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Abstract 
Wireless networks are characterized by nodes mobility, which makes the propagation environ- 
ment time-varying and subject to fading. As a consequence, the statistical characteristics of the 
received signal vary continuously, giving rise to a Doppler power spectral density (DPSD) that va- 
ries from one observation instant to the next. This paper is concerned with dynamical modeling of 
time-varying wireless fading channels, their estimation and parameter identification, and optimal 
power control from received signal measurement data. The wireless channel is characterized us- 
ing a stochastic state-space form and derived by approximating the time-varying DPSD of the 
channel. The expected maximization and Kalman filter are employed to recursively identify and 
estimate the channel parameters and states, respectively, from online received signal strength 
measured data. Moreover, we investigate a centralized optimal power control algorithm based on 
predictable strategies and employing the estimated channel parameters and states. The proposed 
models together with the estimation and power control algorithms are tested using experimental 
measurement data and the results are presented. 
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1. Introduction 
Time varying (TV) wireless channel models capture both the space and time variations of wireless systems, 
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which are due to the relative mobility of the receiver, transmitter and/or scatterers [1]-[4]. The majority of re- 
search papers in this field such as in [5]-[7] use time-invariant (static) models for wireless channels. In these 
models, the speeds of mobile nodes are assumed to be constant and the statistical characteristics of the received 
signal are assumed to be fixed in time. But in reality, the propagation environment varies continuously due to 
mobility of the nodes causing network topology to dynamically change, the angle of arrival of the wave upon the 
receiver can vary continuously, and objects or scatters move in between the transmitter and the receiver resulting 
in appearance or disappearance of existing paths from one instant to the next. As a result, the current models that 
assume fixed statistics can no longer capture and track complex time variations in the propagation environment. 
These time variations compel us to introduce more advanced dynamical models based on stochastic state-space 
representation, in order to capture higher order dynamics of the wireless channel. In time-invariant models, 
channel parameters are random but do not depend on time, and remain constant throughout the observation and 
estimation phase. This contrasts with TV models, where the channel dynamics become stochastic processes [1]- 
[4]. This paper focuses on the development of stochastic short-term fading channel models based on system 
identification algorithms using received signal measurement data to extract various channel parameters and ap- 
ply an optimal power control scheme. 

In [4], the TV channel parameters are estimated from approximating the Doppler power spectral density 
(DPSD) of the wireless fading channel. However, in reality one does not have access to the TV DPSD at all 
times during the estimation process. Since these models are based on state-space forms, we propose to estimate 
the channel parameters as well as the inphase and quadrature components directly from received signal mea- 
surements, which are usually available or easy to obtain in any wireless network. A filter-based expectation 
maximization (EM) algorithm [8] and Kalman filter [9] are employed in estimating the channel parameters as 
well as the inphase and quadrature components, respectively. These recursive filters use only the first and second 
order statistics and therefore can be implemented online. These algorithms have been recently utilized in [1] and 
[2] to estimate the wireless channel parameters and states, and therefore the formulations of these algorithms are 
not presented in this paper. The proposed models and estimation algorithms are tested using received signal 
strength measurement data and the results are presented. 

The developed stochastic channel models from received signal strength measurements are useful in most 
wireless applications. In this paper, these models are used to develop an optimal power control algorithm (PCA). 
Power control (PC) is important to improve performance of wireless communication systems. The benefits of 
power minimization are not just increased battery life, but also increased overall network capacity. The power 
allocation problem has been studied extensively as an eigenvalue problem for non-negative matrices [10] [11], 
resulting in iterative PCAs that converge each user’s power to the minimum power [12] [13], and as optimiza- 
tion-based approaches [14]. Much of this previous work deals with static time-invariant channel models. 

The proposed PCA is based on predictable power control strategies (PPCS) that were first introduced in [4]. 
PPCS basically means updating the transmitted powers at discrete times and maintaining them fixed until the 
next power update begins. The PPCS mechanism is proven to be effectively applicable to such dynamical mod- 
els for an optimal PC. The outage probability (OP) is used as a performance measure. Since few TV dynamical 
channel models have so far been investigated with the application of any PCA, the suggested dynamical models 
and PCA thus provide a far more realistic and efficient optimal control of wireless networks. 

