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ABSTRACT 

We study the congestion phenomenon in a mathematical model of the data packets traffic in transmission networks as a 
function of the topology and of the load of the network. Two types of traffic are considered: homogeneous and hetero-
geneous traffic. The congestion phenomenon is studied in stationary conditions through the behaviour of two quantities: 
the mean travel time of a packet and the mean number of packets that have not reached their destination and are travel-
ing in the network. We define a transformation that maps a network having the small world property (Inet 3037 in our 
numerical experiments) into a (modified) lattice network that has the same number of nodes. This map changes the ca-
pacity of the branches of the graphs representing the networks and can be regarded as an “interpolation” between the 
two classes of networks. Using this transformation we compare the behaviour of Inet 3037 to the behaviour of a modi-
fied rectangular lattice and we study the behaviour of the interpolating networks. This study suggests how to change the 
network topology and the branch capacities in order to alleviate the congestion phenomenon. In the website: 
http://www.ceri.uniroma1.it/ceri/zirilli/w6 some auxiliary material including animations and stereographic scenes that 
helps the understanding of this paper is shown. 
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1. Introduction 

In this paper we study the data packet traffic congestion 
phenomenon in transmission networks in the case of ho- 
mogeneous and heterogeneous traffic. This is an interest- 
ing phenomenon with several practical applications 
among which we mention the study of the behaviour of 
telecommunication networks and in particular of the be- 
haviour of Internet. More in general the congestion pro- 
blem in network flows is of great interest in several en- 
gineering fields, such as, for example, pipeline flow, 
electric power transmission [1], telecommunications and 
high-ways or railways traffic management. To fix the 
ideas let us consider the Internet traffic. The Internet net- 
work grows in size every day and its possible congestion 
is a relevant issue from the social and the economic point  

of view. In fact it is easy to image the damage that the 
Internet congestion will cause to the social relations and 
to the economic transactions that take place on it. In the 
last years several end-hosts have been added to the edge 
of the Internet network and these new entries have in- 
creased substantially the load of the network. The Inter- 
net Service Providers have added new routers and links 
to avoid the congestion arising from these new entries. 
Several authors have developed transmission network 
models devoting special attention to the network conges- 
tion problem (see for example [2] and the reference the- 
rein). Remarkable network models relevant in the study 
of Internet are those due to Aiello, Chung and Lu [3] that 
are based on power law random graph models, to Fabri- 
kant, Koutsoupias and Papadimitriou [4] that propose a 
bicriteria optimization model and to Barabasi and Albert 
[5] that have introduced the preferential connectivity mo- 
del. These models have a common feature: a power law 
distribution of the degree of the network nodes. Further- 
more more practical models of the Internet network are 
those based on inferences drawn from measurements of  
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real Internet data. In particular a huge effort has been 
produced to construct generators of graphs that reproduce 
the features actually measured in the Internet network 
(see for example [6,7]). Previous work that addresses the 
congestion problem in flow problems on graphs and 
more specifically the problem of designing routing sche- 
mes able to avoid congestion is, for example, the work 
contained in the papers of Aumann and Rabani [8], Oka- 
mura and Seymour [9], Leighton [10] and Leonardi [11]. 
In [8] and [9] the network congestion problem is formu- 
lated as a problem concerning the max-cut ratio of a 
graph while in [10] and [11] the problem of finding frac- 
tional routing strategies with good congestion properties 
is addressed. The data packet traffic is described by the 
routing strategy and by the traffic management rules. The 
routing strategy considered here to move the packets 
from their origin to their destination is the shortest 
weighted path. The traffic management rules are the rules 
used to manage the data packet traffic at the nodes where 
more than one data packet is waiting to be directed. The 
traffic management rules considered in our study are a 
simple variation of the “first in first out” rule.  

Going into details let n be a positive integer, we model 
the transmission network using an undirected (weighted) 
graph G having n nodes. The graph G consists in the 
couple (V, E), where V is the set of nodes/vertices and E is 
the set of branches/edges/lines of the graph. The vertices 
are numbered, that is for a graph with n vertices we can 
choose V = {1, 2,…, n}. A branch is indexed by a couple 
of integers m, k ∈ V with m ≠ k, the branch em,k ∈ E 
connects the nodes m (source node) and k (destination 
node). For m, k ∈ V such that m ≠ k, if em,k ∈ E then ek,m 
∈ E and ek,m denotes the same branch than em,k. Moreover, 
for em,k ∈ E we associate to the branch em,k a capacity cm,k 
> 0 and we denote with pm,k the inverse of cm,k, pm,k is the 
weight associated to the branch em,k. For em,k ∈ E the 
capacity cm,k is a positive integer and is the maximum 
number of data packets that can go through the branch em,k 
in a time unit moving from the source node m to the des-
tination node k. Moreover for em,k ∈ E we assume that cm,k 
= ck,m and as a consequence that pm,k = pk,m. We extrapolate 
this relation and we say that when the weight of a 
“branch” em,k is infinity its capacity is zero and this cor-
responds to the fact that no packet can flow through it. 
That is, given a couple of (distinct) nodes we can always 
imagine that there is a branch with zero capacity that 
connects them. We consider connected graphs, that is 
graphs G such that for every couple of (distinct) nodes 
(m, k) there exists a path made of branches (with capacity 
greater than zero) connecting the source node m to the 
destination node k. The degree of a node is the number of 
branches (with capacity greater than zero) that have the 
node as source node (or as destination node). In the gen-
eration of the data packet traffic the source and the des-

