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Abstract 
 
The paper presents an approximated and compact derivation of the mutual displacement of Floquet eigen-
vectors in a class of LC tank oscillators with time varying bias. In particular it refers to parallel tank oscilla-
tors of which the energy restoring can be modeled through a train of current pulses. Since Floquet eigenvec-
tors are acknowledged to give a correct decomposition of noise perturbations along the stable orbit in oscil-
lator's space state, an analytical and compact model of their displacement can provide useful criteria for de-
signers. The goal is to show, in a simplified case, the achievement of oscillators design oriented by eigen-
vectors. To this aim, minimization conditions of the effect of stationary and time varying noise as well as the 
contribution of jitter noise introduced by driving electronics are deduced from analytical expression of ei-
genvectors displacement. 
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1. Introduction 
 
Noise decomposition through Floquet eigenvectors is 
widely acknowledged to be a correct methodology for the 
analytical treatment of phase noise in electronic oscilla-
tors [1]. For this reason, numerical algorithms which rely 
also on the Floquet eigenvectors have been developed in 
order to obtain accurate prediction of power density spec-
trum (PDS) around the fundamental oscillation frequency. 
A well known example is found in the commercial simu-
lator SpectreRF that computes Floquet eigenvectors from 
the shooting matrix and use them as a theoretical based 
correction for the PNoise analysis [2]. Although elec-
tronic simulators offer results in good agreement with 
effective measurements, they cannot be used to infer gen-
eral properties of the underlying system. Despite the great 
amount of work presented even recently in literature [3, 
4], since the pioneeristic work of Kaertner [5] and the 
latter efforts accomplished by Hajimiri-Lee [6], Demir [7, 
8] and Buonomo [9] not many significant theoretical con-
tributions have really extended the capability to develop 
innovative techniques in the design of oscillators systems. 

In authors opinion the innovation should be founded on 
derivation of architecture-related expressions of Floquet 
eigenvectors [10], leading to a proper design methodol-

ogy. This approach has been limited in the past by the fact 
that, also in relatively simple cases, Floquet eigenvectors 
cannot be obtained in analytical closed form. 

Mutual displacement among eigenvectors along the pe-
riod of oscillation regulates indeed how noise perturba-
tions affect the spectral purity of oscillator system. In 
particular projections of noise on the eigenvectors deter-
mine the PDS of the oscillator [11]. We notice that mu-
tual displacement depends in general on the quality factor 
of tank and on the way the lost energy is restored, i.e. on 
the chosen architecture. Even if in recent years several 
new architectural solutions were proposed for the reduc-
tion of phase noise in CMOS technologies [12-15], none 
of them was justified on eigenvectors based considera-
tions. In particular, to knowledge of the authors, in litera-
ture there is no attempt to establish a direct relationship 
between Floquet eigenvectors and circuit parameters for a 
certain class of oscillators. 

In this paper we present an analytical derivation of 
mutual displacement of Floquet eigenvectors and of their 
relationship with design parameters in the class of the LC 
tank oscillators with pulsed bias. First, we propose to in-
troduce a parametrical model for the pulsed bias concept. 
Then we extend Floquet theory for the class in study in 
order to analyze noise dynamics and thus to optimize 
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oscillators implemented through architectures with time 
varying bias. Finally we validate the proposed analysis 
and optimization criteria through the comparison with 
numerical results from a dedicated Matlab simulator of 
introduced model. 

 
2. Simplified Model of LC Tank Pulsed Bias 

Oscillator 
 

In order to characterize the class of LC tank oscillators 
with pulsed current bias we adopt the simplified parallel 
RLC model in Figure 1: it presents only two state vari-
ables, corresponding to the capacitor voltage VC and the 
inductor current IL of tank. This assumption can be seen 
as a rather drastic simplification for a model of a real 
oscillator, nevertheless, if pulsed bias circuitry does not 
introduce parasitic comparable to those in tank, the addi-
tional state variables can be neglected. 

In this model the energy refilling is demanded to 
pulsed current generator i(t) which is controlled, in par-
ticular, by the capacitor voltage VC. Crossing of a thresh-
old |Vth| by the capacitor voltage, occurring at time de-
fined as Tth, triggers the accumulation of a fixed delay T1. 
After this delay the current generator is turned on for a 
time T2 at fixed amplitude Imax. The turning on and off 
are assumed to be instantaneous, thus application of the 
ideal pulses gives rise to non derivable points of the ca-
pacitor voltage. In order to clarify the aforementioned 
timings and parameters of the model, a sketch of the 
generator current and of the resulting capacitor voltage 
waveform is reported in Figure 2. 