The remainder of this paper is organized as follows. In Section 2, stochastic modeling and online estimation 
of TV wireless fading communication channels are presented. Section 3 introduces an optimal PCA based on 
predictable strategies and employing the estimated channel parameters and states. Section 4 presents numerical 
results that validate the proposed models together with the estimation and power control algorithms. Finally, 
Section 5 provides concluding remarks. 

2. Stochastic Modeling and Estimation of Time-Varying Wireless Channels 
The general TV model of a wireless channel is typically represented by the following multipath band-pass im- 
pulse response [6] 

( ) ( ) ( ) ( ) ( )( ) ( )( )
( )

1
; , cos , sin

J t

j c j c j
j

H t I t t Q t t tτ τ ω τ ω δ τ τ
=

= − −∑                   (1) 

where ( );H t τ  is the band-pass response of the channel at time t , due to an impulse applied at time t τ− , 
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( )J t  is the random number of multipath components, cω  is the carrier frequency, ( )δ ⋅  is the Dirac delta  

function, and the set ( ) ( ) ( ){ } ( )
1

, , , ,
J t

j j j j
I t Q t tτ τ τ

=
 describes the random TV inphase component, quadrature  

component, and arrival time of the different paths, respectively. Let ( )ls t  be the low-pass equivalent represen- 
tation of the transmitted signal, then the band-pass representation of the received signal is given by 

( ) ( ) ( ) ( ) ( )( ) ( )( )
( )

( ) ( ) ( ) ( )
1

, cos , sin cos sin
J t

j c j c l j I c Q c
j

y t I t t Q t t s t t v t t v t tτ ω τ ω τ ω ω
=

= − − + −∑      (2) 

where ( ){ } 0I t
v t

≥
 and ( ){ } 0Q t

v t
≥

 are two independent and identically distributed (iid) white Gaussian noise 

processes. 
It is shown in [4] and [15] that the DPSD of a wireless fading channel, denoted by ( )S s , can be approxi- 

mated by an even, stable, rational, and factorizable transfer function, ( ) ( ) ( )S s H s H s= − , where ( )H s  is 
given by 
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Consequently, the inphase and quadrature components can be realized using the following stochastic state- 
space representation [16] 
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where 
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( ),I j tX  and ( ),Q j tX  are the state vectors corresponding to the inphase and quadrature components, re- 
spectively. ( ){ }

0

I
j t

W t
≥

, ( ){ }
0

Q
j t

W t
≥

 are independent standard Brownian motions, which correspond to the in- 

phase and quadrature components of the thj  path respectively, ( )I
jf t  and ( )Q

jf t  are arbitrary functions 
representing the presence or absence of line-of-sight (LOS) of the inphase and quadrature components for the 

thj path respectively, and T  denotes matrix or vector transpose. Without loss of generality, we consider the 
case of flat fading, in which the fading channel has purely a multiplicative effect on the signal and the multipath 
components are not resolvable, and, thus, can be considered as a single path [6]. We also consider the non-line- 
of-sight (NLOS) case, i.e., ( ) ( ) 0I Q

j jf t f t= = , which represents an environment with large obstructions. The 
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time-varying state space model described in (4) has a solution given by 

( ) ( ) ( ) ( ) ( ) ( )
0

0 0, , d
t

L L L L L L
t

X t t t X t t u B u W u= Φ + Φ∫                        (6) 

where L I=  or Q , ( )0,L t tΦ  is the state transition matrix associated to ( )LA t , and  
( ) ( ) ( )0 0, ,L L Lt t A t t tΦ = Φ . Therefore, the mean of ( )LX t  is 

( ) ( ) ( )0 0,L L LE X t t t E X t = Φ                                    (7) 

and the covariance matrix of ( )LX t  is 

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )
0

T T T
0 0 0 0, , , , d

t

L L L L L L L L
t

t t t Var X t t t t u B u B u t t u Σ = Φ Φ + Φ Φ  ∫              (8) 

For the time-invariant case, ( ) ( ) ( ) ( ), , ,  and I I Q Q I I Q Qt t t t= = = =A A A A B B B B , then (6), (7), and (8) sim- 
plify to 
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                (9) 

It can be observed in (7) and (8) that the mean and variance of the inphase and quadrature components are 
functions of time. Thus, the statistics of the inphase and quadrature components, and therefore the statistics of 
the channel, are times varying. 