tination nodes of the data packets are sampled from a 
random variable uniformly distributed on the set of the 
couples of (distinct) nodes of the graph. A data packet 
can move from a node to another node in one time unit if 
there is a branch (with capacity greater than zero) that 
connects the two nodes, that is, if the nodes are adjacent 
nodes in the graph. The movement of a data packet from 
a node to one of its adjacent nodes is always made in one 
time unit. To each couple of distinct nodes (m, k) (source, 
destination), m, k = 1, 2, ···, n, we associate a route that is 
the path that a data packet moving from m to k must fol-
low, this route is the shortest weighted path connecting m 
to k with some extra specifications explained later. The 
data packet travel time (or delivery time) is the time that 
elapses between the creation of the packet at its source 
node m and the arrival of the packet at its destination 
node k. The travel time is measured in time units. Each 
node is equipped with queues, which is in each node 
there is a queue for each branch (with capacity greater 
than zero) leaving the node. When a branch departing 
from a node is busy (i.e. its capacity is saturated) a 
packet arriving or already present at that node directed 
through that branch toward its destination is put in the 
node queue relative to that branch and waits the succes-
sive time units to be directed. The node queues are as-
sumed to be potentially unbounded and, of course, even-
tually, they can be empty. The management of the queues 
is done through the traffic management rules. In the case 
of homogeneous traffic, that is when only one kind of 
data packets is moving on the network, the queue man-
agement rule is simply based on the arrival order of the 
packets at the node, which is the traffic management 
rules consist in only one rule: the first in first out rule 
with the following specifications added. Let us restrict 
our attention to the packets present at a node that are 
leaving the node (following their routes) through a given 
branch. Note that when two or more packets must go 
through the same branch and this branch has sufficient 
capacity available the packets go through the branch si-
multaneously, that is, they go through the branch in the 
same time unit. When two or more packets must go 
through the same branch and there is no sufficient capac-
ity available on the branch to let them go simultaneously 
we use the “first in first out” rule, that is we deliver first 
the packet that arrived first at the node. When two or 
more packets that must go through the same branch are 
the “first arrived one” at the node we deliver first the 
packet that has been generated earlier. Note that the 
packet that is delivered first is the one that goes first in the 
queue. When two or more of these first arrived packets 
that have been generated earlier have been generated at 
the same time we choose randomly between these last 
packets the packet to move first. In the study of the het-
erogeneous traffic case we limit our attention to the case 
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that there are three kinds of data packets moving on  
the network. The choice of studying as heterogeneous 
traffic case the traffic of three kinds of data packets is 
inspired by the fact that in real telecommunication net- 
works we can distinguish data, video and voice packets. In 
this last case the traffic management rules are specified as 
follows. We associate to each packet waiting at a busy 
node a waiting time measured in time units based on the 
arrival order at the node. For the packets of kind i we 
multiply this waiting time for the priority factor pi of the 
kind i packets, i = 1, 2, 3. The priority factors are chosen 
as follows: p1 = 3 for the packets having highest priority 
(packets of kind i = 1), p2 = 2 for the packets having in- 
termediate priority (packets of kind i = 2) and p3 = 1 for 
the packets having lowest priority (packets of kind i = 3). 
The queue management rule consists in the choice of 
moving first the packet having the largest product waiting 
time at the node times priority factor. When two or more 
packets have the largest product waiting time at the node 
times priority factor we deliver first the packet that has 
been generated earlier. If at a node two or more packets 
having the largest waiting time times priority factor that 
have been generated earlier have been generated at the 
same time we choose randomly between these last packets 
the packet to move first. Of course also in the case of 
heterogenous traffic when there is capacity available more 
than one packet can go through the same branch at the 
same time. Note that the heterogenous traffic case reduces 
to the homogeneous traffic case when we choose p1 = p2 = 
p3. For simplicity we present the load model used later 
directly in the heterogeneous traffic case. We leave to the 
reader to find out the simple changes necessary to describe 
the load model in the homogeneous traffic case. We 
model the number of kind i packets, Mi, generated in the 
network in a time unit as a Poisson random variable with 
mean βiλ, i = 1, 2, 3, where βj, j = 1, 2, 3, are given non-  

negative constants such that and λ > 0 is a real  
3

1

1j
j





parameter. The choice of the constants βj, j = 1, 2, 3, de- 
termines different heterogeneous load conditions on the 
network. Later we consider three choices of the constants 
βj, j = 1, 2, 3. The first one is β1 = β2 = β3 = 1/3, that gene- 
rates a balanced load condition, that is generates a load 
having in average the same number of packets for the 
three kinds of packets. The second one is β1 = 5/7, β2 = 1/7, 
β3 = 1/7, that generates an unbalanced load condition, that 
is generates a load having in average a large number of 
packets with highest priority (kind i = 1) and such that the 
remaining two kinds of packets have (in average) a smal- 
ler number of packets, in particular since β2 = β3 they have 
(in average) the same number of packets. The last one is β1 
= 1/6, β2 = 2/6, β3 = 3/6, that generates the most common 
load situation in real networks, that is the situation where 

the number of packets with the highest priority (kind 
i = 1) is (in average) smaller than the number of packets 
with intermediate priority (kind i = 2) and this last number 
is (in average) smaller than the number of packets with 
lowest priority (kind i = 3).  

We call congestion phenomenon for the (kind i) data 
packet traffic the passage from a free flow to a congested 
flow (i = 1, 2, 3). We study the congestion phenomenon in 
stationary conditions using the following two quantities: 
the mean travel time of kind i data packets, 

iMt , and the 
mean number of kind i packets that have not reached their 
destination and are travelling on the network, 

iLN , i = 1, 
2, 3. Our analysis shows that, in the free traffic regime and 
in stationary conditions, for i = 1, 2, 3 the quantities 

iMt  
and 

iLN  are independent of time and that they increase 
when the network mean loads βjλ, j = 1, 2, 3, increase. 
Given the weighted graph G, and the constants βj, j = 1, 2,  

3, such that βj ≥ 0, j = 1, 2, 3, and , for i = 1, 2, 3  
3

1

1j
j


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we study the quantities 

iMt  and 
iLN  as a function of the 

parameter λ. We will see from the numerical simulations 
that some expressions specified later involving 

iMt  and 

iLN  have a jump for a value of the parameter λ that we 
denote with λ = *

i , i = 1, 2, 3. For the traffic of kind i 
packets the value λ = *

i  represents the so called critical 
value of the parameter λ that divides the zone of congested 
traffic (βiλ > βi

*
i ) from the zone of free traffic (βiλ < 

βi
*
i ), i = 1, 2, 3. Note that strictly speaking when λ > *

i  
the quantities 

iMt  and 
iLN  do not have a stationary va- 

lue in time anymore, in fact in this case these quantities 
diverge when time increases, i = 1, 2, 3. Under specified 
traffic conditions we have evaluated through extensive si- 
mulations these critical values λ = *

i , i = 1, 2, 3, as a 
function of the network topology.  

Our analysis shows that the networks having the small 
world property (see, for example, the network of Figure 1) 
and the (possibly modified) lattice networks, that do not 
have the small world property, (see, for example, the 
network of Figure 3) behave very differently with respect 
to the congestion phenomenon. In particular we have 
compared the behaviour of Inet 3037 (Figure 1) to the 
behaviour of a modified rectangular network (Figure 3) 
made of a rectangular lattice having 3036 nodes and of an 
extra node of degree four. Note that Inet 3037 is a network 
made of 3037 nodes generated using the software package 
[6] (algorithm Inet-3.0) that is supposed to reproduce the 
properties of the AS-level Internet graph topology. The 
empirical analysis of the AS-level Internet graph topology 
goes back to 1999 with the work of M. Faloutsos, P. Fa-
loutsos, C. Faloutsos [12] that has shown that the Internet 
node degree distribution decays as a power-law, that is the 
function F'(k) = {percentage of the nodes with degree 
greater or equal to k} associated to AS-level Internet  
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Figure 1. Inet 3037. 
 
graphs behaves like k−β, with β = 2.22, for large values of k 
(see Section 2 formula (1)). This property is usually stated 
saying that Internet at the AS-level graph is a scale free 
network. Later in 2002 Subramanian, Agarwal, Rexford, 
Katz [13] have shown that a realistic model of the AS- 
level Internet graph topology is a “power law topology” 
with a core structure. This core structure is a subset of 
nodes having large degree that is called rich-club (see, for 
example, Figure 2 where the rich club of Inet 3037 is 
shown). The nodes belonging to the rich club are well con- 
nected between themselves by paths of short length (and 
high capacity), moreover they are connected to the re- 
maining nodes by paths of short length. We recall that a 
network having this feature is said to have the small world 
property. When routing strategies such as the shortest path 
or the shortest weighted path are used to deliver the pac- 
kets the rich club is similar to a set of traffic hubs. The net- 
work model due to Barabasi and Albert [5] and the Inet- 
3.0 algorithm [6] used to generate graphs with AS-level 
Internet graph topology consider scale free networks with 
β ∈ (2, 3), however in these models the reproduction of 
the Internet core structure is not completely satisfactory. 
In fact in these models the rather sophisticated structure of 
the rich club observed in the real Internet is replaced with 
just a few nodes having very large degree, and these nodes 
play the role of network hubs in the study of data packets 
traffic.  

