
Circuits and Systems, 2012, 3, 269-277 
http://dx.doi.org/10.4236/cs.2012.33037 Published Online July 2012 (http://www.SciRP.org/journal/cs) 

269

Area and Timing Estimation in Register Files Using  
Neural Networks 

Assim Sagahyroon, Jamal Abdalla 
American University of Sharjah, Sharjah, UAE 

Email: {asagahyroon, jabdalla}@aus.edu 
 

Received October 30, 2011; revised May 10, 2012; accepted May 17, 2012 

ABSTRACT 

The increase in issue width and instructions window size in modern processors demand an increase in the size of the 
register files, as well as an increase in the number of ports. Bigger register files implies an increase in power consumed 
by these units as well as longer access delays. Models that assist in estimating the size of the register file, and its timing 
early in the design cycle are critical to the time-budget allocated to a processor design and to its performance. In this 
work, we discuss a Radial Base Function (RBF) Artificial Neural Network (ANN) model for the prediction of time and 
area for standard cell register files designed using optimized Synopsys Design Ware components and an UMC130 nm 
library. The ANN model predictions were compared against experimental results (obtained using detailed simulation) 
and a nonlinear regression-based model, and it is observed that the ANN model is very accurate and outperformed the 
non-linear model in several statistical parameters. Using the trained ANN model, a parametric study was carried out to 
study the effect of the number of words in the file (D), the number of bit in one word (W) and the total number of read 
and write ports (P) on the latency and area of standard cell register files.  
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1. Introduction 

The access time, energy, and area of a register file are 
critical factors to the performance of modern processors. 
The access time and size of register files in wide-issue 
processors often play a critical role in determining cycle 
time. This is because such files need to be large to sup- 
port multiple in-flight instructions, and multiported to 
avoid stalling the wide-issue. Large sized multiport ar- 
chitectures of register files often lead to significant in- 
crease in the processor’s power consumption. For exam- 
ple, in the Alpha 21,464, the 512-entry 16-read and 8- 
write (16-r/8-w) ports register file consumed more power 
and was larger than the 64 KB primary caches. To reduce 
the cycle time impact, it was implemented as two 8-r/8-w 
split register files [1,2].  

Register files are heavily-ported RAM structures. A 
processor capable of issuing eight integer instructions 
each cycle may need an integer register file with sixteen 
read ports (corresponding to two source operands per 
instruction), and eight write ports. It was reported in [3] 
that the access time for an 80-entry 24-ported register file 
can exceed 1.5 ns at 0.18 micron technology, potentially 
being on critical paths determining the cycle time. 

Although, the adverse delays effects can be alleviated 
by pipelining, this complicates the bypass logic instead. 

In addition, having a deep pipeline increases the branch 
misprediction penalty, lowering IPC or instructions com- 
pleted per cycle. Therefore, it is difficult to remove the 
adverse effect of a large register file completely and it is 
important to optimize the register file size without per- 
formance degradation [4]. 

The access time of a register file consists of two dis- 
tinct components: the wire propagation delay and the 
fan-in/fan-out delay. Register files typically contain long 
word-lines and bit-lines, which can take a long time to 
propagate a signal across their length. Bigger register file 
and an increased number of ports result in a taller register 
file layout, which translates to longer word-lines and bit- 
lines [5], thereby increasing wire propagation delay. Also, 
wire delays do not at all scale with the silicon technology 
improvements. Thus as register files grow in size, with 
faster transistors (smaller feature sizes), it only exacer- 
bates their delay problem. A circuit diagram for a three 
ports register file is shown in Figure 1. 

Additionally, the physical dimensions of a register file 
play a very important role in determining its power con- 
sumption. They influence the power consumption in 
more than one way: 1) they determine the length of the 
wires in the file, hence directly affects the power con- 
sumption by determining the capacitance of the nodes, 
nd 2) they impose pipelining constraints, indirectly af-  a  
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Figure 1. Register file basic circuitry [6].  

fecting power by introducing additional power consum- 
ing nodes. Therefore, it is critical to have a good model 
that assists designers in estimating the physical dimen- 
sions of these files [7]. 

Models that can be used to evaluate architectural al- 
ternatives in register file design, and assist in making 
informed decisions prior to the back-end design phase 
are essential to realizing efficient designs in terms of area, 
delay, and power. 