Similarly, following the state space representation in (4) and the received signal in (2), the fading channel can 
be represented using general stochastic state-space representation of the form 

( ) ( ) ( ) ( ) ( )
( ) ( ) ( ) ( ) ( )

d d dt t t t t t

y t t t t t

= +

= +
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                          (10) 
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          (11) 

In this case, ( )y t  represents the received signal measurements, ( )tX  is the state variable of the inphase 
and quadrature components, and ( )tv  is the measurement Gaussian noise.  

In [4] and [15], the channel parameters ( ) ( ) ( ) ( ){ }1 0 1 0, , , , ,n na t a t b t b t− −   are obtained from approximat- 

ing the DPSD. However, in reality one does not have access to the DPSD at all times during the estimation 
process. Therefore, we propose estimating the channel parameters as well asinphase and quadrature components 
directly from received signal measurements, which are usually available or easy to obtain in any wireless net- 
work. A filter-based expectation maximization (EM) algorithm combined with the Kalman filter is employed to 
estimate the channel model parameters and states in (10). These filters use only the first and second order statis- 
tics and are also recursive, and therefore can be implemented online. These algorithms have been recently uti- 
lized in [1] and [2] to estimate wireless channel parameters and states, and therefore the formulations of these 
algorithms are not presented in this paper. Experimental results demonstrating the applicability of these algo- 
rithms in conjunction with the proposed stochastic wireless models are discussed in Section 4. In the next sec-
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tion, we introduce an important application based on the developed models; that is stochastic PC in wireless 
networks. 

3. Optimal Power Control Based on the Stochastic Wireless Channel Models 
In this section, an optimal PCA is investigated based on the estimated wireless channel models. Since the chan- 
nel model parameters are estimated from received signal measurements, PC can be performed solely from hav- 
ing these measurements. The aim of the PCA described here is to minimize the total transmitted power of all us- 
ers while maintaining acceptable quality-of-service (QoS) for each user. The measure of QoS is defined by the 
signal-to-interference ratio (SIR) for each link to be larger than a target SIR. 

By generalizing the wireless channel model in (10), the state-space representation of a wireless network with 
M  transmitters and N  receivers can be described as 

( ) ( ) ( )
( ) ( ) ( ) ( ) ( ) ( )1

d d dij ij ij ij ij

M
i k k ik ik ik

X t A X t t B W t

y t p t s t C t X t v t
=

= +

= +∑
                      (12) 

where ( )iy t  is the received signal at the thi  receiver at time t , ( )ikX t  is the states of the channel between 
transmitter k  and the receiver assigned to transmitter i , ( )kp t  is the transmitted power of transmitter k  at 
time t , which acts as a scaling on the information signal ( )ks t , ( )iv t  is the channel disturbance or noise at 
receiver i , and 1 ,i j M≤ ≤ . 

Consider the wireless network described in (12), the centralized PC problem for TV channels over a time in- 
terval [ ]0,T  can be stated as follows [4] 

( )
( )

( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( )

1 0, , 0 1 0

22

0

22 2

0 0
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d
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iT T
M

k k ik ik ik i

p t t
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≥ ≥ =

≠

 
 
 

  
≥

+  

∑∫

∫

∑ ∫ ∫



               (13) 

where iε  is the target SIR at receiver i  and 1, ,i M=  . A solution to (13) is presented by first introducing 
the communication meaning of predictable power control strategies (PPCS). In wireless cellular networks, it is 
practical to observe and estimate channels at the base stations and then send the information back to the mobiles  

to adjust their power signals ( ){ } 1

M
i k i

p t
=

. Since channels experience delays, and power control is not feasible 
continuously in time but only at discrete time instants, the concept of predictable strategies is introduced [4]. 

