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ABSTRACT 

This paper proposes a voice codification based on two algorithms that make the wave form codification in time domain. 
The first uses the significant impulse model (SIM), which has as a goal to operate as an endpoint detector and as a dawn 
sampling, through the detection and selection of the significant valleys and crests; the second algorithm, is a redundant 
wave-form recycler (RWR) that uses an architecture based on fuzzy logic with an accumulative memory. The fuzzy 
algorithm obtains the similitude grade between the redundant wave forms, this with the objective of save into an 
knowledge base the patterns, based on the no supervised learning and when there are into memory, automatically there 
will be used to identified their arrive respect to the input signal, substituting the input block by the correspondent pat-
tern into memory. This decoding process is using the SIM interpolation with a memory in accordance to the RWR. 
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1. Introduction 

The voice signals digitalization to each sample, has given 
rise to the conventional coding techniques as PCM, 
which is based on the scalar quantization [1]. However, 
when a set of values of a waveform is quantized jointly 
as a single vector or entity, the process is known as vec-
tor quantization (VQ) [2]. This entity is encoded by a 
binary word, which is an approximation of the original 
vector. Each vector is encoded in comparison with a set 
of reference vectors stored, known as patterns [3]. Each 
pattern is used to represent the input vectors that are 
somehow identified as “similar” to this pattern [1]. The 
best set of patterns in the codebook, i.e. the set of refer-
ence patterns stored in memory is selected by the encod-
ing process in accordance with an adequate fidelity 
measure, and a binary word is used to identify this pat-
tern in the codebook of patterns [2]. 

The size and definition of the population of the code-
book or training (updated during the measurement) has 
two critical parameters that determine the efficiency of a 
VQ [1-5]. There are several models that reduce both 
storage and computational load, but the problem is that 
those do not always match with the vector patterns of the 
incoming signal due to a phase shift [1-8]. 

This paper proposes two algorithms that change the 
perspective of VQ to adjust the patterns to the input vec-
tors [3,4] for the input vectors recycling, used for redun-

dancy. These algorithms are the SIM (significant impulse 
model) which prevents the phase shift and reduces the 
number of samples for voice modeling and RWR that 
achieves non-trained patterns recognition through the 
same signal recycling. 

2. General Architecture 

The speech coder first receives the signal into the RWR 
process in order to fit the voice signal by the MIS algo-
rithm. The RWR makes a quantization of the signal 
which is presented as a vector and compared with pat-
terns storage in the memory. The differences between 
them are evaluated by a fuzzy system; if the distances are 
great enough to be accepted as “similar” the system 
chooses this pattern to be used or in other hand the pat-
tern is discarded as “similar” then the RWR calls another 
pattern in memory. This process is repeated until any of 
the following two cases occurs: find a pattern in memory 
“similar” to the input vector or can’t find any pattern 
which satisfies the conditions of similarity. For the first 
case the input vector is encoded using an index that iden-
tifies this pattern in the memory, making an adjustment 
in proportion using the coding that is performed by the 
SIM. 

The Figure 1 shows the general architecture of the 
adaptation vector quantizer, which replaces the training 
patterns for recycling, adding components allowing an 
adequate fidelity measure into the comparison and effi-  *Corresponding author. 
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Figure 1. Block diagram of speech coder. 
 
cient recycling. 

A binary word is needed to identify the coding algo-
rithm performed. The decoding chooses a linear interpo-
lation for the SIM or an i-adjusted vector magnitude σ in 
the case of the RWR (this process is illustrated in Figure 
2). 

3. Significant Impulse Modeling 

To use linear interpolation for decoding, the signal is 
modeled based on its direction and strength properties, to 
allow omitting pulses having the same direction and 
close strength. This will reduce the number of samples 
needed to reproduce a signal. Although the linear corre-
lation has good enough results when using these features 
to find the relationship between two signals, the model-
ing is not always equally benefited, particularly at high 
frequencies, since it adds some components to the signal, 
having noise. The Figure 3 shows the SIM flow diagram. 

See the comparison into the Figure 4, complaining the 
requirements of a voice signal. 

To achieve this modeling process we use the fuzzy 
logic if-then rules in terms of the direction and strength 
or magnitude. The Equations (1) and (2) show this rules 
respectively. 
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where xi is the ith sample of the signal, S(x) is the signal 
direction and M is the direction model. Likewise, I is 
the vector formed by interpolation of samples skipped 
by M, and Vx is the vector formed by the omitted sam-
ples M. 

 
Figure 2. Block diagram of speech decoder. 

 

 
Figure 3. SIM flowchart. 

4. SIM Simulations 

The C constant determines the samples reduction degree 
needed into the SIM. The C adjustment is in accordance 
of the signal/noise ratio. So, in low noise conditions (ap-
proximately 16 dB) needs a samples reduction near of 
50% and a correlation coefficient value greater than 0.99. 
As this way the benefits of a “down-sampling” (in terms 
of reducing samples) is obtained without lose the voice 
quality (see Figure 4). This reduced modeling of excita-
tion sequences can be found in the RPE algorithm [9]. 
The Figure 5 shows this process. 

