using them to reconstruct the signal, 
which is called thresholding or shrinkage rule [6]. We 
cannot eliminate the detail coefficients entirely, because 
they contain some important information of the signal. 
Various kinds of thresholding have been proposed in 
literature [7], but the choice depends upon the application 
at hand. The two important types of thresholing, hard and 
soft have been used to denoise the signal. In hard thresh-
olding the wavelet coefficients below the given threshold 
are set to zero, but in soft thresholding the wavelet coef-
ficients are reduced by a quantity equal to the threshold 
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value. The extension of discrete wavelet transform is 
discrete wavelet packet transform in which we split both 
low pass and high pass filters at all scales in filter bank 
implementation to obtain flexible and detail analysis 
transform for denoising the sound signals [8]. In [9], 
wavelet packet approach which deals with heterogeneous 
noise for preprocessing of mass spectrometry data is 
discussed which incorporate a variance change point de-
tection method in thresholding. Wavelet packet method 
has been used to reduce the Additive White Gaussian 
Noise from the speech signal which shows significant 
SNR improvement [10]. The rest of the article is organ-
ized as follows: In Section 2, brief theory of discrete 
wavelet packet transform (DWPT) is given. Wavelet 
packet adaptive block denoising scheme is discussed in 
Section 3, which is preceded by block denoising algo-
rithm based on DWPT in Section 4. The various experi-
mental results are discussed in Section 5. Section 6 gives 
the concluding remarks based on the experimental re-
sults. 

2. Discrete Wavelet Packet Transform 
(DWPT) 

Discrete wavelet packet transforms are used to get the 
advantage of better frequency resolution representation. 
When the wavelet transform is generalized to wavelet 
packet transform, not only the low pass filter output is 
decomposed through further filtering, but the high pass 
filter output decomposed as well. The ability to decom-
pose the high pass filter outputs means that the wavelet 
packet allows for more than one basis function at a given 
scale, versus the wavelet transform which has one basis 
function at each scale other than the deepest level, where 
it has two.  

The set of wavelet packets collectively make up the 
complete family of possible basis, and many potential 
basis can be constructed from them. If only the low pass 
filter is decomposed, the result is wavelet basis. If all low 
pass and high pass filters are decomposed, the complete 
tree basis results. This basis has the time frequency parti-
tioning like STFT. Between these two extremes lie a 
large number of possible basis and their associated sub 
trees. Nodes can be merged or split based on the re-
quirement of application. In all cases, the leaves of each 
connected sub tree of the complete wavelet packet tree 
from the basis of initial space; they span the space in 
linearly independent fashion. The tree diagram of a 
depth-3 complete tree basis is shown in the Figure 1. 

As with the wavelet transform tree diagram in [11], 
denotes the depth within the transform and  the posi-
tion of each node 

k
 ,j k , but now the position index 

conveys more information, specifically which wavelet 
packet it corresponds to a given scale. We refer to the 
associate wavelet packet as , ,j k pw  analogus to the  

 

Figure 1. Depth-3 discrete wavelet packet transform tree. 
 
wavelet ,k p . The tree diagram does not convey time 
domain information, so the index 

w
p  is not used in node 

naming. Hence in wavelet packet, if all the packets are at 
the same scale, we may simply refer to them as  as 
shown in the Figure 1.  

kw

Furthermore, ,j k  is either the scaling function, or 
derived from the scaling function. DWPT does not re-
quire the explicit definition of wavelet, only filter defini-
tions are enough. To see the wavelet packet at given level 
of decomposition, we can do a recursion of   them at 
each node moving down the tree, to get the wavelet at 
next level. Specifically, if we split a wavelet packet node 
at level  and position  into two nodes at level 

w

j k
1j   and locations  and , we get the follow-

ing two packets: 
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Then the wavelet packet transform coefficients , ,j k pc  
are given by: 

   
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And the original signal can be expressed in terms of 
these coefficients and the corresponding wavelet packets 
as: 

   , , , ,
, ,

,j k p j k p
j k p

s m c w m    (4) 

 ,j k   all leaf nodes of basis. 
where p ranges over all time offsets at scale j for which 
signal s is defined.  

3. Wavelet Packet Adaptive Block Denoising 

The wavelet packet based denoising technique employs 
the decomposition concept in adaptive base of wavelets. 
This technique is efficient in denoising the musical sound 
signal corrupted with additive white Gaussian noise 
(AWGN), which is evenly distributed over the entire 
signal, and removal of AWGN from noisy signal is dif-
ficult task. Donoho and Johnstone pioneered the work of 
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filtering the additive white Gaussian noise using wavelet 
thresholding [12]. The block denoising is explained in 
the following sub sections:   

,  if

0,        if

,  if

s

x x

f x x

x x

 



 

  


 
  

          (7) 

3.1. Thresholding Based Denoising 
In [13], we see that the soft thresholding gives lesser 

mean square error. Due to this reason soft thresholding is 
preferred over hard thresholding, but in case of some si- 
gnals, we could see that hard thresholding results in les- 
ser amount of mean square error. 