Consider a set of discrete time strategies ( ){ } 1

M
i k i

p t
=

, 0 1 10 k kt t t t T+= < < < < < ≤  . At time 1kt − , the base 

stations estimate the channel information ( ) ( ) ( ){ }1 1 1 , 1
, ,

M
ij k ij k i k i j

I t Q t s t− − − =
 as illustrated in Section 2. Using the 

concept of predictable strategy, the base stations determine the control strategy ( ){ } 1

M
i k i

p t
=

 for the next time in- 

stant kt . The latter is communicated back to the mobiles, which hold these values during the time interval 

[ )1,k kt t− . At time kt , a new set of channel information ( ) ( ) ( ){ } , 1
, ,

M
ij k ij k i k i j

I t Q t s t
=

 is estimated at base sta- 

tions and the time 1kt +  control strategies ( ){ }1 1

M
i k i

p t + =
 are computed and communicated back to the mobiles 

which hold them constant during the time interval [ )1,k kt t + . Such decision strategies are called predictable. Us- 

ing the concept of PPCS over any time interval [ ]1,k kt t + , Expression (13) is equivalent to 

( )
( ) ( ) ( ) ( ) ( ) ( )( )

1

1
1 1 1 1 1 110

min ,  subject to , ,
k

M
i k k I k k k k k kit

p t t t t t t t t
+

−
+ + + + + +=>

≥ × +∑
p

p ΓG G p η            (14) 

where 
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ε ε
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                    (15) 

and ( )diag ⋅  denotes a diagonal matrix with its argument as diagonal entries. The optimization in (14) is a li- 
near programming problem in 1M ×  vector of unknowns ( )1kt +p . Here [ ]1,k kt t +  is a time interval such that 

the channel model does not change significantly, i.e., [ ]1,k kt t +  should be smaller than the coherence time of the 
channel. Throughout this section, we assume that the PC problem is feasible, i.e., there exists a power vector 
( )ktp  that satisfies the inequality in (14) for all [ ]1,k kt t +  in [ ]0,T . 
In the next section, a numerical example is presented to determine the performance of the proposed PCA un- 

der the estimated wireless channel models. 

4. Numerical Results 
In this section, two numerical examples are presented. In Example 1, the EM algorithm combined with Kalman 
filtering is performed to estimate the channel parameters as well as inphase and quadrature components from 
received signal measurements. In Example 2, the performance of the proposed PCA based on the estimated 
channel models in Example 1 is determined and compared with fixed transmitted powers. 

4.1. Example 1: Wireless Channel Estimation 

In this numerical example, a 4th  order channel model as described in (10) and (11) is considered. Therefore, 
the system parameters { }, , ,t t t t tθ = A B C D  can be represented as 

( ) ( ) [ ]

1 12 13 14

1 2 2 22 23 24

31 32 3 34

3 4 41 42 4 44

1 2

0 1 0 0
0 0

,  ,
0 0 0 1
0 0

cos 0 sin 0 ,  

t t

t c c t

b
a a b

b
a a b

t t d d

δ δ δ
δ δ δ

δ δ δ
δ δ δ

ω ω

   
   
   = =
   
   

  
 = − = 

A B

C D

                      (16) 

Experimental data for a cellular network is provided by the Canadian Communication Research Center (CRC) 
and include measurement samples for the inphase and quadrature components and received signal strength. 

As previously mentioned, the estimation of a flat fading wireless channel from received signal measurement 
data is considered. In particular, the estimation includes the channel parameters, inphase and quadrature compo- 
nents, and the received signal, which are then compared to the ones obtained from the provided measurement 
data. It is also assumed that the received signal measurement data are corrupted by white Gaussian noise se- 
quences. 