The differential algebraic equations (DAE) describing 
dynamic of the proposed model is reported in Equation (1). 
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We choose to not explicitly express the large signal 
dependence of i(t) as a function of VC, since in this paper 
we are interested in a variational analysis for the study of 
noise only. However the existence of a stable orbit can be 
easily proved by means of mathematical approach for the 
analysis of nonlinear systems (e.g. the describing function 
 

 

Figure 1. Model of the simplified LC tank pulsed bias oscil-
lator. 

 

Figure 2. Sketch of capacitor voltage and current pulse of 
the generator in time. 
 
technique) and will be not reported here. 

In Figure 3(a) sketch of the stable orbit and the projec-
tions onto eigenvectors of superimposed noise perturba-
tion b at certain time instant are reported. Due to the 
adopted symmetrical model, every half of the orbit can be 
subdivided into two different portion delimited by dashed 
lines in Figure 3. A first one corresponds to the RLC 
dumped evolution only and the second one corresponds to 
the evolution when the refilling current pulse is also  
active. 

 
3. Floquet Theory for the Study of Noise 

 
Floquet theory describes the periodical linear time vary-
ing (LPTV) response of oscillators systems to small per-
turbations superimposed on the stable oscillation orbit. 
Floquet eigenvectors are usually extracted from Mono- 
 

 

Figure 3. Sketch of the stable orbit and of the projections 
onto eigenvectors of superimposed noise perturbation b at 
certain time instant. Dashed lines indicate phase portion 
when pulsed bias current is active in a half of period. 
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dromy matrix. In general Monodromy matrix is obtained 
as the product of sequence of eventually different transi-
tion matrices along one oscillation period. In our treat-
ment Monodromy matrix is calculated by following the 
evolution of the state variation vector [vC iL]T in the sys-
tem along the orbit, apart from non derivable points. 
Evolution is derived from (1) imposing i(t) = 0 and is 
given by 
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The state transition matrix Φ(t) of dumped RLC system 
(2) results in 
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Every component of (3) can be obtained by direct in-
tegration of (2) and hence assumes the form of dumped 
sinusoidal evolution as expressed in Equation (4) 
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where 

2

0 0
0

0 0

0

0

1 2π
, 1

1
,

2 2 2

1

2

  


 


 

 
 

 
     

 

   

     
          

    

n
n

n

LC T

R
Q

L RC Q

arctg arctg arctg
Q

 (5) 

It has to be noticed that real period T differs in general 
from the nominal period Tn as a main effect of the pulsed 
bias. 

The above described model holds until current pulse 
edges are reached. Since at this time instants the capaci-
tor voltage is not derivable, we will need to introduce 
Interface matrices [16,17] to properly describe state evo-
lution. 

In the simplified adopted model only two Floquet   
eigenvectors exist, with two corresponding eigenvalues. 

We call “first eigenvector”, u1(t), the one which is tan-
gent to the orbit with unitary eigenvalue and the “second 
eigenvector”, u2(t), the one with corresponding eigen-
value lower than 1. Once the evolution of the eigenvec-
tors is available, we may project the perturbation b(t) 
multiplying it by inverse eigenvectors. The effect of 
noise projection is a state deviation which evolves as the 
eigenvector itself and sum in square to further noise pro-
jections along the orbit. Projections depend on the instant 
when b(t) is applied, so that the system appears as peri-
odic time variant. In Figure 4(a) sketch of power density 
spectrum of the eigenvectors is reported [11]. Contribu-
tion to the PDS of noise projected on the first eigenvec-
tor, can be described by a transfer function with square 
modulus 1/ω2, where is the offset with respect to the 
fundamental. We notice that at very low offset a cut-off 
must be assumed, not reported in the figure, due to 
nonlinear behaviour of the system for large values of 
phase deviation [7]. Noise projected on the second ei-
genvector can be instead described by a transfer function 
with square modulus 1/(γ2

2+ω2), where γ2 is the pole 
pulsation related to the second Floquet multiplier.  

As a result the main contribution to the overall power 
density spectrum at frequencies close to the fundamental 
arises from projection on the first eigenvector. On the 
contrary contribution arising from the second eigenvec-
tor becomes relevant only at high frequency offsets 
(ω>>γ2) due to its low-pass shape with respect to the 
fundamental.  