A noise reduction technique developed by donoho, uses 
the wavelet coefficients contraction and its principle 
consists of three steps; 
1) Apply discrete wavelet transform to noisy signal: 

W y W s W z               (5) 
3.2. Block Selection 

where , ,y s z  and W  are the noisy musical instru-
ment sound, original clean sound signal, noise signal 
and the matrix associated to the discrete wavelet trans- 
form respectively. 

Most of the musical instrument sound signals are far too 
long to be processed in their entirety; for example a 10 
second sarangi sound signal sampled at 44.1 KHz will 
contain 441,000 samples. Thus, as with spectral methods 
of noise reduction, it is necessary to divide the time do-
main signal in multiple blocks and process the each block 
individually. The block formation of the signal is shown 
in the Figure 2. The important task is to choose the block 
length. Berger et al. [14] shows that, blocks which are 
too shorts fail to pick important time structures of the 
signal. Conversely, blocks which are too long miss cause 
the algorithm to miss the important transient details in 
the musical instrument sound signal. Due to the binary 
splitting nature of the tree bases in wavelet analysis to 
decompose the signal, it is better to choose the length of 
each block with a number of samples to a power of two. 

2) Threshold the obtained wavelet coefficients. 
3) Reconstruct the desired signal by applying the inverse 

wavelet transform to the thresholded wavelet coeffi-
cients. 

The thresholding function which is also known as 
wavelet shrinkage function is categorized as hard thresh-
olding and soft thresholding function. The hard thresh-
oldingfunction retains the wavelet coefficients which are 
greater than the threshold λ and sets all other to zero. The 
hard thresholding is defined as: 

 
,   if 

0,   otherwise
h

x x
f x

  


           (6) 

As discussed previously, the block size chosen must 
strike a balance between being able to pick up important 
transient detail in the sound signal, as well as recognizing 
longer duration, sustained events. Tables 1 and 2 shows 
the PSNR values which are quality measures, obtained 
for various block sizes and for different signals. 

The threshold   is chosen according to the signal 
energy and the standard deviation   of the noise. If the 
wavelet coefficient is greater than  , then it is assumed 
that it is significant and contributes to the original signal. 
Otherwise it is due to the noise and discarded. The soft 
thresholding function shrinks the wavelet coefficients by 
  towards zero. Hence this function is also called as 

Tables 1 and 2 show that the PSNR values for differ-
ent wavelets are varying with the block size. Hence the 
optimum block is that for which we have maximum 
PSNR or minimum mean square error. The optimal block 

shrinkage function. The soft thresholding function is de- 
fined as: 
 

Table 1. PSNR values obtained for different block length on shehnai sound with different wavelets. 

Samples/block length (ms) haar db10 sym3 coif5 dmey 

1024/23 23.06 33.99 30.99 36.42 36.41 

2048/46 23.37 34.82 30.27 36.07 36.57 

4096/92 23.96 36.45 31.73 36.9 39.62 

8192/185 22.50 34.06 30.73 36.81 38.37 

16,384/371 23.12 35.85 30.86 34.59 36.31 

32,768/743 23.60 34.64 31.28 35.38 35.76 

65,536/1486 22.50 33.21 30.95 35.25 36.25 
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Table 2. PSNR values obtained for different block length on dafli sound with different wavelets. 

Samples/block length (ms) haar db10 sym3 coif5 dmey 

1024/23 07.39 13.20 09.22 08.91 08.84 

2048/46 32.74 34.84 23.43 34.15 37.22 

4096/92 35.78 35.42 36.96 37.66 37.28 

8192/185 37.17 44.95 43.17 46.76 42.57 

16,384/371 43.77 50.17 45.63 49.68 47.20 

32,768/743 41.89 44.79 42.88 42.58 39.49 

65,536/1486 40.84 45.29 44.32 45.37 38.54 

 

Block 1 Block  2 Block  N. . . . . . . . . 

Total length of signal

 

Figure 2. Block formation of signal 
 
size for shehnai sound is 4096 samples and for dafli 
16,384 samples. The informal listening test agree with 
this statement in a general sense, hence the block size is 
variable for musical instrument sound signals.  