In recent years, there has been a great advancement in 
the field of ANN (Artificial Neural Networks), both from 
theoretical and applications points of view. ANNs have 
been used in classification, pattern matching, pattern rec- 
ognition, optimization and control-related problems. In 
electrical engineering, neural networks have been used to 
solve a wide variety of VLSI related problems [8-11]. A 
neural network (NN) approach for modeling the time 
characteristics of fundamental gates of digital integrated 
circuits that include inverter, NAND, NOR, and XOR 
gates is discussed in [8]. The modeling approach pre- 
sented is technology independent, fast, and accurate, 
which makes it suitable for circuit simulators. The appli- 
cation of an artificial neural network (ANN) to the study 

of the nanoscale CMOS circuits is presented in [9]. A 
novel method of testing analog VLSI circuits, using 
wavelet transform for analog circuit response analysis 
and artificial neural networks (ANN) for fault detection 
is proposed in [10]. Power consumption using neural 
network of analog components at the system level is dis- 
cussed in [11]. The proposed method provides estimation 
of the instantaneous power consumption of analog 
blocks. 

In this work, we propose the use of neural networks to 
model timing and area for standard cell based register 
files designed using 130 nm technology. Three parame- 
ters that influence the power consumed by a register file, 
namely, the number of words in the register file (Depth), 
the number of bits in one word (Width), and the total 
number of read and write ports (Port) are used as input to 
the ANN. The output parameters of the ANN are delay 
and area estimates for the perceived design. 

2. Background 

Praveen et al. [12], used low level simulation that takes 
into account the layout details as well as detailed transis- 
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tor characterization provided by a standard cell library to 
collect data on the size and delays exhibited by various 
structures of register files. They used optimized Synop- 
sys Design Ware components from the UMC130 nm 
library to design various register files structures. Layouts 
were generated for register files with a varying number 
of ports ranging from 3 to 12, a depth that varies from 4 
to 64 words, and a width that varies from 8 to 128 bits. 
All these combinations of register files were designed; 
patristic capacitances in the routing wires and gate ca- 
pacitances of each transistor were extracted from the 
layouts. The extracted netlist was then simulated using 
ModelSim. After completing over 100 register file design 
for the 130 nm technology node, the timing and area of 
each design were tabulated. Curve fitting was performed 
on each variable using register file depth, width, number 
of ports, as well as the activity factor as independent in- 
put variables. For the designs it is assumed that each of 
the ports of the register file is driving a load of F04. 
Equations (1) and (2) below are the derived model equa- 
tions, where Area and Timing are the subjects of the two 
equations respectively; the authors in [12] referred to it 
as the Empire Model. For a complete description of the 
steps taken to arrive to this model, readers are referred to 
[12]. 
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In the equations above: D represents the number of 
words in the file, W represents the number of bit in one 
word, P represents the total number of ports (read and 
write). To validate the curve-fitted formulae described by 
Equations (1) and (2), Praveen et al. in [12], compared 
them against results from the actual implementations. It 
is reported that the models exhibit on average about 10% 
error when compared to the values obtained using de- 
tailed simulation. 

3. Neural Network Model and Architecture 

The field of Artificial Neural Networks is one of the main 
branches of artificial intelligence that found many appli- 
cations in several engineering disciplines. ANNs are pro- 
cessing elements that are capable of learning relation- 
ships between input and output and they can be used for 

classification, prediction, clustering, and function appro- 
ximation, among others. Several neural network archi- 
tectures with different learning algorithms such as back- 
propagation were used over the years. In general, an 
ANN consists of massive parallel computational proc- 
essing elements (neurons) that are connected with weighted 
connections and have learning capability that simulates 
the behavior of a brain [13,14]. The network weights and 
the network threshold values are initially set to random 
values and new values of the network weights and bias 
values are computed during the network training phase. 
The neurons output are calculated using Equation (3) 
below: 

   i j ij jy F x w b             (3) 

where yi is the output of the neuron i, xj are the input of j 
neurons of the previous layer; value, wij is the neuron 
weights, bj is the bias for modeling the threshold; and F 
is the transfer or activation function [13,14]. The transfer 
function also known as the processing element is the por- 
tion of the neural network where all the computing is 
performed. The activation function maps the input do- 
main (infinite) to an output domain (finite). The ANN 
error (E) for a given training pattern i is given by Equa- 
tion (4): 
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           (4) 

where jO i is the output and jT  is the target. For a 
thorough discussion of neural network theory and appli- 
cations readers are referred to [13]. 

