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ABSTRACT 

The extremely high sampling rate is a challenge for ultra-wideband (UWB) communication. In this paper, we study the 
compressed sensing (CS) based impulse radio UWB (IR-UWB) signal detection and propose an IR-UWB signal detec-
tion algorithm based on compressive sampling matching pursuit (CoSaMP). The proposed algorithm relies on the fact 
that UWB received signal is sparse in the time domain. The new algorithm can significantly reduce the sampling rate 
required by the detection and provides a better performance in case of the low signal-to-noise ratio when comparing 
with the existing matching pursuit (MP) based detection algorithm. Simulation results demonstrate the effectiveness of 
the proposed algorithm. 
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1. Introduction 

UWB is one of the key technologies in the short-range 
broadband wireless communication. With the character-
istics of high data rates, low power, and low cost, UWB 
can be  applied to many scenarios such as high-speed 
short-range wireless personal area networks (WPAN), 
ranging, positioning, monitoring, and wireless sensor 
networks (WSN) [1]. In some of these applications, 
UWB signal detection is a very important component. 
Hence there is a need to study the UWB signal detection 
to make it more practical. 

However, when using the traditional algorithm for 
UWB signal detection, a very high sampling rate is re-
quired according to Shannon-Nyquist sampling theorem 
for the UWB signal’s high bandwidth that is up to sev-
eral gigahertzes. This is difficult to implement with a 
practical analog-to-digital converter (ADC) [2]. The 
emerging theory of CS enables the reconstruction of 
sparse or compressible signals from a small set of ran-
dom measurements. If adopted by the signal detection, 
the CS theory will make the sampling rate much lower 
than the Nyquist rate. The authors in [3,4] proved that it 
is effective to detect signal by processing the sampling 
values of compressed sensing directly. Reference [5] 
proposed a MP based signal detection algorithm. In [2], 
the authors proposed a CS based system for UWB echo 
signal detection at a sampling rate much lower than Ny-
quist rate. This study indicates that the low-dimensional 
random measurement method based on the CS theory can 
be used to sample UWB signal. A UWB signal detection 

method based on MP algorithm was developed in [6]. 
Whereas in a circumstance with low signal-to-noise ratio 
(SNR), the performance of the MP based detection algo-
rithm is not good. Thus, it leaves room for improvement. 
In [7], the authors demonstrated that CS theory is par-
ticularly suitable to IR-UWB signal detection, and a gen-
eralized likelihood ratio test (GLRT) detector was pro-
posed. However, the GLRT UWB receiver needs the 
pilot symbol assisted modulation, leading to high system 
complexity. Furthermore, in order to reach a high per-
formance, the number of mixer-integrators employed by 
the receiver is too large to be realized.  

In this paper, we propose a CoSaMP [8] based IR- 
UWB signal detection method. Without other extra 
processes, the method is formed from extracting infor-
mation directly from sampling values acquired by CS. 
The complexity of the proposed detection method is re-
duced dramatically when comparing with the GLRT de-
tector. Moreover, computer simulation results are pro-
vided to verify the performance of the proposed method, 
which show that the performance of the new method is 
superior to that of the MP based detection algorithm, 
especially in low signal-to-noise ratio. 

The remainder of the paper is organized as follows. In 
Section II, the background of CS is depicted. Section III 
provides the principle for generating IR-UWB signal. 
Section IV presents a CS based IR-UWB signal detection 
principle and proposes a CoSaMP based IR-UWB signal 
detection algorithm. Simulation results are provided in 
Section V. Finally, conclusions are drawn in Section VI.  
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2. Compressed Sensing Background 

CS is a technology that can recover the high-dimensional 
signals from the low-dimensional and sub-Nyquist sam-
pling data with the prior information that the signals are 
sparse or compressible [9]. The mathematical model of 
CS can be described as 

y Ax                  (1) 

where  is a signal which can be sparsely rep-
resented in a basis matrix 

N 1x R
N N

1 2{ , , , }N    φ R
T N

1 2[ , , , ]N  
, 

that is, , the vector x φθ 1 θ R

M NA R

θ

x

  
consists of  K (K<<N) nonzero elements (we often say 
that  is K-sparse). The vector  (K<M<<N) 
is a random measurement matrix that is uncorrelated with 

.  denotes the M samples obtained by CS. 
Our purpose is to recover the sparse coefficient vector  
from the M samples, and then multiply it by the basis 
matrix , thus recovering the original signal . 

θ

φ M 1y R

φ
In order to figure out the sparse coefficient vector , 

we need to find the solution to the following  norm 
optimization problem [10] 

θ

0l

0
arg min . .s t 


θ θ y Aφθ        (2) 

Unluckily, solving the optimization problem (2) is 
prohibitively complex for it is an NP-hard nonconvex 
optimization problem. A modified problem is to replace 
the  restrict with the  restrict 0l 1l

1
arg min . .s t 


θ θ y Aφθ       (3) 

This optimization problem transforms (2) into a con-
vex optimization problem which can be easily solved by 
linear programming. 