Once the signal is modeled by the SIM the number of  
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Figure 4. Spectrum comparison between the original signal 
(above) and the linear modeling (below). 
 

 

Figure 5. Comparison between the original signal and its 
modeled. 
 
significant changes in the signal are count for determine 
if a signal frame is voiced or unvoiced with similar re-
sults than a zero crossing detector. 

5. Redundant Waveform Recycling 

To make a description of the RWR, we assume that the 
size of the frame is 11.25 ms, since this is approximately 
the greatest average elongation that a pattern can have [3, 
10]. The pattern searching using the RWR is based on the 
premise of comparing the patterns having a frame of the 
incoming signal that is shifted one sample per iteration. 
However, this assumption implies a large computational 
loading, because the number of iterations. One solution is 
to increase the number of shifted samples per iteration, 
but this could involve problems into the pattern recogni-
tion stage. The solution proposed in this paper is to shift 
the frame of the signal into each significant permutation, 
causing the number of samples displaced in order to 
switch in accordance to the changes in the signal, where 

such changes are described by the SIM. The Figure 6 
shows the RWR architecture [11,12]. 

The knowledge base optimized by the histogram, 
whichis limited in size without significant reduction of 
the performance pattern detection. As show in Figure 7, 
the knowledge base has a reduction in approximately one 
quarter, maintaining the higher occurrence patterns. 

In accordance with the conditions described above, the 
patterns are compared in terms of its direction and strength. 
The effect has previously been defined by the SIM and the 
difference in magnitude is defined by Equation (3). How- 
 

 

Figure 6. RWR block diagram. 
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Figure 7. Histogram comparison between knowledge base 
no-optimized (above) and optimized one (below). 
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ever, before any comparison it is necessary to standardize 
their scales obeying the Equation (4). 

[12-14]. 
The output of the fuzzy system requires a condition of 

“likeness” (see Equation (5)) to allow a more subjective 
comparison of the waveform.    1
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The comparisons were evaluated by a fuzzy Mam- 
dani algorithm. The membership functions (MF) are sig-
moidal (as shown in Figures 8 and 9), these determine 
the degree of the antecedent and its correspondence of 
every rule, since there are two rules (direction and dif-
ference) using the “and” fuzzy operator to unify. Once 
the antecedent is defined by a single number, the conse-
quent is defined by aggregation of two rules: with the 
pattern “similar” or “different”, each of them with their 
respective membership function. Finally the centroid 
method is used in order to do the defuzzification process  

where SC is the coded signal, SD is the output of the 
fuzzy system, P is the size of the displacement and L is 
the length of the pattern. 

Finally Figure 10 show the behavior of the Member-
ship functions. 

6. RWR Simulations 

Using a voice signal of 30 seconds containing words in 
Spanish phonetics [11], the RWR achieve the recycling 
of many patterns in speech frames, between 20% and  
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Figure 8. MF for direction. 
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Figure 9. MF for difference in magnitude. 
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70% of them, depending on whether the frame is mostly 
voiced or mostly unvoiced. The size of the knowledge 
base depends of this frame. The Figure 8 shows the last 
syllable of the Spanish word segment “alrededor” with 
an elongation of about 166.6 ms, which 90 ms were re- 
cycled in 8 patterns, each of them with 11.25 ms (see 
Figure 8 using the minimum segments of the black line) 
[14]. This saves about 50% of the voice frame. In addi- 
tion, the SIM reduction only needs 22.6 ms of the origin- 
nal frame for modeling 166.6 ms of the speech; this im-
plies a total compression rate of 0.13. The Figure 11 

shows the unvoiced and voiced frames. 
As in Figure 10, the correlation between recycled pat-

terns and the original signal is not perfect, but something 
more important than a perfect correlation is that signifi-
cant changes are in phase. This means that it is possible 
reproduce the majority of the frequency components. The 
fuzzy comparator achieves this purpose in most of the 
cases [15]. For to obtain the best approximation into the 
correlation, the process use a minimum error distance in 
order to classify the signal pattern as seen into the Figure 
12. 

 

 

Figure 10. Membership function behavior. 
 

 

Figure 11. Comparison between the original speech and the reconstructed signal by RWR and SIM. 
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Figure 12. Comparison between the original signal and the 8 patterns recycled. 
 
7. Conclusions 

The algorithms mentioned above are simulated with a 
input speech signal into the architecture with sampling 
frequency of 8 KHz and 8 bits of resolution. Under these 
conditions the compression rates range is from 0.2 to 
0.125 for the SIM and between 0.7 and 0.2 for the RWR 
are achieved. Having a joint with a compression ratio up 
to 0.04 achieved. The decoded voice quality can be im-
proved with a 3 KHz low pass filter applied to the recon-
structed signal. With an acceptable quality at compres-
sion rate of 0.15 according to the MOS (Mean Opinion 
Score) test applied on a population of 20 people. 

By this way the architecture suggests that the process 
for defining an input vector through a window, which is 
displaced in relation to the changes in the voice signal, 
greatly discards the similar waveforms described as pat-
terns, due loss of their synchronization in its window, 
involving a more complex detection using an algorithm 
that forces their detection. 
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