The Radial Basis Function (RBF) ANN together with 
the Gaussian activation function, and the Multi-Layer 
Perceptron (MLP) together with the hyperbolic tangent 
(tanh) activation function are among the most widely 
used feed-forward universal approximators. In this study 
a hybrid of these two universal approximators is used. 
Specifically, a RBF ANN topology with one additional 
hidden layer and 15 neurons (processing elements) in 
first hidden layer, and four processing element in the 
second hidden layer are used. The RBF neural network 
has a Gaussian activation function in the first hidden 
layer while the additional hidden layer has a linear hy- 
perbolic tangent (linear tanh) activation function and the 
output layer has a bias axon activation function as shown 
in Figure 2. The performance of this combination of 
activation functions for the data set used in this work 
proved to outperform the standard RBF or standard MLP, 
when used separately. 

As depicted in Figure 2, the neural network architec- 
ture used in this study, has one input layer, two hidden 
layers and one output layer. The input layer consists of 
hree nodes, mainly, the number of words in the register  t    
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Figure 2. A multilayer RBF neural network topology.  

file depth (D), the number of bits in one word width (W), 
and the total number of read and write ports (P). The 
output layer of the ANN consists of two nodes which are 
the time and the area estimates. 

To train the NN, data collected from details simulation 
runs in [12] is divided into two categories, namely, the 
training data set and, the testing data set. For both sets 
the maximum Depth value used is 64 registers per file, 
the minimum is 4; the maximum width used is 64 bits 
and the minimum is 8, while for the ports parameter the 
maximum number of ports is 12 ports, and the minimum 
is 3 ports. For the training data set, the maximum timing 
computed is 7.55 nano-second (ns) and the minimum is 
1.11 ns, while for the test data set, the maximum timing 
within the used set is 4.92 ns, and the minimum is 1.81 
ns. The areas range is 721,383 μm2 to 2512 μm2 for the 
training set, and 164,590 μm2 to 4902 μm2 for the test set. 

Initial random values are used for the weights of the 
neural network and different learning rates (step sizes) 
were used for the different layers of the RBF neural net- 
work. The learning rate used for the first and second hid- 
den layers is 1.0 and for the output layer is 0.1. A mo- 
mentum factor of 0.7 was used for the model all through 
with a back-propagation learning algorithm. The total 
number of data items used for training the neural network 
is 60 and the number of data items used for testing the 
neural network is 20. The neural network was trained 
four times with 2000 epochs in each training cycle and 
the average performance was taken. The computed aver- 

age Normalized Mean Square Error (NMSE) for the 
training data was 0.00494 with a standard deviation of 
0.000614. Figure 3 shows the convergence rate of the 
four training runs. There is a sharp decrease in the NMSE 
during the first 15 epochs. As the number of epoch in- 
creases, the MSE remains almost constant. 

4. Results and Discussions 

The ANN model was trained using 60 data sets and for 
verification the trained ANN model is tested next using 
20 randomly selected testing data sets. Parameters of the 
20 test data sets were also used to predict the time and 
area using the Empire model. Tables 1 and 2 show the 
performance indicators of the 20 testing samples. As shown 

 

Figure 3. Training NMSE for the four runs of ANN models. 
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Table 1. Performance of the ANN on time prediction of the 
test data. 

Performance Criterion 
ANN  

Model 
Empire  
Model 

Mean Absolute Error (MAE) (ns) 0.37963 0.34450 

Mean Absolute Percent Error (MAPE) (%) 11.208 10.649 

Normalized Mean Square Error (NMSE) 0.39772 0.28300 

Correlation Coefficient (r) 0.79835 0.86485 

Table 2. Performance of the ANN on area prediction of the 
test data. 