3. Impulse Radio UWB Theory 

The US Federal Communications Commission (FCC) 
provided a definition that a signal can be classified as an 
UWB signal if its fractional bandwidth is greater than 0.2 
or its bandwidth is 500MHz or more [1]. According to 
this definition, there are several ways to generate UWB 
signals, among which impulse radio is the most common 
method. In this paper, we focus on the impulse radio 
UWB (IR-UWB) signal.  

IR-UWB communication is based on transmitting ul-
tra-short (typically on the order of a nanosecond) dura-
tion pulses that are subsequently modulated by the binary 
information symbols. The two most popular modulation 
schemes are pulse amplitude modulation (PAM) and 
pulse position modulation (PPM). 

Owing to different approaches are employed to gener-
ate the pulse train, the UWB systems can be divided into 
two main categories: time hopping UWB (TH-UWB) and 
direct sequence UWB (DS-UWB). To take a specific 
case, we will discuss the PAM-DS-UWB signal and its 

detection in the following. A block diagram of the 
PAM-DS-UWB transmitter [1] is shown in Figure 1. 

In Figure 1,  0 1 1, , , , , ,k kb b b b    b  is a binary 
sequence to be sent and generated at a rate of 1/b bR T   
(bits/s). After passing through the repeat encoder, every 
bit of the sequence  is repeated b sN  times, therefore 
we get a new sequence 

0 0 0 1 1 1( , , , , , , , , , , , , , , )k k kb b b b b b b b b     b*   

where  has a rate of  (bits/s). 
Then the second system of the block diagram converts 
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( , , , , ,m m mb* , , )j jm    
1 1

*2 1 (j jm b   

m

)j  
m

 
that contains two kinds of elements, and . The con-
version equation of this is . 
When the sequence  enters the transmission encoder, 
a binary zero correlation duration (ZCD) code 

0 1 1( , , , , , , )j ja a a a   a   

composed of 1 ’s is applied to it [11] and the output of 
the transmission encoder is a new sequence , which 
can be expressed as 
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     (4) 

The period of the ZCD code 

0 1 1( , , , , , , )j ja a a a   a   

is pN , we often assume that p s  (a more general 
hypothesis is that 

N N
pN  is an integer multiple of sN ). 

The rate of sequence  is b s  (bits/s). 
Next, the sequence  goes into the PAM modulator, 
and a sequence of unit pulses (Dirac pulses 

*m
*m

/ 1/T Tc sR N

( )t ) lo-
cated at times sjT

1

 are generated by the PAM modulator 
[1,11]. The rate of the sequence of unit pulses is 

/ /p s b sR N T T 

T

 (pulses/s). At last, the output of the 
PAM modulator passes through the pulse shaper, whose 
impulse response is . The duration of  is , 
and m s

( )p t ( )p t mT
T . Thus, we get the final output signal ( )s t , 

which is given by 
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Figure 1. Block diagram of PAM-DS-UWB transmitter. 
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where 2 4 2   is the pulse shaper factor, and 2  is 
the variance. 

In practice, a PAM-DS-UWB transmitter’s parameters 
set by the user are: the average transmit power , the 
number of bits generated by the binary source 0 , the 
sampling frequency 

0P
n

cf , pN , sT , sN , , and mT 2  
[1]. 

Figure 2 shows an example of the PAM-DS-UWB 
signal. From this figure, we can see that PAM-DS-UWB 
signal presents an intuitive sparse characteristic in the 
time domain. That is, the signal has only a few nonzero 
values. Thus, according to the Section II, the basis matrix 
of the PAM-DS-UWB signal can be an identity matrix. 

Based on the above, we can apply the CS theory into 
the PAM-DS-UWB signal detection. 

4. CS Based IR-UWB Signal Detection 

4.1. The Signal Detection Model 

We implement the detection by distinguishing between 
the following two hypotheses 

0

1

:

: (

H

H



 

y An

)y A x n
            (7) 

where  denotes the PAM-DS-UWB signal to 
be detected, and 

N 1x R
2~ (0, )NN n

M 1

I  is the independent and 
identically distributed additive white Gaussian noise.   

 (M<<N) is a known random measurement 
matrix, and  is the sample obtained by the de-
tector. Next, we let 

M N

y R
A R

1 1

1 0

Pr(  chosen  when  true) and

Pr(  chosen  when  true)
d

f

P H H

P H H




 

denote the probability of detection and the probability of 
false alarm respectively [3]. 

Figure 3 illustrates the principle block diagram of the 
IR-UWB signal detection based on CS. 

4.2. The Proposed IR-UWB Signal Detection  
Algorithm 

In this section, we propose an IR-UWB signal detection 
algorithm based on CoSaMP [8]. The procedure of the 
algorithm is as follows: 
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Figure 3. IR-UWB signal detection principle block diagram. 