Only noise contributions parallel to u2 produce null 
contributions on u1 and thus do not increase the phase 
noise [1]. Floquet decomposition points out that eigen-
vectors, in general, are not orthogonal. As a result, as-
suming a white noise current generator in parallel to the 
RLC resonator, as it will be discussed in next section, a 
noise contribution in the direction [1 0]T (the voltage 
 

 
Figure 4. Sketch of power density spectrum contributions 
due to the eigenvectors. 
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variation axis) applied in correspondence of the voltage 
maximum may not yield to a null projection on u1. 

These considerations lead to investigate a pulsed bias 
strategy, designed to activate the bias only when the pro- 
jection of noise related to the biasing electronics on the 
first eigenvector is at least around a minimum. Never- 
theless a complete evaluation of the proposed architectc- 
ture must take into account also the effect of eigenvec- 
tors displacement due to the pulsed bias on all the other 
noise sources present in the circuit. 

As formerly stated, the eigenvectors evolutions are 
almost everywhere derived from state transition matrix 
of the dumped RLC system except for time instants when 
the generator switches on/off. Since an oscillator has no 
time reference, in the adopted model we may assume that 
at t = 0 the first eigenvector must be equal to u1(0) = 
[Vu1(0) Iu1(0)] = k[1 0]T,  with null current com- 
ponent (an eigenvector can always be defined by means 
of a proportionality constant). Until the first discontinu- 
ity, occurring at t = Tth + T1, eigenvectors evolutions can 
then be described by the following equations normalized 
to amplitude of superimposed perturbation 
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where coefficient F depends on the quality of the tank 
and on resonating elements as in (7) and β represents the 
phase displacement between eigenvectors. 
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4. Phase Displacement between Eigenvectors 

as a Function of Pulse Paramaters 
 

Figures 5 and 6 show a sketch of the evolutions respec-
tively of first and second eigenvector. The effect of turn-
ing on and off of the bias current, taking place at t = Tth 

+ T1 and t = Tth + T1 + T2 respectively, corresponds to 
discontinuities of eigenvectors states, in direction [1 0]T 
(the V voltage variation axis). Due to the introduction of 
the Interface matrix theory [16], and as shown in Figure 
7, we have to consider that any state variation along each 
eigenvector, evolved from t = 0 until Tth, produces a de-
lay t with respect to the crossing of the threshold |Vth|. 

The same delay is reported at the time of the turning on 
and off of the current generator. The delay is calculated as  

 

Figures 5. Sketch of evolution of the first eigenvector for a 
half of the period. 
 

 

Figures 6. Sketch of evolution of the second eigenvector for 
a half of the period. 
 

 

Figure 7. Current of the generator in time with delay due to 
the variation (a) and additional contributions at the pulse 
edges (b). 
 
the ratio of voltage variation to the time derivative of the 
capacitor voltage at threshold crossing. Using a smart 
notation with subscript J = 1,2 where XJ=1 = 0 and XJ=2 = 
, delay for both eigenvectors results in 
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Implicit voltage variation at numerator ensures dimen-
sional balance in Equation (8). As a result of the delay, at 
the pulse edges two additional contributions opposite in 
sign sum to the former state variation. Since we are 
dealing with a pulsed bias for hypothesis, we now as-
sume T2<<T and then we neglect the relative phase rota-
tion between the pulse edges in both eigenvectors evolu-
tions. As depicted in Figure 5, this allows us to ap-
proximate the effect of the bias current pulse as a unique 
discontinuity of the state in direction [0 1]T (the I current 
variation axis). We hence calculate discontinuity ampli-
tude for both eigenvectors using (6) and (8) as the sum of 
opposite contributions approximating sinusoidal function 
for small T2 in 
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The overall state variation, including the effect due to 
discontinuities, evolves along a new orbit. The second 
part of the evolution can be obtained for both the eigen-
vectors as 
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where A and J are unknown general solution parame-
ters. 

We notice that at t = Tth + T1 the voltage components 
remain unaltered due to the assumption T2<<T, whereas 
the current components of state variations are affected by 
the J drops. This observation leads to define a system 
of two non-linear equations in the two unknown A and 
J: 


 

 

 

1

1

1

1

( )
1

( )
1

( )
1

( )
1

A cos

cos

A
sin

1
sin .