Performance Criterion 
ANN  

Model 
Empire  
Model 

Mean Absolute Error (MAE) (µm2) 5648.987 11153.388

Mean Absolute Percent Error (MAPE) (%) 16.130 47.413 

Normalized Mean Square Error (NMSE) 0.02606 0.12030 

Correlation Coefficient (r) 0.98722 0.94734 

 
in Tables 1 and 2, the Normalized Mean Square Error 
(NMSE) is 0.3977 and 0.0261 and the correlation 
co-efficient (r) is 0.7983 and 0.9872 for time and area, 
respectively. This indicates that the measured and the 
ANN predicted values correlate very well for the area 
and to a lesser extent for the time. The performance of the 

Empire model is slightly better than the performance of 
the ANN in all performance criteria in predicting time, 
however, the ANN model outperformed the Empire 
model by far in all performance criteria in predicting area 
estimates. 

Table 3 shows the prediction and accuracy of the 
ANN model and the Empire model based on the test data 
set as compared to the measured values of time. In col- 
umn 1, the case number specifies the depth (D), width 
(W), and number of ports (P) for each design tested. It is 
observed that 55% of the ANN model predictions of the 
test data are within 10% or less of the measured values of 
time compared to 50% of Empire model predictions of 
the test data are within 10% of the measured values of 
time. Furthermore, 80% of the ANN predictions of the 
test data are within 20% of the measured values of the 
time while 90% of Empire model predictions of the test 
data are within 20% of the measured values of time. It is 
clear that the Empire predictions of time are slightly bet- 
ter than the ANN model prediction which corroborate 
with the results from the performance criteria presented 
earlier. 

Table 4 shows the prediction and accuracy of the 
ANN model and the Empire model based on the test data 
set as compared to the measured values of area. It is ob- 
served that 45% of ANN model predictions are within  

 
Table 3. Prediction and accuracy of time of test data. 

Case Number Measured Value (ns) ANN Prediction (ns) Empire Prediction (ns) ANN Error (%) Empire Error (%) 

DWP_8-32-6 2.41 2.84 2.94 17.93 22.16 

DWP_8-8-12 3.03 3.29 3.12 8.67 2.83 

DWP_16-64-9 3.9 4.20 4.47 7.75 14.68 

DWP_64-16-3 2.51 2.79 2.68 11.12 6.63 

DWP_64-8-12 3.71 4.29 4.32 15.54 16.37 

DWP_8-16-12 2.91 3.60 3.40 23.60 16.83 

DWP_32-32-6 3.65 3.91 3.77 7.12 3.31 

DWP_4-32-3 1.86 1.89 1.86 1.73 0.23 

DWP_4-16-3 1.81 1.83 1.66 1.38 –8.36 

DWP_64-8-6 3.07 3.21 3.25 4.44 5.81 

DWP_16-64-3 2.28 2.29 2.55 0.42 11.83 

DWP_8-32-12 3.24 4.23 3.88 30.49 19.65 

DWP_16-8-6 2.58 2.47 2.60 –4.17 0.78 

DWP_16-16-3 2.08 2.03 1.96 –2.29 –5.79 

DWP_16-8-12 3.39 3.49 3.35 2.87 –1.11 

DWP_4-64-9 4.45 3.71 3.75 –16.63 –15.68 

DWP_8-32-9 2.9 3.50 3.57 20.61 23.00 

DWP_64-32-3 3.21 3.34 3.45 4.16 7.46 

DWP_4-64-12 4.92 3.73 4.20 –24.27 –14.55 

DWP_4-16-9 3.61 2.93 3.04 –18.95 –15.91 
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Table 4. Prediction and accuracy of area of test data. 

Case Number Measured Value (µm2) ANN Prediction (µm2) Empire Prediction (µm2) ANN Error (%) Empire Error (%)