Let 
 

M NΦ R  
ometr

denote the measurement matrix with 
restricted is y constant 2s c   (c is a constant), 
u  denote the noisy sample . Furthermore, the 

arsity level (the number of the nonzero values) is s, and 
the -sparse

vector
sp

s  approximation of the target signal is a. 
a) ze the approximation 0 0a   and resid Initiali ual 
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 1k 
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locate the 2s  large ns of the proxy 
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2( )ssupp y  means the index set of the 2swhere  larg-
est columns of y . 

c) Merge the index set of the newly identified compo-
nents with that of the largest components of the current 
approximation 

1(a )kT supp  Ω  

d) Solve a least squares problem to make an estimation 
of

0
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T
b i Tb . 
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tio h

f) Update the residual 

n obtained by t e step d) to produce a new approxima-
tion 

k sa  b  
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, if 
2

v ,

Figure 2. PAM-DS-UWB signal. 

g) 1k k   where   
 s

is a known con-
stant, the  b); or en go to step lse , go to tep h). 

h) If a 

 , where   is a threshold value, then 

detect 1H ; otherwise, choose 0H . 

5. Simulation Results 

In this section, the performance of the proposed detection 
algorithm and the MP based detection algorithm are 
compared. First, we set the parameters of the PAM-DS- 
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UWB transmitter as follows: 0 30 (dBm)P   , 0 2n  , 
50 9 (Hz)cf e , 10 (s)pN  ,  3 9 (s)sT e  , 5sN  , 

) , le f 
B tected is 

0 1500s c sN n N f T      [12

0.5 9 (smT e 
the PAM-DS-U

2 0.25e
 signal to be 

9  . Hence the 
de

ngth o
W

]. 

We set the sparsity level of the signal . The 

the measurement matrix 

 as s  250
signal is shown in Figure 4. 

In simulation, we let 
M NR  be an independent and identically distributed 

andom matrix with zero-mean and unit vari-
ance. Further, the mean and variance of the additive 
white Gaussian noise are 0 and 1, respectively. For the 
proposed detection algorithm, we let constant 510

A
Gaussian r

 . 
For the MP based detection algorithm [5], we
number of iterations as 10. Suppose that the prior prob-
abilities of the two hypotheses are equal, that is, 

r 0 r 1P ( ) P ( ) 0.5H H  . The probability of detection is 
000 trials. In order to demonstrate 

the effectiveness of the proposed algorithm, we have 
implemented the following three simulations. 

Figure 5 illustrates dP  as a function of M

 set the 

the statistic result of 10

 which is 
the number of measure nts. We set the S  as -2dB, 
and 0.01fP  . M  ranges [150, 750].The threshold 
value

me NR

   and the eshold value of MP based detection 
algorithm are both chosen by Monte Carlo simulations 
[5]. The number of Monte Carlo simulations is 2000. If 
we use the traditional detection algorithm, the number of 
measurements should be 0 1500s c sN n N f T      
according to the Shannon-Nyq  
we can see from this figure, the proposed algorithm can 
acquire a very high probability of detection at about 20% 
of the sampling rate required by the Shannon-Nyquist 
theorem. What’s more, in this condition, the proposed 
algorithm is superior to the MP based detection algo-
rithm. 

Figu

 thr

uist samp orem. Asling the

re 6 shows as a function of the SNR which 
ra

dP  
e cnges [-10, 5]. W onsider M 300  and M 500  

respectively. Let 0.01fP  . The thre ld valu  
two algorithms un ent SNRs are also acquired 
by the same means as in Figure 5. According to Figure 
6, we can see that the performance of the proposed algo-
rithm is better than that of the MP based detection algo-
rithm when the SNR is less than -1 dB. 
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Figure 5. Probability of detection comparison of the 
proposed algorithm and the MP based detection algorithm 
under different number of measurements, SNR=-2 dB and 
Pf = 0.01. 
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Figure 6. Probability of detection comparison of the 

Figure 7 illustrates as a function of 

proposed algorithm and the MP based detection algorithm 
under different SNRs, M = 300 or M = 500, Pf = 0.01. 
 

dP  fP  which 
ranges [0, 0.2]. Let M 150  and SNR= -2 B. The 
threshold values of th lgorithms under different 
probabilities of false alarm are chosen by using the 
method in Figure 5 and Figure 6. As we can see from 
Figure 7, the proposed algorithm is superior to the MP 
based detection algorithm in this situation. 

According to Figure 5, Figure 6 and Fig

 d
e two a

ure 7, we can 
speculate that the performance of the proposed IR-UWB 
signal detection algorithm is better than that of the MP 
based detection algorithm in case of the low SNR. 
Meanwhile, the proposed algorithm needs a much lower 
sampling rate than the Nyquist rate. Figure 4. The PAM-DS-UWB signal of interest. 
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