We consider, for a moment, networks where all the 
branches have the same capacity and the shortest path 
routing strategy. In the free traffic region we show that a 
network having the small world property is much more 
efficient in the delivering of packets in terms of travel 
time than a lattice network of similar “size”. However 
when the load increases a network having the small world 
property and the same capacity on all its branches reaches 
the congested regime for smaller values of the load than a 
lattice network of similar “size”. When we consider net-  

 

Figure 2. The rich club of Inet 3037. 
 

 

Figure 3. The modified rectangular lattice. 
 
works where the branches do not have necessarily the 
same capacity and the capacities are chosen in order to 
exploit the small world property this phenomenon occurs 
in a more subtle way. We investigate this phenomenon 
studying Inet 3037 (see Figure 1) in comparison to a 
modified rectangular lattice network (see Figure 3). Note 
that these two networks have the same number of nodes. 
This fact motivates the idea of defining a transformation, 
depending on a parameter α ∈ [0, 1], that maps the net- 
work having the small world property Inet 3037 (i.e.: α = 
0) into the modified rectangular lattice network (i.e.: α = 
1). This transformation acts changing the weights of the 
branches of the networks and depends on the way the 
nodes of the networks are numbered. Note that in this 
paper the node numbering is given and that the depen- 
dence of the transformation between networks mentioned 
above and of the phenomena studied on the networks from 
the numbering of the nodes is not considered. Given the 
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constants βj, j = 1, 2, 3, we study the critical values of the 
parameter λ = *

i , i = 1, 2, 3, as a function of the parame- 
ter α and of the traffic management rules. This study sug- 
gests some changes in the traffic management rules and/ 
or in the network topology able to alleviate the conse- 
quences of the congestion phenomenon. Some analogies 
between the congestion phenomenon studied here and the 
phase transition phenomenon studied in statistical me- 
chanics are illustrated. In the web site: 
http://www.ceri.uniroma1.it/ceri/zirilli/w6 some auxiliary 
material including animations and stereographic scenes 
that helps the understanding of this paper is shown.  

The paper is organized as follows. In Section 2 we 
describe the topological properties of Inet 3037 and of 
the modified rectangular lattice network. Using the fact 
that Inet 3037 and the modified rectangular lattice net-
work considered have the same number of nodes we 
define a transformation depending on a parameter α ∈ [0, 
1] that maps Inet 3037 (i.e. α = 0) into the modified rec-
tangular lattice network (i.e. α = 1). In Section 3 in the 
homogeneous traffic case we study the traffic congestion 
phenomenon on Inet 3037, on the modified rectangular 
lattice network considered in Section 2 and on the α- 
networks, α ∈ (0, 1). In Section 4 in the heterogeneous 
traffic case we study the traffic congestion phenomenon 
on the previous networks. Finally in Section 5 we draw 
some conclusion. 

2. The Networks and Their Topological 
Properties 

The topological features of a graph that will be considered 
in our analysis are: the node degree distribution, the mean 
length of the shortest path between the couples of (distinct) 
nodes, the betweenness centrality of the nodes and the 
graph connectivity. These purely topological notions are 
adapted to the fact that the networks considered are mo- 
deled as weighted graphs, that is are adapted to the fact 
that we have capacities associated to the branches of the 
graphs.  

Let G = (V, E) be a graph having n nodes that models a 
network. For k = 0, 1, ···, n−1, let f(k) be the frequency of 
the nodes of the graph having degree k, and let F(d), d = 0, 
1, ···, n−1, be the node degree cumulate distribution, that is  

( ) ( ),
i d

F d f


  i  d = 0, 1, ···, n−1, we define F′(d) =  

1−F(d), d = 0, 1, ···, n−1. We say that a network is a scale 
free network when the function F′(d) decays as an inverse 
power of d when d increases (see Figure 4), that is when 
we have: 

  ,  0,  1, ,  1F cd d nd
              (1) 

for some positive constants c and β (see [6]).  
The mean length of the shortest path is the mean value  

 

Figure 4. F′(d) as a function of the node degree d. 
 

  ,
1 1,

1

1

n n

s d
s d d s

l
n n   




  l              (2) 

of the length of the shortest path that joins the couples of 
(distinct) nodes, (s, d), s ≠ d, s, d ∈ V, that is: where ls,d is 
the length of the shortest path connecting the nodes s and d, 
s ≠ d, s, d ∈ V, that is ls,d is the smallest number of nodes 
that must be visited to go from s to d, s ≠ d, moving on 
branches with capacity greater than zero, s, d ∈ V. Note 
that when evaluating the length of a path that goes from s 
to d the node d must be counted between the nodes visited 
to go from s to d. We consider connected graphs so that for 
every couple of nodes (s, d), s ≠ d, s, d ∈ V there is at least 
one path that goes from s to d. Note that the shortest path 
between two nodes may be nonunique. In our analysis we 
consider weighted graphs and as a consequence weighted 
paths so that we consider the mean length of the shortest 
weighted path defined as the mean value of the length of 
the shortest weighted path that joins the couples of net-
work nodes. That is, let Ss,d be the set of the paths con-
necting the nodes s and d, s ≠ d, s, d ∈ V. The shortest 
weighted path between the nodes s and d, s ≠ d is the path 

*
,

w
s dpath  ∈ Ss,d that goes from s to d having the smallest 

sum of the inverse of the capacities of its branches, s, d ∈ 
V. Note that the shortest weighted path may be nonunique. 
When it is nonunique we choose as *

,
w
s dpath ∈ Ss,d that is, 

as the shortest weighted path whose length is used in (5), 
the path that is determined by the algorithm used to 
compute it. Let *

,
w
s dl be defined as follows:  

* *
, , , , ,w w

s d s dl lenght path s d s d V ,         (3) 

where with the previous specifications we define:  

,,
, ,

*
, ,arg min , , , .w

s ds d w
m k s d

w
s d m kpath S

e path

path p s d s d V




    

(4) 

The mean length of the shortest weighted path of the 
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graph G can be defined as follows: 

 
* *

,
1 1,

1
.

1

n nw w
s d

s d d s

l l
n n   




               (5) 

Note that *
,

w
s dlenght path  is not well defined when the 

shortest weighted path is not unique, that is the definition 
given above is loose. In fact different shortest weighted 
paths may have different lengths and different algorithms 
to determine them may determine different paths. More 
satisfactory definitions can be given at the price of making 
the exposition more complicated. These definitions will 
be omitted. Remind that when we consider Inet 3037 for 
every branch em,k ∈ E the weight pm,k of the branch is a 
positive number equal to the inverse of the capacity cm,k of 
the branch that is assigned by the Inet-3.0 algorithm [6].  

The betweenness centrality of a node v ∈ V is the fol-
lowing quantity:  

,
1, 1, ,

2
( ) ( ), , 3,

( 1)( 2)

n n

B s d
s s v d d s d v

C v r v v V n
n n     


     

V

 

(6) 
where rs,d(v), s ≠ d, s ≠ v, d ≠ v, is the number of the 
shortest paths joining s to d passing through the node v 
divided by the total number of the shortest paths joining 
the node s to the node d, s, d, v ∈ V. Note that we have: 

, ,
1,

( ), , , .
n

s d s d
v v s

l r v s d s d
 

           (7) 

We generalize the betweenness centrality defined in (7) 
introducing the weighted betweenness centrality of a node 
v ∈ V defined as follows: 

   ,
1, 1, ,

2
, ,

( 1)( 2)

n n
w w
B s d

s s v d d s d v

C rv
n n     


    3,v V nv    

(8) 
where , s ≠ d, s ≠ v, d ≠ v, is the number of the 
shortest weighted paths joining s to d passing through the 
node v divided by the total number of the shortest 
weighted paths joining the node s to the node d, s, d, v ∈ 
V. The weighted betweenness centrality adapts the notion 
of betweenness centrality to the fact that we consider 
weighted graphs. Note that the betweenness centrality and 
the weighted betweenness centrality of a node are mea- 
sures of the “relevance” of the node for the traffic on the 
network when we use as routing strategy respectively the 
shortest path and the shortest weighted path. Roughly 
speaking they are measures of how much a node acts as a 
hub in the network when we use the routing strategies 
mentioned above.  