Figure 1 shows the measured and estimated inphase and quadrature components as well as the received signal 
using the EM algorithm together with the Kalman filter for 400 sampled data taken from the measurements of 
one channel chosen at random. At a certain time instant, the system parameters are estimated as 
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A

B

C ( ) [ ]2ˆ0 ,  0.0119 .ctω  =  D

                  (17) 

From Figure 1, it can be observed that the inphase and quadrature components of the wireless fading channel 
as well as the received signal have been estimated with very high accuracy. It can also be noticed that the esti- 
mation error decreases as the number of samples increases; this is because the algorithm is recursive and the 
channel parameters converge to the actual values as more samples are being estimated. Figure 2 shows the re- 
ceived signal estimates root mean square error (RMSE) for 100 runs. It can be noticed that it takes just few ite- 
rations (less than 15) for the filter to converge, and the steady state performance of the proposed channel estima- 
tion algorithm is excellent. Since we consider 4th  order channel model, the computational cost of the proposed 
estimation algorithm is moderate and can be implemented in real time. Moreover, the filters of the expectation 
step are recursive and decoupled and hence are easy to implement in parallel on a multi-processor system [17]. 
 

 
Figure 1. The measured and estimated inphase and quadrature 
components, and received signal for the 4th  order channel 
model in Example 1, using the EM algorithm combined with the 
Kalman filter.                                         

 

 
Figure 2. Received signal estimates RMSE for 100 runs using 
the EM algorithm combined with the Kalman filter.            
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4.2. Example 2: Optimal Power Control 
In this numerical example, the received signal measurement data for 24 users are collected experimentally. They 
represent flat Rayleigh fading environment where the signal envelope at the receivers exhibit Rayleigh distri- 
buted density. The channel model parameters as well as the inphase and quadrature components for all users are 
estimated online from the measurement data using the EM algorithm together with the Kalman filter as illu- 
strated in Example 1. The PCA described in (14) is performed using the estimated channel parameters and states. 
The outage probability (OP) is used as a performance measure for the PCA. A link with a received SIR, iR , less 
than or equal to a target SIR, iε , is considered a communication failure. The OP, ( )iO ε , is expressed as 
( ) { }Probi i iO Rε ε= ≤ , where iR  is the received SIR at receiver i . 
It is assumed that the targets SIR, iε  for all users are the same, and varied from 5 dB to 25 dB with step 5 

dB. For each value of iε  the OP is computed every 15 millisecond, i.e., [ ]1, 15k kt t + =  millisecond. The simu-
lation is performed for 4.5 seconds, i.e., [ ]0, 4.5T =  seconds. The OP is computed using Monte-Carlo simula-
tions. The performance of the proposed PCA is compared with the one of constant transmitted powers (CTP). 

The OP for both the CTP and the proposed PCA based on PPCS are demonstrated in Figure 3(a) and Figure 
3(b), respectively. Figure 3 shows how the OP changes with respect to target SIR and time. As the target SIR 
increases the OP increases. This is obvious since we expect more users to fail. The OP also changes as a function 
of time, since users move in different directions and velocities while gathering the measurements. 
 

 
(a) 

 
(b) 

Figure 3. The outage probability for the dynamical flat Rayleigh 
wireless network in Example 2. (a) Using CTP; (b) Using PC based 
on PPCS.                                                     
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Figure 4. Average outage probability of the PC case based on 
PPCS and the CTP case in Example 2. Performance comparison.     

 
The average OP versus target SIR for both cases over the whole simulation time (4.5 seconds) is demonstrated 

in Figure 4, which shows that the performance of the proposed PCA based on PPCS is on average much better 
than that of the CTP. For example, at 10 dB target SIR, the OP is reduced from 0.51 for the CTP algorithm to 
0.37 for the PCA; this represents an improvement of over 27%. 

5. Conclusion 
This paper describes a general scheme for extracting mathematical wireless channel models from noisy received 
signal measurements, and performing power control based on the estimated channel parameters. The channel 
models are represented in stochastic state-space form. The proposed estimation algorithm consists of filtering 
based on the Kalman filter to remove noise from data, and identification based on the EM algorithm to deter- 
mine the parameters of the model which best describe the measurements. Numerical results indicate that the 
measured data can be regenerated through a simple 4th  order discrete-time stochastic state-space model. More- 
over, a stochastic PCA based on the estimated parameters and channel states is investigated. Numerical results 
indicate that there is potentially large gain to be achieved by using the proposed PCA, which can be used as long 
as the channel model does not change significantly; that is [ ]1,k kt t +  is a subset of the coherence time of the 
channel. 
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