   

  

  

 

 

 

 

 

     

   

   


 


th

th

th

th

μ T T
n th n J J

μ T T
n th n J

μ T T
n th n J J

μ T T
n th n J J

e T T X

e T T X

e T T + X
F

e T T + X
F

 I




(11) 

In order to achieve an approximate solution of system 
(11) we expand the trigonometric function containing 
J in Mac Laurin series, limited to the first order and 
obtain: 
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Since in most of practical cases tank quality factor Q 
is at least greater than 5 we further observe that 
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thus we may reformulate (12) neglecting terms due to 
pulse in the sum at denominator to solve the general pa-
rameter J for both the eigenvector as 
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where 1 and 2 account the phase discontinuities due 
to the bias current pulse, respectively, for the first and 
the second eigenvector. 

Since, by the definition, eigenvectors are periodic, and, 
due to the symmetry of the adopted model in the two 
halves of period they cover the same phase angle, we 
may infer that phase discontinuities caused by the bias 
current pulse must be equal, i.e. 

1                    (15). 

From these observations, substituting the condition (15) 
in Equation (14) and expanding J drops, it is straight-
forward to obtain the value of the phase displacement 
between the eigenvectors u1 and u2, at least out of the 
orbit portion when pulsed current is active as 

 12 n th nT T 2       .         (16) 

We want to remark that in Equation (16)  is only a 
function of the threshold crossing time, of the delay of 
current pulse application, and of the tank quality factor 
(related to parameter ). 

 
5. Optimal Phase Displacement between  

Eigenvectors 
 
Phase displacement between eigenvectors becomes here 
the main tool toward the paper goal to offer design in-
sights for the reduction of phase noise which, in our 
treatment, means to minimize projection of noise on the 
first eigenvector. To this aim we are now going to dem-
onstrate optimum conditions on phase displacement be-
tween eigenvectors, in order to reduce noise due to bias, 
parasitic resistance and jitter on accumulation of delay 
time T1. 

We assume perturbations to be realizations of white 
Gaussian noise processes with zero time average. This is 
not a restrictive assumption. In fact, also noise sources J

 (12) 
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with non-delta autocorrelations, i.e. 1 f with   , 
may be taken into account through the projections on the 
eigenvectors. Referring to [5], in particular Sections 6 
and 7, the power density of a flicker noise source is ob-
tained as an infinite sum of autocorrelation spectra of 
statistically independent Ornstein-Uhlenbeck processes 
(that are also Gaussian processes). Since we are dealing 
with a parallel RLC tank, perturbations are introduced as 
parallel noise current sources. Such noise current sources 
cause a variation of the capacitor voltage, hence we 
model the normalized noise perturbation through a con-
stant vector  

1

0
b

b

V
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I
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In order to determine the PDS we need to calculate the 
projection of vector b on the base formed by the two ei-
genvectors. Integration along the orbit of the square value 
of the projection on u1 leads to the c1 coefficient of Demir 
[7], while projection on u2 must be multiplied before in-
tegration by a properly evaluated exponential factor [11].  
  We first search for the condition which zeroes the pro-
jection on u1 of noise due to the bias current, usually the 
largest source of noise in integrated technologies. Bias 
current noise is cyclostationary because it arises only 
during the bias pulse. Assuming again T2<<T we may 
consider constant the projection angle during the pulse, 
then integration reduces to the multiplication of the pro-
jection by time T2. We notice that noise projection has to 
be performed after the turning on of the bias current, after 
the eigenvector discontinuity in Tth + T1 has occurred. As 
depicted in Figures 5 and 6, the additional component is 
in the direction [1 0]T, thus the necessary and sufficient 
condition which ensures that once added the Interface 
matrix component the eigenvector has null current com-
ponent is  
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Following the definition of u2 in Equation (6) and sub-
stituting in its expression the phase displacement of 
Equation (16), condition (18) is equivalent to: 
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Equation (19) states that, in possible implementations 
of pulsed bias oscillators, the |Vth| threshold should be 
chosen around the zero crossing of the oscillation voltage. 

We may further search for the minimization of the 
contribution arising from parasitic resistance, which re-

mains active all along the orbit. We recall that, from 
Equation (16) and following condition T2<<T which led 
to (15) phase displacement between eigenvectors remains 
constant along the entire evolution except for region 
where the pulsed current bias is active. 

However, since we assumed bias active for a short time 
compared to period, the projections of noise on the two 
eigenvectors, respectively u1p and u2p, are given by 
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then we obtain the integral of the square of the projec-
tions 
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(21) 

As expected the two terms in Equation (21) are equal. 
The first one is the Demir c1 coefficient [7], while the 
second is only a majorant term in the expression of phase 
noise due to u2.  