DWP_8-32-6 25709.18 30363.05 22785.57 18.10 –11.37 

DWP_8-8-12 12087.36 16958.01 –3756.03 40.30 –131.07 

DWP_16-64-9 136007.4 125049 142849.3 –8.06 5.03 

DWP_64-16-3 81561.6 87238.13 55794.55 6.96 –31.59 

DWP_64-8-12 100,675 113386.6 140844 12.63 39.90 

DWP_8-16-12 22,032 26109.32 12287.49 18.51 –44.23 

DWP_32-32-6 108433.7 117453.4 108611.5 8.32 0.16 

DWP_4-32-3 9671.616 14226.64 8644.472 47.10 –10.62 

DWP_4-16-3 4902.336 6109.812 21046.39 24.63 329.31 

DWP_64-8-6 60937.92 69793.9 43920.03 14.53 –27.93 

DWP_16-64-3 78853.82 60670.06 64897.27 –23.06 –17.70 

DWP_8-32-12 42265.15 44686.45 44973.57 5.73 6.41 

DWP_16-8-6 13775.62 14572.04 16072.35 5.78 16.67 

DWP_16-16-3 20043.07 20316.6 28282.87 1.36 41.11 

DWP_16-8-12 23378.11 25364.64 17092.35 8.50 –26.89 

DWP_4-64-9 32106.24 36923.01 40212.79 15.00 25.25 

DWP_8-32-9 33170.69 22730.22 31440.57 –31.47 –5.22 

DWP_64-32-3 164590.3 161332 162432.6 –1.98 –1.31 

DWP_4-64-12 40272.77 42352.23 74517.79 5.16 85.03 

DWP_4-16-9 8403.264 6266.601 718.392 –25.43 –91.45 

 
10% or less of the measured values of area compared to 
25% of Empire model predictions of the test data are 
within 10% of the measured values of area. Also, 70% of 
the ANN predictions of the test data are within 20% of 
the measured values of the area while only 45% of Em- 
pire model predictions of the test data are within 20% of 
the measured values of area. It is clear that the ANN pre- 
dictions of area are better than the Empire model predic- 
tions. This corroborates the results of the performance 
criteria presented earlier in Table 1. 

Parametric Study 

To further compare the performance of the Empire model 
and the ANN model in predicting the time and the area, 
we varied the input parameters (width, ports, and depth) 
and computed the resulting outputs for 6 designs. Fig- 
ures 4 and 5 depict comparative plots showing the pre- 
dictions of time and area respectively for varied combi- 
nations of parameters. 

From Figures 4(c) and (d), it is clear ANN model pre- 
dictions are fairly accurate when the number of ports is 
varied with a fixed depth and width. Figure 3(b) shows 
that the ANN model when the width is increased with the 
depth and ports parameters fixed has underestimated the 
time specially with wider designs. Similarly, when the 
depth is varied while keeping the width and ports fixed 

(Figures 4(e) and (f)), the ANN predications were rela- 
tively above and below the experimental values in few 
cases. 

In the instances selected for area comparison (Figure 
6), both models performed relatively well and the pre- 
dicted areas were close to the experimental values ob- 
tained from detailed simulation. However, overall and as 
the statistical results of Table 2 indicate, the ANN model 
has outperformed the Empire in area prediction. 

From the aforementioned analysis of results and vali- 
dation of the ANN model, it is evident that the proposed 
ANN model can be used to provide designers with rep- 
resentative estimates of the time and area of a perceived 
register file design before committing to silicon. The 
time and the area estimates for all the register file designs 
used in this study with 130 nm technology and a supply 
voltage of 1.2 V are shown in Figures 6 and 7 respec- 
tively. 

5. Conclusions 

The continued trend in microprocessors design towards 
wider instruction issue and large instruction windows 
implies register files will have to be designed with large 
sizes and a large number of read/write ports. Conse- 
quently, this will lead to additional power consumption 

y these large-sized files and a noticeable impact on cy-  b  
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Figure 4. Comparison of time for selected register files. 

 

Figure 5. Comparison of area for selected register files. 

cle time. Therefore, models and tools that allow design- 
ers to predict the area and the timing of a given design 
prior to committing to silicon are of great benefit to mi- 
croprocessors designers. Evaluating architectural trade- 
offs early in the design cycle provides designers with 
insight into the performance of a design, and shortens the 
time-to-market window. 

In this paper, we proposed a novel neural network 

model for estimating the timing and size or area for reg- 
ister file designs. The model is simple and efficient and 
can be used to provide estimates that are close to those 
expected when detailed and time consuming simulation 
is performed. The model is validated by comparing its 
results to those produced by low level simulation, as well 
as by comparing it to the recently reported Empire model 
11]. [    
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Figure 6. ANN model for time for all ports. 

 

Figure 7. ANN model for area for all ports.  
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