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Abstract

The paper deals with a lossy transmission line terminated at both ends by non-linear RCL elements. The
mixed problem for the hyperbolic system, describing the transmission line, to an initial value problem for a
neutral equation is reduced. Sufficient conditions for the existence and uniqueness of periodic regimes are
formulated. The proof is based on the finding out of suitable operator whose fixed point is a periodic solution
of the neutral equation. The method has a good rate of convergence of the successive approximations even

for high frequencies.
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1. Introduction

The principal importance of transmission lines investi-
gations has been discussed in many papers (cf. for
instance [1-8]). In a previous paper [9] we have inves-
tigated lossless transmission lines terminated by in series
connected RCL-loads. In [10] we have considered a lossy
transmission line terminated by a resistive load with
exponential V-l characteristic. In [11] we have cons-
idered periodic regimes for lossy transmission lines term-
inated by parallel connected RCL-loads. Here we inve-
stigate lossy transmission lines terminated at both ends
by in series connected RCL-loads but in contrast of [11]
the capacitive element has a nonlinear V-C characteristic.
Unlike of the usually accepted approach (cf. for instance
[12,13]) we consider first order hyperbolic system in-
stead of the Telegrapher’s equation derived from it. First
we reduce the mixed problem for the hyperbolic system
to an initial value problem for neutral system of equ-
ations on the boundary [14]. Extending ideas from [15-
17] we introduce operators whose fixed points are peri-
odic solutions of the neutral system. Our treatment is
based on the fixed point method (cf. [18]). All derivation
are performed under assumption
R/L=G/C (R=0,G=0).

The last condition is known as Heaviside one and it

implies that the waves propagate without distortion.

We would like to mention the advantages of our
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method in comparison of the other used ones: lumped
element method, finite element method and finite-
difference time-domain method (cf. for instance [19-21]).
If we use numerical methods we have to keep one and
same accuracy. But here we consider nonlinearities of
polynomial and transcendental type (for exponential ones
cf. [10]). For such “bad” nonlinearities (cf. [2]) there are
examples showing that if we want to keep the same
accuracy it should be reduced step thousands of times.
Here we obtain (even though approximate) an analytical
solution for voltage and current beginning with simple

initial approximations.
We proceed from the system:

au(x,t) ai(x,t)

C +——2+Gu(x,t)=0, (D
ot OX
Lﬁig’t)+%+ Ri(x,t)=0,
(xt)ell :{(X,t)e R*:(x,t) e[O,A]x[O,oo)} )
u(x,0)=uy(x), i(x,0)=iy(x), xe[0,A] )

where L, C, R and G are prescribed specific parameters
of the line and A >0 is its length. Here the current
i(x,t) and voltage u(xt) are unknown functions.
The initial conditions for the foregoing system (1) are
prescribed functions U, (X ), i,(x). The boundary con-
ditions can be derived from the loads and sources at the
ends of the line (cf. Figure 1).
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Figure 1. Lossy transmission line terminated by nonlinear
RCL-loads.

In view of the Kirchoff’s voltage law for the voltages
between the nodes a, b and d for x = 0 we obtain:

—U(0,t) =—U,g = Uy, —Uyy =Uy, —Ey(t), (3)
where E,(t) is the source voltage. The voltage Up, is:
dv¥,

dt

To calculate the voltage of the condenser C;, we pro-
ceed from the relation (assuming

Ug, (T)=u(T)=0)

dq _d(Cy(u)u
at dt

Uy, =Ug, +Ug, +Uy, =Ry (i(0,t))+ug, +

i :lerdr:C()uC()

or

=u(0,t)=C,’ Ul (O,r)dr] :

T

To calculate the voltage of the inductor L, we pro-
ceed from

0 o i dL (i |
o, = S ()19 L 2

Therefore the first boundary condition is:

Uy, =R, (i(0,1))+C," Ui(o,r)drj

T

+{i(0,t)dL0(i(0,t)) N Lo(i(O,t))} di(0,t)

di dt

or

u(0,t)=E, (t)-R, (i(0,t))-C,

o|
7~ N\
e— ~

—~

=

N

S

Q..
;/

—{i(o,t)wwtg(i(o,t))l 0
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Analogously for x=A (cf. Figure 1) we obtain

u(At)=E (t)+R (i(At))+C/ Ui(A,t)drj

T

i . ®)
{i“’t)ww(i(mt)ﬂm.

di dt

Here R(.),C/(.) and L,(.) are characteristics (in
general, nonlinear functions) of RCL-loads at right end.
Now we are able to formulate the initial-boundary
(mixed) value problem for the hyperbolic transmission
line system of equations: to find a solution
( (x.t), (x t)) of the hyperbolic system (1) for
)en={(x,t)eR2 0SX<A, 120},
satisfying the initial conditions

u(x,0)=u,(x),i(x,0)=is(x) for xe[0,A] 6)

and the boundary conditions
t

u(0,t) = E, (t)-R,(i(0,t))-C,’ [Ii(O,r)dr]
T

{i(o,t)dLo(L(io’t)L Lo(i(O,t))} di(O,t)’

dt
u(At)=E (t)+R (i(At))+C/ ui(/\,t)drj
di(A,t) ®

{i(A,t) + Ll(i(A,t))} o

where U, (x),i,(x),E,(t),R.(.).C,(.)and L(.)
(k=0,1) are prescribed functions.