The actual period T depends on the angle β between 
the eigenvectors, however in hypothesis Q > 5 it results 
very close to Tn (the nominal period). This leads to state 
that factor sin2(β) predominates the result of integration 
and allows us to infer that minimization of phase noise 
distribution due to a stationary noise source occurs if the 
condition β = ±/2 holds.  

Further considerations can be derived from this result 
and from condition expressed in (19). For example, we 
notice that a jitter noise contribution arises from the elec-
tronic circuit when we introduce the delay T1. This jitter 
is proportional to the delay itself and inversely propor-
tional to the power used to accumulate the delay [18]. 
The choice to avoid any delay may be of interest in order 
to save an additional source of noise and to reduce en-
ergy dissipation [19]. Imposing T1 = 0 in combination 
with condition (21) we obtain that the optimum choice is 
to set 
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It results that condition on minimization of stationary 
noise (21) together with condition on minimization of 
accumulated jitter can be simultaneously satisfied only 
for a very low quality factor (Q = 0.5). Then in any prac-
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tical case a suboptimal condition must be searched, e.g. 
accepting a non zero delay time T1. 

Hence the last optimum condition we can search for is 
derived from minimization of both resistance noise and 
bias current noise for a given quality factor Q and in pres-
ence of a delay time of the current pulse T1. Using results 
from Equations (19) and (21) in Equation (16) we obtain 

1

π π 1
2 2arctg

2 2 2
 

 
    

 
nT Q

         (23) 

 
6. Numerical Comparison and Discussion 
 
In order to evaluate the accuracy of the proposed analyti-
cal expressions we need to compare them with numerical 
simulations. In fact, at the knowledge of the authors, there 
is no measurement setup and/or post-processing that can 
extract eigenvectors from measure of physical quantities 
in a real circuital implementation. 

Moreover there are no commercial circuit simulator 
which can compute Floquet eigenvectors in presence of 
discontinuities in space state. Then we developed a dedi-
cated Matlab simulator for the model defined in Section 
III. The simulator derives the Monodromy matrix through 
a shooting algorithm which use Interface matrices for the 
treatment of discontinuities.  

Even if the proposed analysis is not dependent on the 
oscillation period, in the following simulations we fixed 
frequency at fn = n/(25 GHz. Along with frequency, 
we choose to keep constant quality factor Q = 7.5, pulse 
duration T2 = T/15 and amplitude Imax = 60 mA ensuring 
the oscillator to be refilled by a fixed amount of energy 
and to be perturbed by the same amount of noise power. 
Moreover in case Vth ≠ 0 V we keep constant also the sum 
Tth+T1, allowing to reach the same limit cycle of Vth = 0 
V simulations set. The two case of study, respectively Vth 

≠ 0 V and Vth ≠ 0 V, differ only in the starting point with 
respect to period of T1 delay accumulation and in the 
weight of jitter contribution which is proportional to T1. 
All kind of noise sources are modeled as parallel current 
generators that adds to the model in Figure 1. Stationary 
noise is introduced as thermal noise of the parasitic resis-
tance depending on quality factor Q through 4kBTamb/R 
[A2/Hz] relation (kB is Boltzmann constant Tamb is ambi-
ent temperature in Kelvin) whereas the cyclostationary 
noise is introduced as shot noise (modeling eventual de-
vices) related to current Imax through 2qImax [A

2/Hz] rela-
tion (q is electron charge). Jitter noise source is instead 
considered as an additional time shift due to the accumu-
lation of both T1 and T2 delay and it is added to the one 
due to evolution of the initial variation until time of thre-
shold crossing Tth (8). Jitter source is the result of the 

charging of a capacitor through a dissipative media (again 
assume a MOS device) so it has been modeled through 
8kBTamb T1(KMOS/ID

3)0.5 [s] relation where is transistor 
noise constant, KMOS and ID are respectively the large sig-
nal current gain and drain current of MOS device. We 
choose to fix drain current to ID = Imax/10 = 6 mA. In fact 
the eventual auxiliary circuit suited for the introduction of 
desired delay must necessarily have a lower power con-
sumption with respect the refilling process of the tank in a 
real design. 

In Figure 8 the phase displacement β is reported in 
function of T1 normalized to period T in two cases Vth = 0 
V and Vth = 0.75 V. 

Amplitude and period of oscillation, as stated before, 
vary in function of pulse position between [2.45 V, 3.11 
V] and [4.8 GHz, 5.2 GHz] respectively.  