 , v
w

s dr

Let us consider a graph G = (V, E) and the nonempty 
sets S ⊆ V such that the graph G\S = (V\S, E ∩ ((V\S) × 
(V\S))) is a disconnected graph and the set Σ of the car-
dinalities of the sets S that have the previous property. The 
connectivity of the graph G is the minimum of the set Σ. 

Roughly speaking the connectivity of a graph is the 
smallest number of nodes that must be removed from the 
graph to disconnect it.  

Let us describe the Inet 3037 network. The Inet 3037 
network has been generated using the package Inet (In- 
ternet Topology Generator) (see [6] for further details). 
The algorithm used by the Inet package is the Inet-3.0 al- 
gorithm and generates random graphs modeling the AS- 
level Internet graph topology. In fact Internet can be 
viewed as an AS-level topology graph where each AS 
(Autonomous Systems) is a node, and the BGP (Border 
Gateway Protocol) peering between two ASes is a link. 
Inet-3.0 takes into account the Internet topological prop-
erties as observed by the University of Michigan research 
team that has implemented and distributes the Inet pack-
age. For example, it considers the node degree distribution 
and the network connectivity of the graphs generated. In 
detail, the Inet-3.0 algorithm takes as input the number n 
of nodes that the network generated must have and the 
number of nodes of the network that must have degree one. 
Taken these two input data Inet-3.0 generates a graph 
whose links are chosen in order to reproduce the result of a 
study of the node degree distribution, of the connectivity 
and of some other properties of Internet as registered in 
the BGP (Border Gateway Protocol) routing tables of the 
Oregon server: route-views.oregon-ix.net. The Oregon 
server collects information on the traffic over autonomous 
systems belonging to distinct Internet service providers 
and on their topology communicating with these providers 
through the BGP protocol. The output of the Inet-3.0 
algorithm are the links of the graph generated and a set of 
positive integers associated to the links that we interpret as 
capacities of the links. We have used Inet-3.0 to generate a 
weighted graph with n = 3037 nodes and we have required 
that approximately 30% of the nodes of the graph gene- 
rated (to be precise 911 nodes) must have degree one. The 
connectivity of the graph generated by Inet-3.0 is 3, that is 
the integer part of 0.001·n. The resulting graph is Inet 
3037 (see Figure 1). We note that in Inet 3037 the mean 
value of the node degree is approximately 3 and that the 
maximum value of the node degree is 684. The nodes 
having degree greater than 60 are 11 and are the red nodes 
shown in Figures 1 and 2. These nodes are the nodes of 
the rich club of Inet 3037. Figure 2 shows the nodes of the 
rich club of Inet 3037 and the branches of Inet 3037 that 
connect them. The red nodes appearing in Figures 1 and 2 
can be considered as representatives of suitably defined 
subgraphs. A node y of Inet 3037 (a yellow node in Figure 
1) belongs to a subgraph whose representative node is a 
node k of the rich club (red node in Figure 1) if there 
exists at least one path (made of branches with capacity 
greater than zero) joining y to k and there are no paths 
joining y to a node of the rich club different from k that do 
not go through k. The nodes such that there are paths 
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joining them “directly” to more than one node of the rich 
club are represented as green nodes in Figure 1. The no- 
des of Inet 3037 are numbered in increasing order for de- 
creasing values of the node degree. The nodes that have 
the same degree are numbered randomly with consecutive 
numbers. Inet 3037 has 4788 branches. The smallest and 
largest capacities of the branches are 67 and 12441 re- 
spectively. The mean value of the capacities of the bran- 
ches of Inet 3037 is approximately 5064. An easy com-  
putation shows that Inet 3037 has 

w w
INETl l ≈ 5.1649. Let  

us denote with RI(v) the sum of the capacities of the 
branches of Inet 3037 arriving at (or departing from) the 
node v, v ∈ V. Figure 5 shows the quantity RI(v) as a 
function of v ∈ V. We note that the first eleven nodes (i.e. 
the nodes numbered from one to eleven that are the nodes 
of the rich club) are those with highest degrees and with 
the highest values of RI.  

Let us describe the modified rectangular lattice network 
that we use as a comparison term in the study of the be- 
haviour of Inet 3037. The modified rectangular lattice 
network (see Figure 3) has 3037 nodes and is charac- 
terized by the degree of the inner nodes that is equal to 
four and by the capacity of its branches that is the same for 
all branches. The modified rectangular lattice network 
shown in Figure 3 has 5964 branches. The capacity of its 
branches, cR, is chosen as the integer part of the sum of the 
capacities of the branches of Inet 3037 divided by the 
number of branches of the modified rectangular lattice 
network. An easy computation gives cR = 4066. Note that 
since all the branches of the modified rectangular lattice 
have the same capacity the choice of cR made guarantees 
that the total capacity installed on Inet 3037 and the total 
capacity installed on the modified rectangular lattice 
network are roughly the same. They are roughly the same 
and not exactly the same since we have used the integer 
part to define the branch capacity of the modified rec-  
 

 

Figure 5. RI(v) as a function of the node number v. 

tangular lattice. The use of the integer part in the defini- 
tion of the branch capacity is due to the fact that the ca- 
pacities are supposed to be integer numbers. In a m × l 
rectangular lattice network the inner nodes have the same 
betweenness centrality and the mean length of the shortest 
path is given by: 

2 2

Rect
1 1 1

.
3

m l
l

m l

  
  

 
             (9) 

To build the modified rectangular lattice network we 
consider a m × l rectangular lattice network with m = 46 
and l = 66, that is a network with 3036 nodes, and we add 
to it an extra node having degree four (see Figure 3). The 
nodes of the m × l rectangular lattice are numbered from 
right to left, and from the bottom row to the first row (see 
Figure 3) in increasing order beginning with v = 1 cor- 
responding to the right bottom corner of the network. In 
particular let AR = ((AR

i,j)) ∈ R3037×3037 be the weighted 
adjacency matrix of the modified rectangular lattice net- 
work defined starting from the weighted adjacency matrix 
of the 46 × 66 rectangular lattice network (with all the 
branches of capacity cR) adding to it an extra node, v = 
3037, connected to the rectangular lattice network as 
shown in Figure 3, that is adding an extra row and column 
to the adjacency matrix of the 46 × 66 rectangular lattice 
as follows:  

3037,

,3037 3037,

3037, ,3037

3037,3037

, 3033,3034,3035,3036,

, 3033,3034,3035,3036,

0,  1,2, ,3032,

0.

R
i R

R R
i i

R R
i i

R

A c i

A A i

A A i

A

 

 

    



  (10) 

It is easy to see that the network modeled by the graph 
corresponding to the adjacency matrix AR is the one shown 
in Figure 3. The length of the mean shortest path in the 
modified rectangular lattice network shown in Figure 3 is 

Rl ≈ 38.3424 ≈ 7
w
INETl . Let us define the weights of the 

branches of the modified rectangular lattice network as the 
inverse of their capacities and let 

w
Rl  be the mean length 

of the shortest weighted path of the modified rectangular 
lattice, we note that since all the branches of the modified 
rectangular lattice network have the same capacities, they 
have also the same weights so that we have 

w
R Rl l .  