So the system (1) and conditions (6) - (8) form a mix-
ed problem for a lossy transmission line equations.

™)

dL(i(At)
di

2. Reducing the Mixed Problem for the
Transmission Line System to an
Initial Value Problem for a
Nonlinear Neutral System

First we present system (1) in matrix form:

AU, +AU, +AU = O( %,szauj ©)

R A TR R T }
fuefo]

Since |A1| =LC # 0, then multiplying Equation (9) by
A" we obtain
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U,+AU, +BU =0 (10)
0 1/C G/C 0
where A= , B= . In order to tran-
/L 0 0 R/L
. 4 0 1/C| . .
sform the matrix A=A"A = in a diagonal
/L 0
form we solve the characteristic equation:
-1 1/C B
/L -4

whose roots are A, :1/ VLC and 4, = —1/ VLC . De-

note the matrix formed by eigenvectors by

y _{ Jc JE}
e T
and its inverse one—by
H-! :l 1/\/6 _1/\/6:|.
2 VL AL
If we denote by
pon _| VNI 0 }
[0 —1INic]

then A®" =HAH™.
Introduce new variables Z = HU (or U = H™'Z):

V(xt) u(x.t)
Z:Lw)}’“ :Lw)]

V(x,t):«/Eu(x,t)Jr\/Ei(x,t)
I(x,t):—\/Eu(x,t)+ Li(x,t),
u(xt)=V(x,t)/24C 1 (xt)/2JC
i(x,t)=V (x,t)/2JL+1(xt)/2VL.
Replacing U = H™'Z in Equation (10) we obtain

a(H'z)  8(H'Z)

oX
Since H™! is a constant matrix we have:

H7'Z,+(AH™)Z,+(BH™)Z =0.

Then

(11

(12)

+A

+B(H'Z)=0.

After multiplication from the left by H we obtain
Z+H(AHT)Z, +H(BH)Z =0, ie.
Z,+A""Z, +(HBH‘1)Z =0. (13)
But
o _1[(6/)+(RIL) (-6/C)+(RIL)
2|(-6/C)+(R/L) (G/C)+(R/L)

and then
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{VI}L 1/JLC 0 {v}
Ll o —1/JLc Ll
A[(G/C)+(RIL) (-6/)+(RIL)][V]_[0
2| (-6/C)+(R/L) (G/C)+(R/L) |[1] o]
We consider distortionless lossy transmission lines
that means the following Heaviside condition is fulfilled:

R/L=G/C.
Then HBH™ can be simplified and the last system be-
comes:

S b

or

V, +(VVLCV, +(R/L)V =0
I =(Y/VLC)1, +(R/L)1 =0.

The new initial conditions we obtain from conditions
(6) and system (12):

V (%,0)=~/C u(x,0)+~/L i(x,0)

(14)

=/C uy (x)+L iy (x) =V, (x), x€[0,A], -
|(X,O):—\/EU(X,O)+ Li(x,0)
=—/C uy (X)+ /L iy (x) =1, (%), XE[O,A].(16)
Further on we set
W (x,t) ="V (x,t), I (x,t) ="' (x,t)
a7
oV (xt)=e "W, 1(xt)=e ¥ I(xt).
Then system (14) can be written in the form:
W, +W, =0, J,-vJ, =0 (v=1/JL.C). (18)

The initial conditions (15), (16) remain the same ones:
W (0,8) =V (0,t) =V (x), 3(0,t) = 1(0,t) = I, (x).
From system (12) and denotation (17) we obtain

u(xt)=[W (xt)-3 (xt)]e ®/(24C),

(19)
() =[W (x,0)+ 3 (xt)Je " /(2L)
and then
W (x,t)=e®'JCu(x,t)+e¥' L i(xt),
J(x,t) =" u(x,t)+e ™ VLi(x.t).
CS
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Replacing in system (19) x=0 we have

(0,t) =[W (0,t) -3 (0,t)]e ") /(2\/—)
)=[W (0.t)+3(0,t)]e ™ /(24L)

and replacing Xx=A —
At)=[W(At)-

J(A1)]e ™ /(24E),
)=[W (A0)+3 (A )]/ (2L).