3.3. Threshold Selection 

Donoho and Johnstone derived a general optimal univer-
sal threshold for the Gaussian white noise under a mean 
square error (MSE) criterion described in [12]. However 
this threshold is not ideal for musical instrument sound 
signals due to poor correlation between the MSE and 
subjective quality and the more realistic presence of cor-
related noise. Here we use a new time frequency de-
pendent threshold estimation method. In this method first 
of all the standard deviation of the noise,   is calcu-
lated for each block. For given  , we calculate the 
threshold for each block. Noise component removal by 
thresholding the wavelet coefficients is based on the ob-
servation that in musical instrument sound signal, energy 
is mostly concentrated in small number of wavelet di-
mensions. The coefficients of these dimensions are rela-
tively very large compared to other dimensions or to any 
other signal like noise that has its energy spread over a 
large number of coefficients. Hence by setting smaller 
coefficients to be zero, we can optimally eliminate noise 
while preserving important information of the signal. In 
wavelet domain noise is characterized by smaller coeffi-
cients, while signal energy is concentrated in larger coef-
ficients. This feature is useful for eliminating noise from 
signal by choosing the appropriate threshold. Generally 
the selected threshold is multiplied by the median value 
of the detail coefficients at some specified level which is 
called threshold processing. 

At each level of decomposition, the standard deviation 
of the noisy signal is calculated. The standard deviation 
is calculated by Equation (8): 

 median

0.6745

j

j

c
              (8) 

where jc  are high frequency wavelet coefficients at jth 
level of decomposition, which are used to identify the 
noise components and j  is Median Absolute Devia-
tion (MAD) at this level. This standard deviation can be 
further used to set the threshold value based on the noise 
energy at that level. The modified threshold value [15] 
can be obtained by the equation (9): 

 22 log logh j jT k L L  j     (9) 

where h  is threshold value, T jL  is the length of each 
block of noisy signal and k is the constant whose value is 
varying between 0 - 1. For determining the optimum 
threshold, value of k should be estimated. 

4. Denoising Algorithm 

The proposed wavelet packet based block denoising al-
gorithm for reduction of white Gaussian noise is ex-
plained in the following steps: 
1) Take a musical instrument sound signal of suitable 

length. 
2) Add White Gaussian Noise to the original signal de-

pending upon the standard deviation  . 
3) Divide the noisy signal into blocks of different length 

depending upon the length of the signal in time do-
main, and the number of samples should be to a po- 
wer of two. 

4) Determine the optimal block size based on minimum 
mean square error criteria.  

5) Compute the discrete wavelet packet transform (DWPT) 
of one block of the noisy signal at level 1. 

6) Estimate the standard deviation of the noise using 
Equation (8) and determine the threshold value using 
Equation (9), then apply the different thresholding 
techniques for time and level dependent wavelet co-
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efficients using Equations (6) and (7). 
7) Take inverse discrete wavelet packet transform (IDWPT) 

of the coefficients obtained through step 6, which has 
reduced noise. 

8) Calculate mean square error (MSE), peak signal to 
noise ratio (PSNR) for denoised signal. 

9) Repeat steps 4 to step 7 for other level of decomposi-
tion 2 - 5. 

10) Concatenate all the blocks of the denoised signals 
obtained through step 8 and do averaging operation 
for MSE and PSNR of the musical instrument sound 
signal. 

The complete DWPT based denoising algorithm is 
shown graphically in Figure 3. 

5. Results and Discussions 

The denoising algorithm developed in the previous sec-
tion is applied to the sound samples of the various Indian 
musical instruments sampled at 44.1 K samples per sec-
ond. For experimental purpose the sounds of three musi-
cal instruments shehnai, dafli and flute are taken. For 
comparing the performance of the various wavelets for 
musical instrument sound signals, six wavelets haar, 
db10, sym3, coif5, dmey and bior 2.2 are taken. Besides 
observing the performance of the wavelets, the effect of 
decomposition is also discussed.  

For comparing the performance and measurement of 
quality of denoising, the peak signal to noise ratio (PSNR) 
is determined between the original signal  and the 
signal denoised  by our algorithm. 

iS
,dS

2
max

10PSNR 10log
MSE

S 
 

 
       (10) 

where max  is the maximum value of the signal and is 
given by, 

S

    max max max ,maxiS S dS        (11) 

And MSE is mean square error, given by: 
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Figure 3. DWPT based block denoising algorithm with 
modified threshold. 

    2

1

1 N

d i
l

MSE S l S l
N 

         (12) 

where N is the length of the signal. The PSNR vaues 
obtained for different wavelets applied on shehnai, dafli 
and flute signals at different level of decomposition are 
shown in Tables 3-5. The additive white Gaussian noise 
is taken at 0.1  , which is approximately 50% of the 
signal value. 