In the numerical simulations we scale the capacities of 
the branches of Inet 3037 and of the modified rectangular 
lattice by dividing them by the smallest capacity of the 
branches of Inet 3037 that is dividing them by 67. This 
choice reduces the computational work needed to carry 
out the numerical simulations.  

Note that Table 1 shows that the nodes of the modified 
rectangular lattice have approximately the same relevance 
in terms of betweenness centrality, in fact for the modified 
rectangular lattice the mean value of the betweenness 
centrality is of the same order of magnitude of its maxi-  
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Table 1. Some features of Inet 3037 and of the modified 
rectangular lattice. 

Feature Inet 3037 
Modified Rectangular 

lattice 

mean length shortest path 4.6241 38.3424 

mean length shortest 
weighted path 

5.1649 38.3424 

maximum value  
betweenness centrality 

0.5785 0.0267 

mean betweenness centrality 8.646 × 10−4 0.012 

maximum value weighted  
betweenness centrality 

0.4604 0.0267 

mean value weighted  
betweenness centrality 

1.00 × 10−3 0.012 

 
mum value. This is a consequence of the fact that the 
modified rectangular lattice does not have the small world 
property. The case of Inet 3037 is substantially different, 
in fact for Inet 3037 the mean value of the betweenness 
centrality is three orders of magnitude smaller than its 
maximum value.  

Roughly speaking, in the case of Inet 3037, the node 
where the betweenness centrality reaches its maximum 
value (i.e. the node v = 1) absorbs approximately 58% of 
the traffic when we use the shortest path routing, that is 
about 58% of the shortest paths goes through this node. 
This percentage reduces to 46% if we consider the 
weighted shortest path routing and as a consequence the 
weighted betweenness centrality instead than the be-
tweenness centrality.  

Finally, for Inet 3037 we note that the sum of the be- 
tweenness centrality of the nodes of the rich club is 52% 
of the sum of the betweenness centrality of all the nodes 
and that the sum of the capacities of the branches con- 
nected to the nodes of the rich club is 41% of the sum of 
the capacities of all the branches of the network. In the 
case of the modified rectangular lattice (when we consider 
as rich club of the modified rectangular lattice the graph 
associated to its first eleven nodes, that is the nodes num- 
bered from 1 to 11) the same ratios are approximately 
equal to 0.003% and to 0.03% respectively. Note that the 
correspondence between the rich club of Inet 3037 and the 
graph associated to the first eleven nodes of the modified 
rectangular lattice is a rather arbitrary one. In fact when 
we consider the modified rectangular lattice there is no a 
natural candidate to play the role of the rich club. Table 1 
summarizes the topological properties of Inet 3037 and of 
the modified rectangular lattice discussed above.  

Let EI denote the set of branches of Inet 3037 and AI ∈ 
R3037×3037 denote the weighted adjacency matrix of Inet 
3037, that is the matrix whose entries are: , ,

I I
i j i jA c

I
i jc

, i ≠ j 
and , , where , ,  if ei,j ∈ EI or ,0I

i iA  I
i j i jc c 0  if 

ei,j ∉ EI, i, j = 1, 2, ···, 3037. Let α ∈ [0,1] be a real pa- 
rameter, we denote with Aα = (( ,i jA )) ∈ R3037×3037 the 

following combination of the weighted adjacency ma- 
trices AR and AI relative to the modified rectangular lattice 
and to Inet 3037 respectively:  

    , 0,  11
I RA A A     ,       (11) 

where     is the ceiling part of · and the ceiling part of a 
matrix is defined as the matrix whose entries are the 
ceiling parts of the entries of the original matrix. Re-
member that the ceiling part of a real number x is the 
smallest integer greater or equal to x. The matrix Aα is the 
weighted adjacency matrix of a graph that we call 
α-network, α ∈ [0, 1]. Note that when α = 0 we have Aα 
equal to the weighted adjacency matrix of Inet 3037 and 
when α = 1 we have Aα equal to the weighted adjacency 
matrix of the modified rectangular lattice. We note that in 
the transformation (11) the most important hub of Inet 
3037, that is the node v = 1, is mapped into the node v = 1 
of the modified rectangular lattice (that is, it is mapped in 
the bottom right corner of the modified rectangular lattice, 
see Figure 3) and so on. This correspondence between the 
nodes is somehow arbitrary and depends on the way the 
nodes are numbered. 

Note that since the mean shortest weighted path of the 
modified lattice network is about seven times greater than 
the mean length of the shortest weighted path of Inet 3037 
in the numerical simulation of the traffic flow (in the free 
flow regime) on these networks we expect that a similar 
relationship holds between the simulation times needed to 
reach the stationary condition. We can conclude that the 
time interval simulated must be chosen appropriately in 
order to guarantee that on both networks the stationary 
regime has been reached.  

Let us make some comments about the topological fea- 
tures of the α-networks. Let us denote with GI = (VI, EI), 
GR = (VR, ER) and Gα = (Vα, Eα), α ∈ [0, 1], the graphs 
associated respectively to Inet 3037, to the modified rec-
tangular lattice and to the α-network, α ∈ [0, 1]. We have 
VI = VR = Vα, α ∈ [0, 1], and EI = E0, ER = E1, moreover 
for any α ∈ (0, 1) we have Eα = EI ∪ ER, α ∈ (0, 1). This 
implies that for α ∈ (0, 1) the mean length of the shortest 
path of the α-network l  is smaller or equal than INETl  
and Rl . 

Table 2 shows that, at least for the values of α consi- 
dered in Table 2, this property continues to hold when we 
consider the shortest weighted path. This is not obvious 
and depends on the weights associated to the branches. 
Note that between the α-networks considered in Table 2 
the one having the smallest mean length of the shortest 
weighted path is the α = 0.5-network.  

The capacities of the branches of the α-network are  
 , ,1

I R
i j i jA c c     , ei,j ∈ Eα and the corresponding  

weights used in (4) are , ,i j i j1p A , ei,j ∈ Eα, α ∈ [0, 1]. 
Note that when α goes from zero to one in (11) in the α- 

network we have a reduction of the capacities of the  
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Table 2. Some features of the α network. 

α-network 
Mean length 
shortest path 

Mean length shortest 
weighted path *

, ,

,
w

m k s d

m k
e path

p



α = 0 4.6241 5.168 0.1331 

α = 0.2 4.3128 4.8184 0.1567 

α = 0.4 4.3128 4.9325 0.1859 

α = 0.5 4.3128 4.796 0.1938 

α = 0.7 4.3128 5.042 0.2318 

α = 0.8 4.3128 5.607 0.2915 

α = 0.9 4.3128 7.0417 0.4474 

α = 1 − 0.05 4.3128 10.4655 0.7172 

α = 1 − 0.01 4.3128 34.7311 1.57608 

α = 1 38.3424 38.3424 1.6656 

 
branches connected to the hubs of Inet 3037 and that this  
implies the reduction of the weighted betweenness cen- 
trality of the hubs. This fact makes possible to reduce the 
mean length of the shortest path since the advantage of 
going through the hubs in the shortest weighted paths (see 
[14]) is reduced.  

Finally, let α ∈ [0, 1] for the graph Gα consider the 
weighted betweenness centrality , , v ∈ Vα defined 
as in (8). For several choices of α, such that α ∈ [0, 1], 
Table 4 shows the corresponding values of the maximum, 

, with respect to v of , v ∈ Vα. 