Now replace expressions (20) into the first boundary
condition and obtain:

(0)]e " /(2vC)
:Eo(t)—RO((W(O,t)JFJ(O’t)) /(23e))
U[w 0.5)+3(0.7)Je /(24T )a ] 22)
{(i(o,t))wW(i(m))}

xjt((w(o t)+3(0,t)) e * /(2f))

Replacing expressions (21) into the second boundary
condition we obtain the following equation

(At)]e /(2\/_)

1)

[W(0,t)-

[W(A,t)-
—E (t )+R((W(A t)+3(A.the @/ (2vL))
+C- (j[w (A,s)+3(A,s)]e ™Y /(2«/_)ds] (23)

+[i(A,t) ah (id(iA’t)) L (i(A,t))}

x%((W(Aat)""] (A.)e ™ /(241)).

Introduce denotations
Eo(t):i(O,t)dLo(li(iO’t))+Lo(i(O,t))
= ((W (0,t)+3 (0, t))e*R/L)‘/(zJE))—dL" (i(lo’t))
+L0((\N(0,t)+J( t)e Y /(2{))

()= i(A,t)WJr L (i(A))
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=((w (a0 +3(A0)e /(2L ))—( (A1)
+L1((W(A,t)+J( 1))e Y /(zf))

We assume that the unknown functions are W (A,t)
=W (t), J(0,t)=J(t). An integration along the charate-
ristics yieldsW (A,t+T)=W (0,t), J(A,t)=J(0,t+T)
and then Equations (22) and (23) become

(W (0,t+T)=3(0,0))e ™" /(2JC)
~E, ()R, (W (0.+T)=3 (0.0)e */(24C)

—C_Z()"U'((W(O,t+T)+J(O,T)) (RL)e /(2())&]

—I:O(t)%((w(o,t+T)+J(O,r)) /(24T
and

(W (A)=3(0,t+T))e ™ /(24C)
=B ()+R (W (A)+3(0.t+T)) ™ /(24L))

)
+C U([W A7)+ 3(0,7+T)]e ™7/ (24L))dr
+L (t)%((w (A1) +3(0,t+T)) e-<R/L)‘/(2\/E))).

Then we put t+T =t and change the variables in the
integrals:

(W (1)-3(t-T))e @ /(24C)
—E,(t-T)-R, ((W( )+3(t=T))e DT /(24L))

-G, I( (60-T))e (R/L)(H—T)/(Z\/E))dg

w(t-T)-J(t))e-w”“'”/(zﬁ)
=B (t-T) R (W(E-T) +3 (1) 17/ (24C )
+C_311j((w(6?—T)+J(9)) R/L“/(zx/_))dﬁ

0 (t—T)%((W (t=T)+ 3 (1)) ¥/ (24T)).

To solve the above equations with respect to the de-
rivatives dW (t)/dt and dJ(t)/dt we have to divide
the above equations into Lo(t T) and L1(t T), re-
spectively.

But

CS



V.G. ANGELOV ET AL. 301

0, _d¥, :dI:k(i)Ede(i).i :[ de_(i)+Lk( )]ﬂ
K dt dt dt di dt
(k=0,1) where Lk(i):iaﬁk)i”.Thensince
n=0
‘{Jk() ():Igoak ;ak n+1'
we get
di (i) . dL .
00,
:|ina(k)|"’l+iaﬁk)|"
n=0 n=0
=3 (n+1)a¥i", (k=0,1)

Introduce denotations
I, (W, 3)(t) = @D (w (1) + 9 (t-T)) /(L)
I, (W, 9) (1) =& @0 (w (1-T)+ 3 (1)) /(L)
Therefore
L-T)=T1,(W,J)(t)
+ L (M, (W, 3)(1)
=3 (n+1)a (1, W.3)(1)"

dL (11, (W, 9)(1))

C(t-T) =1, (w,0) ()
+L, (1T, (W, 3)(t))
=3 (n+1)a (11, (W, 3) (1))

n=0

dL, (1, (W, 3) (1))

di

>

_We have to ensure a strict positive lower bound for
L (t-T), (k=0,1). We can find an interval |i|<i,
such that the inequalities

11, (W, 3) (1) < e (w, + 3,677 /(240 ) <,
11, (W, 3) (0] < T (wie s + 9, ) /(24T <,

imply

(24

where 1/L :max{l/fk -k :0,1}.