It can be observed a good match between simulated 
and calculated (16) trend with a maximum absolute error 
of about 13 in the evaluated range for case Vth = 0.75 V. 

Former considerations on factor sin2(β) in case Vth = 0 
V suggest that in correspondence of T1/T ≈ 0.223 when 
≈ /2 a minimization of noise projection on the first 
eigenvector should occur. Moreover for T1/T ≈ 0.223 the 
maximum of amplitude and the nominal frequency are 
obtained. In case Vth = 0.75 V the enhancement of time 
shift (8) due to late starting point Tth of delay accumula-
tion overwhelm any reduction of jitter weight due to 
shorter T1.  

In Figure 9 the simulated PDS of the oscillator is re- 
ported for three typical frequency offsets (100 KHz, 
1 MHz and 10 MHz) from the fundamental in function of 
 

 

Figure 8. Eigenvectors phase displacement out of the fast 
region simulated (dotted trace) and calculated (continue 
trace) in function of normalized pulse position T1 for T2 = 
T/15, Q = 7.5 in cases Vth = 0 V and |Vth| = 0.75 V. 
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Figure 9. Simulated PDS evaluated at three different offset 
from fundamental frequency in function of normalized pulse 
position T1 for T2 = T/15, Q = 7.5 in cases Vth = 0 V (continue 
trace) and |Vth| = 0.75 V (dotted trace). 
 
T1 in case of Vth = 0 V and Vth = 0.75V.  

PDS has been computed following [11]. It can be ob-
served that the continue trace related to the lowest offset, 
where the major contribution to PDS arises from projec-
tion on first eigenvector, exhibits the minimum exactly in 
correspondence of the prediction made by means of ≈ 
/2 criterion for Vth = 0 V. At higher offsets contributions 
arising from projections on cross-correlations between 
eigenvectors and on second eigenvector become prepon-
derant and the minima shift toward earlier T1/T ratio for 
both Vth cases. However it can be noticed that the Vth = 0 
V case achieves the better performance at the lowest off-
set whereas the Vth = 0.75 V case reaches the best results 
at large offsets for quite all T1/T ratio. 

In order to justify this observed trend we propose to 
monitor noise introduced through first eigenvector (refer-
ring to u1p(t) noise projection) in term of injected level of 
energy from all noise sources on first eigenvector.  

In Figure 10 the energy injected along the normalized 
period on first eigenvector by perturbation vector b is 
reported in cases Vth = 0 V and Vth = 0.75 V for T1/T = 
0.24, T2 = T/15, Q = 7.5. It can be noticed that the zero 
of injected energy occurs during the current bias pulse 
only in case Vth = 0 V. For any Vth ≠ 0 V the zero shifts 
toward later time instant. Moreover, as a result of non 
orthogonal phase displacement between eigenvectors in 
case Vth ≠ 0 V the maxima of injected energy on first 
eigenvector (when only stationary and jitter noise 
sources are present) can be greatly increased, thus de-
grading phase noise especially at low offsets. This ob-
servation is congruent with former defined design crite-
rion (19) and validates the proposed analysis. 

 

Figure 10. Simulated energy injected on first eigenvector by 
perturbation vector b in cases Vth = 0 V (continue trace) and 
|Vth| = 0.75 V (dotted trace) on left y-axis and capacitor volt-
age VC right y-axis along oscillation period for T1/T = 0.24, 
T2 = T/15, Q = 7.5. 
 
7. Concluding Remarks 
 
The paper presented an approximated and compact deri-
vation of the mutual displacement of Floquet eigenvec-
tors in the class of parallel RLC tank oscillators with 
pulsed current bias. Mutual displacement was proved to 
be strongly connected with the chosen architecture and 
consequently to determine phase noise distribution. As 
appreciable result, the derived expression of displace-
ment is compact and straightforward, thus it can suggest 
primary guide lines for designers in the field of oscilla-
tors architectures with time varying bias. 

In particular we demonstrated conditions for minimi-
zation of stationary as well as cyclostationary noise. Also 
the jitter noise introduced in the positioning of the pulsed 
bias is taken into account and its relation with noise pro-
jections on the eigenvectors is determined. Minimization 
conditions were formulated using parameters of the pro-
posed model for the pulsed bias class, allowing to di-
rectly infer the circuit design. Finally the analytical re-
sults are compared with a dedicated simulator, showing 
that proposed criteria for noise reduction are congruent 
with observed trend in the simulated PDS. 

Future works will provide developments and exten-
sions of the proposed analytical noise treatment to VCOs 
and PLLs systems. 
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