( )w
BC v

( )v,max
wb ,

w
BC 

3. The Traffic Congestion Phenomenon in the 
Homogeneous Traffic Case 

Let us study the congestion phenomenon in the homoge-
neous traffic case for the networks described by the 
weighted adjacency matrices defined in (11). Note that the 
homogeneous traffic case can be obtained as a special case 
of the heterogeneous traffic case, for example, with the 
choice of the priority factors: p1 = p2 = p3 = 1 or with the 
choice β1 = 1, β2 = β3 = 0. Then in the homogeneous traf-
fic case the mean load of packets generation is equal to β1λ 
= λ. At time zero the networks studied are empty, that is 
they do not contain data packets. This fact generates a 
transient behaviour that connects the initial state (i.e. 
empty network) to the large time behaviour of the traffic 
on the network. For the homogeneous and the heteroge-
neous traffic case the simulation of the data packet traffic 
is carried out in the time interval [0, T]. The time T is 
chosen to be 400 time units in order to guarantee that in 
the free flow regime the traffic on the networks considered 
has (approximately) reached the stationary condition. The 
simulation procedure in the homogeneous traffic case 
consists of the following steps:  

1) Choose the number Nα + 1 of the network topologies 
that will be considered in the simulations, we consider Nα 
= 10;  

2) Choose the network topologies, that is, assign the 
values of α used in the simulations, we consider α = αj = 
(j−1)/Nα, j = 1, 2, ···, Nα+1;  

3) Define the topology of the networks studied, for j = 1, 
2, ···, Nα+1, we consider the network associated to the 
weighted adjacency matrix jA

 defined by (11) when α 
= αj, this is the α = αj-network topology;  

4) Packets generation: in each time unit of the simula-
tion we first sample from a Poisson random variable with 
mean λ the number of packets generated in that time unit. 
The values of λ considered in the simulations are 201 
values equispaced in the interval [10, 3000], that is we 
choose λ = λk = 10 + (3000−10)k/200, k = 0, 1, ···, 200. A 
couple of nodes are assigned to each packet generated. 
This couple of nodes is sampled from a random variable 
uniformly distributed on the set of couples (s, d), such that 
s ≠ d, s, d = 1, 2, ···, 3037. For s, d = 1, 2, ···, 3037, s ≠ d, 
the packet associated to the couple (s, d), originates in the 
node s and its destination is the node d;  

5) Routing: the routing consists in associating to each 
packet a shortest weighted path connecting the node 
where the packet originates with its destination node. The 
packet is forwarded along this path during the time steps 
that follow the time of its generation. When the shortest 
weighted path between the origin and destination nodes of 
a packet is not unique the packet follows the shortest 
weighted path determined by the algorithm used to com- 
pute the routing of the packets (see [14]). When the packet 
reaches its destination is removed from the traffic simu- 
lation;  

6) Queue management: every node has a queue for each 
branch leaving the node, we assume the queues to be 
potentially unbounded. When a packet is generated in a 
node or arrives at a node, it is placed in the appropriate 
queue of the node in the process of being delivered toward 
its destination along its route. The queue management rule 
is: first in first out. When two or more packets that must 
continue their route on the same branch arrive simulta-
neously at a node the one that goes first in the queue is the 
packet that has been generated earlier. When two or more 
packets that must continue their route on the same branch 
and that have been generated simultaneously arrive si- 
multaneously at a node we choose randomly between 
them the one that goes first in the queue;  

7) Packets movement: in a time unit, when there is ca- 
pacity available on the relevant branch, a packet moves 
from the node where it is to the adjacent node along its 
route (i.e. the shortest weighted path). When there is no 
capacity available on the relevant branch the packet waits 
the next time unit at the node where it is. Remember that 
in each time unit, when in a node i we have several packets 
that (according with their routes) must be delivered to the 
same adjacent node j we deliver them in the same time 
unit as long as the number of packets delivered in the time 
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unit on the branch ei,j is smaller or equal than the capacity 
of the branch ei,j. For example for the α-network the 
maximum number of packets that can be forwarded in the 
same time unit along the branch ei,j ∈ Eα is ,i jA , α ∈ [0, 
1]. This procedure applies to every node and to every 
branch.  

We note that the parameter λ is the mean value of the 
number of packets generated in the entire network in a 
time unit, so that given the fact that the origin and the 
destination nodes attributed to the packets are sampled 
from an uniformly distributed random variable and the 
fact that there are n nodes in the network we can conclude 
that every node on average generates λ/n packets per time 
unit.  

Note that we have chosen as routing strategy the 
shortest weighted path (see formula (3)) instead than the 
more usual shortest path. This choice is made in order to 
take advantage of the network complexity, that is of the 
small world property enjoyed by Inet 3037 (and by the 
α-networks, α ∈ (0, 1)), and of the fact that the branches 
of Inet 3037 have capacities ranging in a wide interval in a 
way that makes possible to take advantage of the small 
world property. In fact in the case of Inet 3037 the use of 
the shortest path route will direct almost all the packets 
through the nodes with higher betweenness centrality 
resulting in an inadequate exploitation of the branch ca-
pacities and ultimately in traffic congestion. Note that in 
the modified rectangular lattice case (i.e.: α = 1), due to 
the choice of giving the same capacity to all the branches, 
the shortest path and the shortest weighted path routing 
strategies coincide.  

In the homogeneous traffic case let NL, tM be respec- 
tively the quantities analogous to the quantities

i i
,L M , i 

= 1, 2, 3, introduced previously in the heterogenous traffic 
case. Note that in NL, tM we drop the subscript i, since in 
the homogeneous traffic case there is only one kind of 
data packets travelling on the network, that is we have 
only i = 1. The traffic simulation shows that, when there is 
no congestion, after a transient time, whose duration de- 
pends on the network topology, the traffic flow reaches a 
stationary state where, in average, the total number of 
packets created and delivered are equal, that is NL is a 
finite quantity and the mean travel time tM measured in 
time units is of the order of magnitude of the mean length 
of the shortest weighted path. This last fact is a natural 
consequence of Little’s law of queueing theory [15]. This 
stationary state is the free flow state. When λ increases we 
observe that the traffic on the network goes from the free 
flow state to a congested state and that this transition can 
be characterized by a value λ* of the parameter λ, that 
separates these two different states. The value λ* is called 
critical value of λ. Note that when λ is greater λ* there is no 
a stationary state (in time) for the traffic on the network, 
that is, the quantities NL and tM increase monotonically 

towards infinity when the simulation time goes to infinity.  

N t

Let us define the criteria that establish in the numerical 
simulation when a value of the load parameter λ is critical.  

Let us denote with tα the mean length of the shortest 
weighted path expressed in time units. Moreover, since 
we want to put in evidence the dependence of the quanti-
ties NL and tM on the parameters α and λ let us use the 
notation ( )L LN N   and ( )M Mt t 

t

, λ > 0, α∈ [0, 1]. 
Note that when the load parameter λ is below the critical 
value (that is the network traffic is after a transient period 
in the free flow state) we have ( )M

   ≈ tα and 
( )

L LN N  ≈ λtα.  
In the numerical simulations we use two criteria to re- 

cognize the critical values of λ:  
Criterion 1: Given an α-network we say that λ* is the 

critical value of the load parameter λ for the α-network 
when λ* is the smallest value of λ such that the derivative 
with respect to λ of ( )LN  measured using λ as unit, that 
is the quantity (1/ / d)d ( )LN   , is greater than a given 
positive constant γ.  