This can be done if the polynomials have suitable
properties (cf. 4. Numerical example).
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We also briefly recall:

_dg_d(Cy(u)u)
dt dt
and

U, =u(0,t)=C,

0\
VD
— —

-

=l

N

SN

[oN
~

where ¢, ®,, he[2,3],
Cy _ G /D,

u/<I> \/CD -u

(k=0,1)

Ck(u):\/

are constants and
|ul<W, <® =min{®,,® }<(h/(h-1))®
The derivatives of the functions Ck (u)=uC,(u) are
dCClefu) ¢, (u)+u dC, (u)

ckQ/ak(hcb

h(®, —u)

hu+u)

Ue[-Wo, W, |

u . . .
>0 the inverse function exists for

G 1), 1) S
[—ckrwo ckrWZI

Yo, +W, Yo, -W,

W, W, |

then
(1) Ll U0 W )
‘ o, +W, o, -w, o
or |C_Zk’1 (1) |£WO.

The explicit form of the inverse function for h=2 is:
6B /B, = -
=CcOU =D, 17 —1°u
=D U+ 1u-D, 17 =0,
G (1)

17+ J1* +4c2D21?
= < (k=0,1).

2¢. D,

We need the derivative given below (see Equation (26))
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and the following estimates:
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([w(9)+;| (6-T)]e R/L”T/(zf)) ‘ H

e~ A~

1<
o, +W, Yo, +W, || Yo, -Ww,
| " | (W (0-T)+3(0)] e ®*7/(24L)) a0 Ck_{i—v\y
+
| (| | > | 4CD? J or in view of the inequality
I+
“Go, Y17 +acio) j([w 0-T)+3(0)]e ™ 9T/(2\/_))dt9‘
1
1[+17 +4c cpz)
= o, (H ‘ <((wy + 9,67 /(2E)) (e -1} flu—(R/L)))
Cm/iW CKFWJ L4C2D? we obtain
\/d) +W, \/CD +W, W0+J0e‘/‘T (RO _ ckrW
yN[ (R/L) B Jcp +W,
1+— k=0,1).
and
(25) W,e T+, gl ®H) _ CkrW
Therefore the arguments N (R/L) NG
t
_ ~(R/L)(6-T) For the I-V characteristics we assume that they are
I([W (0)+3(6-T)]Je /(ZJE))dH" polynomial functions
t R, (i)=Yt (k =0,1).
[([w(0-T)+3(0)]e ) (24E)ao A
T Now we are able to formulate a periodic problem for
of C,"(.),C;"(.) should satisfy the inequalities the obtained neutral system:
1 —|— 1% + 220> ck\/>w
dc;' (1) c D, +40k Jo, +W,
a (26)
2
21 _|+ 12 + 20202 Jelo ck\/_w
Dy +4le(l)2
dw(t) dJ(t-T) R R (RILY(t=T) i
= +IW(t)+EJ(t—T)+(2e JLE, (t-T)=(W (1) -3 (t-T))Z,) /5,
2eRIET) JT (g (RLT)
- — R W(t)+J(t-T 27
R[S W) @
26®LT) JT _ (L (RILET)
- = C,' W (8)+J(0-T))do |=U(W,J)(t).
e ([ oy 0-Tae U o)
DY) __AWET) Ry (eo1)+ R 3 (0)- 2680 OTE, (1-T)/L
dt dt L L ‘
e T g (ROET)
+((W(t—T)—J(t))ZO)/Ll— c R I (W (t-T)+3(1)) (28)

~(R/L)(t-T) _ (R/L)(t-T)
e El ﬁcllue T W(e-T)+ (9))d9]zI(W,J)(s),te[T,T+T0],

Copyright © 2011 SciRes. CS
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W (1) =0, (1), W (1) =0, (1),
J(M)=4(t), I(t)=4(t), te[0,T].
The initial functions v, (t), 4, (t) can be obtained from

the initial conditions (7) by shifting along the characteris-
tics of the initial functions u, (), i, (x) (cf. [9-11]).

3. Main Results

Here we formulate conditions for the existence-uniqueness
of a periodic solution of neutral functional differential
system (27), (28) (for definition of neutral equation see
[15]). First we define a suitable operator generating by
the right-hand sides of the Equations (27), (28). We find
a T, — periodic solution of Equations (27), (28) on the
interval [T,T+T,) coinciding with prescribed T, — pe-
riodic function on [0, T ]and then one can continue it pe-
riodically because our system is autonomous one.

By LIT:c [T,oo) we mean the space consisting of all
measurable essentially bounded T, — periodic functions
whose derivatives are also essentially bounded and T, —
periodic.

Introduce the sets:

L ={felr, T]Tof (t)dt=0 A F (1) =0, (1),
e[-T.7]}.
=l el [T o) T]TOft)dt_oAf() u(t),
e[-T.T]}.

Lemma 1. If f(.) e M, (respectively f(.)e M;) then
t

F(t) = J' f(r)dr is T, — periodic function.
T T+Ty

[ Ec(t)yt=o,

1
|E, (1) <W, e te[T.T+T,]. E(-T)=0(k=0.1).