It is observed from Tables 3-5 that the PSNR values 
are dependent upon the shape of the wavelet, type of 
thresholding and the level of decomposition. Hard 
thresholds are better than soft thresholds for denoising 
the musical instrument sound signals. The selection of 
level of decomposition plays a significant role, and 
should be optimal for best denoising results. Hence, the 
shehnai sound will give best results when denoised with 
db 10 wavelet at level 5, dafli sound with dmey at level 5 
and flute sound with db10 at level 4, respectively. The 
different signals denoised with optimal wavelet and level 
of decomposition are shown in the Figures 4-6. 

6. Conclusion 

Adaptive wavelet packet transform has been widely used 
in denoising the sounds of musical instruments and 
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Figure 4. Original, noisy and denoised shehnai signal with 
db 10 at level 5. 
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Figure 5. Original, noisy and denoised dafli signal with 
mey at level 5. d  
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Table 3. PSNR values of shehnai sound after decompostion at different levels. 

Level 2 Level 3 Level 4 Level 5 
Wavelet 

soft hard soft hard soft hard soft hard 

haar 26.02 31.33 18.57 18.72 23.09 27.65 16.89 25.32 

db10 23.95 23.43 18.53 18.55 20.14 27.23 16.52 31.62 

sym3 26.44 25.68 18.56 18.56 19.65 27.21 14.85 30.39 

coif5 24.02 23.71 18.68 19.65 21.05 27.22 18.13 29.65 

dmey 23.92 23.78 18.57 18.76 23.34 23.48 22.76 23.43 

bior2.2 31.06 26.27 18.44 18.54 25.26 25.75 20.61 26.93 

 
Table 4. PSNR values of dafli sound after decomposition at different levels. 

Level 2 Level 3 Level 4 Level 5 
Wavelet 

soft hard soft hard soft hard soft hard 

haar 20.07 19.88 17.56 17.72 27.76 27.58 26.08 27.48 

db10 20.14 19.56 17.66 17.75 24.30 24.56 26.05 27.67 

sym3 20.12 19.86 17.46 17.56 26.12 25.24 26.92 26.93 

coif5 19.65 20.05 17.50 17.59 25.88 24.88 27.05 26.79 

dmey 20.05 19.78 17.44 17.65 24.47 25.18 27.05 27.97 

bior2.2 20.00 19.77 17.35 17.53 23.58 21.73 24.21 23.11 

 
Table 5. PSNR values of flute sound after decomposition at different levels. 

Level 2 Level 3 Level 4 Level 5 
Wavelet 

soft hard soft hard soft hard soft hard 

haar 21.83 22.99 19.55 19.21 16.16 18.82 9.07 18.97 

db10 23.73 24.02 19.09 19.40 13.65 35.71 11.31 33.00 

sym3 24.50 24.64 19.36 19.52 16.49 28.64 11.48 30.47 

coif5 23.98 24.10 19.40 19.63 13.75 33.98 11.42 29.68 

dmey 23.75 24.37 19.25 19.53 13.74 34.53 11.76 30.26 

bior2.2 28.80 27.72 19.41 19.48 13.46 18.94 10.87 19.70 

 
Providing better performance in terms of PSNR values 
than the other denoising techniques. In this paper, dis-
crete wavelet packet transform is used for denoising-
shehnai, dafli and flute sound signal corrupted with addi-
tive white Gaussian noise, 50% of the signal strength. 
First, sound signal is divided into multiple blocks de-
pending upon the optimal block size for each signal. De-
noising of signal is performed with these optimal block 
sizes in wavelet packet domain by thresholding the 
wavelet coefficients at different level of decomposition. 
It is observed that hard thresholding gives better PSNR 
than soft thresholding at all the decomposition levels. 
The choice of the optimal level of decomposition is im-
portant, and different for each sound signal. If the level 
of decomposition is not optimal then the PSNR value 
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Figure 6. Original, noisy and denoised flute signal with 
db10 at level 4. 
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will not be maximum, hence denoising will not be the 
best. Maximum PSNR value for shehnai sound is at level 
5 with db10 wavelet, dafli at level 5 with dmey and flute 
at level 4 with db10 respectively. When each block is 
denoised, all the blocks are concatenated to form the fi-
nal denoised signal. It is also observed that when modi-
fied threshold with is used, the PSNR values are in-
creased. Higher thresholds remove the noise well but 
some parts of the original signal are also removed be-
cause it is not possible to remove the noise without af-
fecting the original signal.  
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