Criterion 2: Given an α-network we say that λ* is the 
critical value of the load parameter λ for the α-network 
when λ* is the smallest value of λ such that the derivative 
with respect to λ of the mean travel time measured using tα 
as unit, that is the quantity (1/ )d ( ) / dMt t    , is greater 
than a given positive constant γ.  

The choice of the threshold γ depends on the network 
and on the criticality criterion considered.  

Let us study the critical value of λ as a function of α, α 
∈ [0, 1]. The numerical simulations show that going from 
Inet 3037 (α = 0) to the modified rectangular lattice (α = 1) 
the critical value of the parameter λ, λ = λ*(α), as a func-
tion of α has a maximizer for a value of α ∈ (0, 1). This 
maximizer depends on the value of γ. In particular, Figure 
6 shows the critical values of λ as a function of α for four 
choices of the threshold γ, that is γ = 0.04, 0.08, 0.12 and 
0.16, when we use Criterion 1 to recognize criticality. 
Note that when we use Criterion 1 the value assigned to γ 
can be seen as a rough measure of the percentage of the 
packets that have not reached their destination and are 
travelling on the network. Figure 7 shows the critical 
values of λ divided by tα as a function of α for four values 
of γ (γ = 0.2, 0.4, 0.6, 0.8) when we use Criterion 2 to 
recognize criticality. The criticality recognized using 
Criterion 2 (see Figure 7) is somehow different from the 
criticality recognized using Criterion 1 (see Figure 6). In 
fact when we use Criterion 2 when λ* is the critical value 
determined by a given choice of γ, for example, let us say 
by the choice γ = 0.4, it means that when λ = λ* there is an 
increment of at least 40% in the delivery time with respect 
to the mean delivery time in the noncongested regime, 
that is for λ < λ*. Furthermore, using Criterion 2 the choice 
of the best performing network, that is the choice of the 
network that has the biggest value of λ*, is not a clear cut  
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Figure 6. The quantity λ*(α) as a function of the parameter α for several choices of the threshold γ (Criterion 1). 
 

 

Figure 7. The quantity λ*(α)/tα as a function of the parameter α for several choices of the threshold γ (Criterion 2). 
 
choice as the corresponding choice when we use Criterion 
1. However, for example, Figures 6 and 7 show that the 
choice α = 0.5 defines a highly performing network for 
both Criteria.  

Figure 8 shows the quantities  LN t    and 
( )Mt

   as a function of λ for several values of the pa- 
rameter α, that is for α = 0, 0.3, 0.5, 0.7, 0.9, 1. We note 
that the quantity  LN t    is approximately con-
stant up to a given value of λ and that after that value of λ 
starts to increase (see Figure 8). The results shown in 
Figure 8 suggests that the networks with α ∈ (0.3, 0.7) 

are the best performing ones between those studied when 
we use the quantities NL and tM to judge the traffic quality. 
In fact in Figure 8 we can see that for λ ∈ [100, 1100] 
when α = 0.3, 0.5, 0.7 the values taken by the quantities 

 LN t    and  Mt
   are smaller than the cor- 

responding values of the same quantities when we have α 
= 0, 0.9, 1.  

Let us study some analogies between the network 
congestion phenomenon considered here and the phase 
transition phenomenon studied in statistical mechanics 
using the random variable ( )LD  , that is the number of  
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Figure 8. The quantities  a a
LN t   and  as a function of λ for several choices of α.  α

Mt λ
 
packets that are travelling on the network minus λtα. Note 
that the expected value of ( )LD   is ( )LN t  

( ) /
. We 

perform the statistical analysis of LD  
( )LD

, that is we 
approximate the probability density function of /   
with the empirical distribution of the simulated data as a 
function of the parameters α and λ in order to establish the 
existence of a sizable probability of having a large con-
gestion and we compare the results obtained in this way 
with those obtained using the Criteria introduced above to 
study criticality.  

For several choices of the parameters α and λ we per-
form a number of simulations sufficient to obtain an em-
pirical approximation of the probability density function 
of ( ) /LD   . When α = 0, Figures 9 and 10 show the 
empirical probability density functions obtained, that is 
they show the relative frequencies of ( ) /LD    ob-
tained in the simulations for a fixed value of the mean load 
λ, that is for λ = 30, 300, 3000 and 6000.  

Let * *
min max,   be a lower and an upper bound respec-

tively for the critical value λ* of the parameter λ. When α = 
0 a sign of congestion appears when the (empirical) 
probability density function of ( ) /LD    changes its 
form from being a unimodal function independent of time 
peaked around zero (for λ ≤ *

min , see Figure 9) to being a 
bi-modal function that translates to the right when time 
goes on (for λ ≥ *

max , see Figure 10 where the probability 
density functions obtained for t = T are shown). Looking 
at Figures 9 and 10, we can see that *

min  should have a 
value smaller than λ = 3000 and greater than λ = 300 (it 
seems reasonable to be conservative and choose *

min  = 
300) and that x

*
ma  should have a value greater or equal 

than 3000 and smaller or equal than 6000 (it seems rea-
sonable to be conservative and choose *

max  = 3000). In 

fact, Figure 10 shows that when λ ≥ 3000 the empirical 
probability density function of ( ) /LD  


 is not peaked 

in zero (i.e. the number L N   is substantially greater 
than the value λtα which is the approximate value of 

 LN   in the free flow state in stationary conditions). 
We can conclude that the phase transition from the free 
flow regime to the congested regime takes place for a 
value of λ belonging to the interval [ max

*
min , *  ]. Indeed, 

more refined numerical simulations have shown that the 
interval [ * *

min max, 

( )LD

] can be reduced to the interval: [500, 
600]. Note that this is in substantial agreement with the 
critical value of λ for the network Inet 3037 determined 
using Criterion 1 (see Figure 6).  

Figure 11 shows the empirical probability density 
function of /   for α = 0.5 when λ = 300 (Figure 
11(a)) and λ = 3000 (Figure 11(b)). Let us compare 
Figure 9(b), 11(a) (i.e. λ = 300) and Figure 10(a), 11(b) 
(i.e. λ = 3000). Note that when α = 0.5 (i.e. Figures 11(a) 
and (b)) the empirical probability density function of 

( ) /LD    is peaked in zero and the frequency corre-
sponding to the window containing zero is approximately 
70% (λ = 300) or 60% (λ = 3000) and that when α = 0 (see 
Figure 9(b)) the empirical probability density function of 

( ) /LD    is peaked in zero and that the frequency cor-
responding to the window containing zero is approxi-
mately 35% (λ = 300), moreover when α = 0 and λ = 3000, 
the probability density function of ( ) /LD    is not 
peaked in zero (see Figure 10 (a)). This fact suggests that 
the α = 0-network starts changing regime earlier than the α 
= 0.5-network, that is we should expect that the α = 
0-network reaches the congested regime for a smaller 
value of the load parameter λ than the α = 0.5-network. 
This is confirmed by the analysis done using Criterion 1  
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Figure 9. Frequency distribution of a
LD  when α = 0 and λ = 30 (a) or λ = 300 (b). 

 

    

Figure 10. Frequency distribution of   a
LD  when when α = 0 and λ = 3000 (a) or λ = 6000 (b). 