Assumption (IN) v, (t).s (t) are essentially bounded
T, — periodic functions whereT =mT,,me{2,3,4,5,---},
0,(0)=4,(0)=0, |vt] <W,, |10 (t)| <J,. Here W,,J,

are prescribed positive constants.
Lemma 2. If the assumptions (IN) and (E) are ful-
filled and (W,J)eM,xM, then R, (II,(W,J)(t)),
t

R (LW, D)D), ¥, (t)=[(T1,(W.J)(r))dz

t T
and W, (t)=[(T1,(W,J)(r))dz areT, - periodic func-
tions. T
Define the operator B =(B,,B,) ontheset M, xM;
by the formulas:

Assumption (E) E, (\)eL;”[-T,w),

Copyright © 2011 SciRes.

v (t)-te[0.T],

5, (t),te[0,T],
)(s)ds

T IJT]T(’U (W,3)(s)ds

T

B, (W, J)(t):=

J
B, (W.J)(t)=

B, (W.3)(t):= [U (W.J

s)dsdt, t e[T, T +T,]

_[t‘T _lﬁ” L(W,J)(s)ds

T, 2)1

L

Remark 1. It is easy to see that changing the integration
order one obtains

s)dsdt, t e[T, T +T,].

T;fTﬂjU (W,J)(s)dsdt =(T +T0)T;fTOU (W,J)(s)ds

- J sU (W, J)(s)ds

and

T T+T,

L(W,J)(s)dsdt =(T+T,) [ 1(W,J)(s)ds

—

+Ty
T

—H—

Lemma 3. The periodic problem (27), (28) has a solu-
tion (W(.),J(.))eM,xM, iff the operator B has a
fixed point (W,J)e M, xM,, thatis, W =B, (W,J),
J=B(W,J).

Introduce the sets

={feMu:

(1) <, e T te[TT+T,]},

={feM[f(1)]<3,e T te[TT+T,]}.

Here the constant >0 will be prescribed below.
The sets X, and X, turn out into metric spaces with
metrics

P(W’W) = eSSS“P{efﬂ(tiT) |W (t)-w (t)| te[T,T +TO]},

pPW ,VV) =ess sup{e_”(”) W () —W(t)‘ te[T,T +T0]} ,

p(3,J) =ess sup{e”‘“’” |J ®- J_(t)| te[T,T +T0]},
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p(3,7) =ess sup{e"‘(”’J(t)—j(t)‘:te[T,T+T0]}, W,e T +J, el ®Ho _ ckJ w

R
< u>—.
2JL (R/L) ./cp +W, L
Define a metric on X, x X; in the following way:
= = Theorem 1. Let the assumptions (LC), (E) and (IN

be fulfilled. Then there exists a unique T, — periodic
= max{p(W,VV),p(J,j),p(W,W),p(J,j)}. solution (W, J)e X, x X; of the problem (27), (28).
Proof: Define the operator
el (), +3,e77) B=(B,,B):X,xX, > X,xX, by the above formu-
JL Sk, las. In what follows we show

(u=(R/L)To (Woe”” + Jo)
N[
W, +J e T gluRtTo _ c“/ W

Using inequality (24) and proceeding as in [11] we
NI (R/ L) JCD +W, obtain (for sufficiently large 4> (R/L)):

Assumption (LC):

W ()] <W,e“ " A|3(1)] < J e T

<i,,

=[B,|<W,e““ ™ A[B | < J e .

B, W, I)t) <] _[U(W J)(s)ds j UW,J)(s)ds

+_

t

Juw, 3)(s)ds

T+Ty

+ﬁ-“

T

dt < e"‘(t T |:e+—'uole '”T\]

Ho

Gty +2)e” +u0—2[5+Z_OJ(Wo
0

3087 ) DS W, (6T +1) (206" + 201, =2
24, L L

u L(urRIL)

Hy

—/lT n
+_L (WO +J,8 ) ><[e(nl)(ﬂ(R/L))To 2e + 3p, -2 _lﬂ < eHtTy
B 315

L

0

M=

>
I

'n(2vL)" (u=(((=DR)/(R))) 2o

For the second component of the operator we obtain

T+Ty

[ 1w, 3)(s)ds

T+T,

+Tl j Jt'l(\N,J)(s)ds dt

<e"(“T)[We”T(e”°+y0—l/,uo ( (e "T+l/u)

B.(W,I)() < _[I(\N,J)(s)ds

+—
2

x((R/L)+(ZO/E1 ))((,uo +2)e" + p, —2)/(2y0)+(4e(R/L)To + el RO _ )%

(26" +3p1, —2) /(244 ) % S (e 3, ooy 3,64
+(2e% +3u, - sJdee
B T T (R R |

Therefore the operator B maps the set X, x X; into itself. In what follows we show that B is contractive operator.
We need the following preliminary inequalities

1,0, 9)t) ~T1, (W, ) t) s%(p(w,vv)w(aj)e-”),

_ gle(RIL))a-T) oy o -
I,W, 3)) —T1, (W, T ) () S—(p(W,W)e_” +p(J,J)),
: 1( ) | 2,u\/E
Copyright © 2011 SciRes. CS
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[ty 0] -1, (W.3) 0 ]
< n[e(”‘(R/L))T" (W0 +J,e7 )/(Zx/f)]n_l x gl (RD)E=D) (p(W ,VV)+p(J,j)e‘”T )/(2/1@)
[ . 9)0] - [, (W.3)
< n[e(’“(R/L))TO (Woe"‘T +J0)/(2*/—)J R/L))(I—T)( (W,W)e"” +p(J,j))/(2y«/E).

Then for the first operator component we obtain:

L (W, 3)(t)-B, (VV,J‘)(t)|

T+Ty T+Ty

[ UW,3)(s)ds— [ U(W,T)(s)ds

—u—,...

<Jluw.3))- U(W,I)(s)|ds+[%_%j

ju (W,J)(s)ds—jU (W,J)(s)ds|dt

T

1 T+Ty

+T—j

0o T

_ ., gt -1 -uT 2)eto ) wal
Seﬂ(t_T) p(W,J),(W,J)) +IuO € +(,u0+ ) +/“0 1+ez
Hq u 2, u

m (n-)(u—(R/L))Ty 4 yT n-1
-[(R/L)+(ZO/EO)+E1()"2} ro| (2\/%’ Joe L2, f1+ (W, /,) /c0 ~(R/L ))H

Further on we have
|B,(W, 3)(1) - B, W, J)(1)|

ﬂKW I)(s)-1W, J)(s)|ds+[—T—%J jOION,J)(s)ds— jOI(VV,J_)(S)ds

T

T+Ty [t

+Ti | j’l(\N,J)(s)dS—i‘l(\N,J_)(S)dS dt

o T |T

e + 1, —1 77 Ly +2)e" + 1, =2 (7 +1)
Ho u 24, o

< e“(t_T),D((W ,J )a (‘]_9\/\7)) |:

_ m ne'™ D(u=(RIL))Ty (Woe*ﬂT + \]O)TH . 2 "
.[((R/L)+(ZO/L0) TZ ] AN PRCTRIN (wo/cbl)ﬂ

=e“ K, p((W,3),(3.W)).

Finally we have to obtain an estimate for te[T,T +T]. It is easy to prove the following inequalities:
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B, (W, 3)(t) - B, (W, )(t)

o 1 T+Ty T+Ty o
<UW,HO-UW,HO+—| [ UW,I)s)ds— [ UW,T)(s)ds
o T T
_ o _1(1+e™T m ne™ VRO (4 g g )"
<e T p((W, 3),(W, T))| e 7 + =Tt 1 )x{5+i S ( e )
Hy H L L L (zﬁ)
2/1+W, /@, ]
=
Locy (1= (R/L))
Eemtfﬂ}(’up((w,\]),(\T,VV)).
For the derivative of the second component of B we obtain
|B,W,3)(t)~ B, (W, J)t)|
L 1 [ T+,
£|I0N,J)(t)—I(W,J)(t)|+T— [ 1w, 3)s)ds— [ 1W,T)(s)ds
o T T
< e”(t'T)p((\N,J),(V\_/,J_)){e'”T N e + 4, —1 e +1)
Y7,
R,
[R Z, 1& o e( 1)(ﬂ L]T We ™™ +3,)"" 2J1+W, /@,
x| —+=> +=>"n|r! — F—
L L L L) oL (u—=(R/L))

The above inequalities imply
P(BW,J),BW,J)) <K p(W,),(W,J))
where K :max{Ku,Ki,Ku,Ki} should be chosen

smaller than 1.

Therefore B is contractive operator and has a unique
fixed point in M (cf. [18]). It is a unique periodic solution
of system (26), (27).

Theorem 1 is thus proved.

4. Numerical Example

For a transmission line with length A =1m,

L =0.45uH/m, C =80 pF/m, cross-section area
S =6 mm?, specific resistance for the cuprum

p, =0.0175 , thatis, R=(p,A)/S~3.107Q,
v=1/JLC =1/(6-10°) =1.66-10",

Z,=4JL/C =75Q.Then T =ALC =6-107 sec.

Let us check the propagation of millimeter waves
2y =(1/6)-10"m . We have
fo =1/(%LC)=10" Hz = T, =1/, =10,

Copyright © 2011 SciRes.

We choose x=2-10". Then uT, =y, =2 and
T=6-10"-2-10"T, =12000T,. Consequently

HT =2:107-6-10 *~12-10° =>e*" ~0,RT/L~0,
R/L =0.0029/(0.45-10°) ~ 0.6-10*, """ x¢” ~1
put(R/L)=2-10"£10% =10*(2£107") ~ 2-10",
(R/L)T,»0=e™" —126.6-10°°,

,u—(R/L) ~102, el R0 _ qrg=(RILTo 02

We choose resistive elements with the following V-I
characteristics R,(u) =R, (u) =0.028u—0.125u° i.e.
L =0.028,r, =0, r, =0.125, and inductive element with
Lo(i)=L,(i)=3i—(1/12)i*. Then

Ly (i) =i (dLy (i)/di)+ Ly (i) = 61— (1/3)i.
If we choose i, =1 one obtains
6i—(1/3)i* >6-(1/3)=17/3

and consequently 1/L =3/17.
Let us take

Co(W) =C, () =¢/\1-(u/@) =cV/VDd-u,

where h=2,c=50pF =5-10"F and ®=04V =

CS
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W, < 0.4 . Then the inequalities of Theorem 1 become W, - 1_cW, \/_ S < 2ok Lo
) <
el (1% (4 3,747 )/(2\/[)§1 WL u \/q>+w
< 2-0.4; 1073 = 1072
ZEZWO/ 2\/E Sl:wo Szﬁ/eZ z0'181073’ 2W0 _mln{13.25 0.4, 0.18 10 } 0.18 10 5
J, e-1_cW, Jo
(u-R/LYTy — T 0 < 0
e (Wye +J0)/(2«/E)£1 WL u Jow,
= e, /(L) <1= 3, <21/ 018107 2 VLD W, .
:>J0_2— 6:10;
and (e” -1 JD+W,
2 2 2 _
(R, Z ) eVl 1 0,008 H1, Q125 e 26t 1)
7 L L L L 2 L 24

f—|
VR
I—I:U
|—||N

jZW NG +3L W, G;E2[0-02830(92_1)+0125J( )H I,

C
2 z

K, =EHR. 2 11008401253 +2,/1+ L/ ®)/ (uic)| <1,
2u |L L L

. e Z,

K‘:ezﬂ[i +2 +i[0028+0125 J+21/1+ )/ ®)/(uic)]<1.
7

Taking into account R/L+Z,/L=10*(0.6+13.24-10*)~0.6-10°, W, <0.18-10”and J, <3-10° we see that

1/(2-10”)[4.44404 +5.584/0.45-10° +(13/17)(O.118+3.4)]£1

107 [8+0.83(0.54~10‘6 +(3.375 ~10"2)4o4/5.4)] <6,

K., K, <K, <K, =~ (2,1/10%)(0.6-10* +0.072+0.0036)13-107 < 1.

Most often the initial approximation is chosen to be CRILYE-T) 3
simple functions, namely: B (1/3)(8 (W O+ —T))/(Z\/E)) ’

W, sinw,t, t €[0,T
W(O)(t)z{ 2), t eET’,T +[TO’] ! L=
10 :{JO sinayt,t €[0,T] - 6(e'<R/L>“-T> (W(t-T)+ J(t))/(zﬁ))
0,te[T, T+T,] 3
(@, = 21/T,) and E,(t)=E,(t) = E, sin,t . ~(1/3)(e " WE-T)+Im)/(24L))
Then we have W™ (t)=B,(W™,J™), and therefore (recall [T |<i, =1, |IT,|<i, =1):

J(ﬂ+1)(t) — Bi(W(n),J(n))
(n=0,1,2,---) and
p((W(nH),J(n+])),(W(n),J(n))) t
-7\" -7 H qa 0) 700 < (R/L)(s=T) i [ (s—
<(113:107)" [(1-1.13-107) p( (W™, 39 ) (W@, ). —2«/116 IR (iy)|/(Ly(s=T))ds
(n=12--+) ;
We notice that L (i) = L, (i) = 6i —(1/3)i’ imply < NIJ e (0,028+0,125)/(L)ds

Zx/f_t[e(R/L)(s'T)Ro (11, W, 3)(s)) /(Ly(s=T))ds

L(t=T) <0.31LYL (e )/(ER)£0.074~10‘12z0.
=6(6_(R/L)(t_T)(W(t)-i—.](t—T))/(z\/E))

Analogously
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2fjeR/L CTR, (I, W@, 3)(s)) /L (s-T)ds

<(6J—/17) 0028+0125 elF/tTo L/R 0.
We find the first approximation

W) = Bu<\N“”,J“”)<t>=ju(W“’%J“”)(s)ols—(t;T —lJ [ uw®, a0y

0

1 T+Ty t

—— [ Juw®,3@)(s)dsdt
To T T

t t
=-J,sinayt +(R/L)jJ0 sin ,5ds + 2E0ﬁje<R/L>“‘” sin /(L (s—T))ds

e (R/L)(s=T) C;

+ZOJ0jsinwos/( s—T) )ds 2\/_J.L0(s T)2f[je (R/L)(H‘T)Josina)OHdQst

t-T 1 T (R/L)(s=T) T+To
|7 2E \/_I el sin @ S/ (s-T) )dS+ZOJO J. sma)os/ T))ds

0

T+Ty e(R/L)(S—T)

_ (R/L)(6-T)
2x/E%f CG-T) (2\/_] s1na)06’d¢9Jd}

T+Ty

t
- J { , sinat +(R/L)J‘J0 sin @,sds +2E0x/tfe(R/L)(s_T) sin w,sL, (s —T)ds

e(R/L)(S*T)
+ZOJOIsma)OS/ S— T))ds 2JL

J.L( N (2\/,.[ (RiL)e T)51na)0¢9dt9jd:| dt.

Since (R/L)IJO sinw,sds|~ J,-10” and
T
(R/L)(s—T)
2L je j (FHOD sin @,0d6 ds| <W, ii( (VL0 —1) 2 W,3.6:10 0
7 L(s— T) 2J_ R
we can disregard this terms and obtain
LW gin g ~
W“>(t):—JOsina)ot+2E0J_jL0(—°ds+zOJojsina)Os/(Lo(s—T))ds
T

_[t;T ;](ZE \FT]T e ¥ sinays/(Ly(s—T))ds +ZOJOT]T0smwos/ (L(s—T))d ]

0
T+Ty
1

- j [ZE fjeR/L“ " sin s /(L (s T))ds+zoJ0jsmw0s/ L, (s— T))ds}dt

0

and then
|W(1)(t) RV VAL (t)|

SJo+(2E0Lﬁ/RE)(e(R/L>Tﬂ—1)+(ZOJ0/|_)je#(s D ds|+( E,LVL/RL ) (¥ —1)
+(ZOJO/2E)T]TOe”‘S‘T)ds +TiT+jT ((2E LJ‘/RL)( (R/L)To )+(zOJO/E)Jeﬂ<S-T>ds]dtsJO

+(SLP/LR) (e ~1)E, +5Z,3, (e* ~1) /(2L )

<eJ, =¢’J,.
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For the derivative we have
T+Ty

W(l)(t)= U(\N(O)’J(O))(t)_% I U(W(O),J(O))(S)ds

0o T

2e(R/L)(t—T) EO\/E
Lt-T)

2e(R/'—)([*T)\/E R(HO(W(O),J(O))(t))
L (t-T)

R/L (t— T)f _ . T
_ Lo(t 5 I[JH (W<0) J(O))(ﬁ)d&)—T_(zEf J‘ (RIS )/Lo (s )dsj
T

R, .
=—-m,J, cosa)ot+tJ0 sin w,t +

z .
+=r J,sinaot -

T+Ty

+i( T]TOJ sin@, /(L;(s=T))ds fo el MR, (11 OON(O)’J(O))(S))/(EO(S_T))dsj

T+T, (R/L)(s T
+_PJ‘j )(ﬁIMN)ﬂ%wmﬂ J

Then we obtain
W) - O b

< (a)o + FE +ZE +=> (et _1)/;40}.] +(2f/|_)( gRTo/L +(eRTo/L —1)/(RT0/L))(EO +W0)
+(2VL/T)(0.028+0.125) (7" + (€ —1)/(RT, /L)) + (2VL/T) (7 -1) /(RT, /L)W,

Since (eRTO/L—l)/(RTO/L)zl, E,=0.5V we have

225(e4—1)J 0.45-10° (2+6W, +0,612) ~ 3.768-10’.

0 17

|W“)(t) A (t)| < [2n.1012 +0,6.10" +

It follows p(W(l),W(O) ) <18.84-10°. Consequently

1.13 *7)
() (D gy (M 3(m <—( 3.8:10" (n=0,1,---
p(W ), (W ) TI3107 ( )

or W ) =W ™ ()] < 7.4(1.13:107)"3.8-107 <(1.13-107)" -(2.82)-10"

In the same way we can obtain an estimate for the second component of the operator B:

T+Ty T+Tp t
IO =BW®,3O)1) = j|(vv<°> JO)(s)ds— (t T l} | |(\N(°>,J<°>)(s)ds—i [ 1w, 3 (s)dsdt
TO 2 TO T T
R/L(s -T)
:—Wosina)ot+ I51nwosds+2E \/7J.
(s- T)
t . _ T+Ty (R/L)(S—T) T+T, .
zojV\fosma’Osds—[t T—lJ ENVL [ S sz, [ eSS
T L1(S_T) To 2 T L1(5_T) T LI(S_T)
T+Ty (R/L)(s -T) :
—ij 2E fj—d j—W o SRD° s | dt.
LI L(s-T) L(s-T)
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