 

    

Figure 11. Frequency distribution of   a
LD  when α = 0.5 and λ = 300 (a) or λ = 3000 (b). 
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and 2 (see Figures 6 and 7). Let us study the congestion 
phenomenon from a different point of view. Let us con-
sider the function ( ) ( )Mz t t    , λ > 0. From the 
behaviour of ( )Mt

  , λ > 0, shown in Figure 8 it is rea-
sonable to assume that zα(λ) as a function of λ behaves as 
follows:  

  ,min ,max

,min

,

1

q

z


 



   


 

      


,      (12) 

where ξα is a positive constant depending on the network 
topology, qα is a negative exponent, λα,min, λα,max are, re- 
spectively, a lower and an upper bound defining an in- 
terval where the transition from the free flow to the con- 
gested regime takes place. This transition from the free 
flow to the congested regime can be assimilated to the 
phase transition phenomenon studied in statistical me- 
chanics. Equation (12) is motivated by the fact that when 
the network has not reached the congested regime  Mt

   
is approximately equal to tα and the probability density 
function of ( ) /LD  

 M


 is peaked in zero. On the contrary 
when the network has reached the congested regime we 
have that t   increases with λ and that the probability 
density function of ( ) /L

D    is not peaked in zero. 
Note that when λ is greater than λ* (remember that λ* < 
λα,max) the network does not have a stationary regime (in 
time) anymore and the quantities Mt

  and LD  are not 
defined, in fact they diverge with time. That is in this last 
case the quantities Mt

 , LD  shown in the figures are 
those observed at time T, the time where the numerical 
simulation ends.  

We choose λα,max = 3000 and we calibrate the parame- 
ters qα, ξα, λα,min appearing in formula (12) from the 
simulation data relative to the function zα(λ) using a least 
squares procedure. Let us denote with MSe  the relative 
mean square error at the solution of the least squares 
procedure. Figures 12(a), (b), (c), (d) show the error MSe  
as a function of λα,min when α = 0, α = 0.5, α = 0.7 and α = 
1 respectively. Note that all the functions MSe  (λα,min), 
λα,min > 0, shown in Figure 12 have a local minimizer 
except the one shown in Figure 12(d) that is relative to 
the α = 1-network. Remind that the α = 1-network cor-
responds to the modified rectangular lattice. The existence 
of a local minimizer indicates the transition from the free 
flow regime to the congested regime. In fact, when λ is 
sufficiently large the function ( ) ( )Mt

z t  
q

  de-
creases monotonically and behaves like 

 

,minα

 so that 
increasing λα,min we can improve the matching of the 
simulated data with the curve given in (12). Let [λα,min, 
λα,max] be the interval where the function zα(λ), as a func-
tion of λ behaves as a negative power. For α = 0, α = 0.1·i, 
i = 2, 3, ···, 7, α = 0.9, we can observe that the transition 
from a free flow regime to a congested regime (according 
with Criterion 2) is located in the interval [ , λα,max] 

when we choose  to be the first local minimizer of 

λ

�
,min

MSe  (see Figure 12). Table 3 shows the parameters ob-  
tained using the calibration procedure described above 
and choosing λα,min= . We improve the choice of 
λα,min, λα,max made previously to obtain an interval of criti- 
cality [

� ,min

* *
min max,  ] smaller than the interval [λα,min, λα,max]. 

A possible choice of the interval [ *
min max, *  ] is 

min  and 
,minαλ*  *

max  , where   is the largest va- 
lue of λ such that we have MS , α = 0, α 
= 0.1·i, i = 2, 3, ···, 7, α = 0.9.  

   � ,minMSe e 

Finally Figure 12(d) shows that when α = 1 the phase 
transition does not occur for the values of λ considered in 
the simulations. In fact, in the modified rectangular lattice 
network (i.e. α = 1), the congestion phenomenon takes 
place for greater values of λ than those considered in the 
numerical simulation presented here. That is the modified 
rectangular lattice has a free flow region greater than that 
of the remaining networks considered. This desirable 
property is obtained at the price of a delivery time in the 
free flow regime approximately seven times greater than 
the delivery time of the other networks considered. Note 
that Figure 8 shows that the delivery time of the modified 
rectangular lattice network is constant in the interval of λ 
considered and is bigger than the biggest delivery time of 
the remaining α-networks. 

Table 3 shows that the exponent qα obtained from the 
least squares procedure takes substantially three different 
values: qα ≈ −0.5333 for α = 0, qα ≈ −0.6 for α = 0.2, 0.3, 
0.4 and qα ≈ −0.64 for α = 0.5, 0.6, 0.7, 0.9. These nu-
merical findings and Table 4 suggest that the exponent qα 
depends from the maximum value of the weighted be-
tweenness centrality, ,max , with respect to the node 
index v. It will be interesting to investigate more deeply 
the existence and eventually the meaning of this relation. 
We do not pursue this investigation in this paper.  

wb

)

Our analysis shows that when the load λ increases the 
traffic flow on the network first tries to continue to deliver 
all the packets increasing the delivery time of each packet 
and then starts to leave some packets undelivered. In fact 
Figure 8 shows that even when the increment of the mean 
travel time M (t  , α ∈ [0, 1) is relevant (see, for exam-
ple, the interval λ ∈ [150, 300]) the corresponding value 
of   atLN    , α ∈ [0, 1) is approximately zero. That 
is, for α ∈ [0, 1) the α-network starts to undeliver packets 
only when the mean travel time is becoming at least twice 
the (approximate) delivery time tα of the free flow regime. 
The behaviour of the modified rectangular lattice (α = 1) is 
different from the behaviour of the remaining networks. 
This is probably due to the fact that when we go from α ∈ 
[0, 1) to α = 1 the rich club vanishes. As a consequence for 
α = 1 the delivery time remains substantially unchanged 
even for large values of λ, but there is a significative 
quantity of undelivered packets. In fact, when α ∈ [0, 1), 
due to the choice of the routing strategy, the majority of  
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Figure 12. Relative least square error as a function of λα,min when α = 0 (a), α = 0.5 (b), α = 0.7 (c) and α = 1 (d). 
 

Table 3. Parameter calibration. 

α-network �
,min  MSe  qα ξα 

α = 0 80 0.0739 –0.5399 9.278 

α = 0.2 100 0.0601 –0.6097 19.679

α = 0.3 150 0.0402 –0.5929 18.579

α = 0.4 170 0.0452 –0.5919 18.267

α = 0.5 140 0.0479 –0.6501 25.83 

α = 0.6 130 0.0568 –0.6408 25.16 

α = 0.7 80 0.0399 –0.6330 23.16 

α = 0.9 80 0.0655 –0.6617 26.17 

 
Table 4. Relation between the exponent qα and the maximum 
weighted betweenness centrality  as a function of the 

node index v. 

w
a,b max

α-network qα max

w

a,b  

α = 0 –0.5399 0.4604 

α = 0.2 –0.6097 0.4571 

α = 0.3 –0.5929 0.4492 

α = 0.4 –0.5919 0.4349 

α = 0.5 –0.6501 0.3967 

α = 0.6 –0.6408 0.3438 

α = 0.7 –0.6330 0.2817 

α = 0.9 –0.6617 0.2494 

the packets go to their destination passing through the rich 
club. This is due to the high weighted betweenness cen- 
trality and to the high degree of the nodes of the rich club. 
When a group of packets go through nodes whose in-
coming branches have capacities insufficient to deliver 
them the delivery time increases due to the time spent by 
the packets waiting in the nodes queues. That is for α ∈ [0, 
1) only when the rich club becomes congested the packets 
start to be undelivered and the delivery time increases 
substantially (see Figure 8 α = 0, α = 0.9). When α = 1, 
that is in the modified rectangular lattice, the rich club 
does not exist anymore and the capacities of all the 
branches are equal. So that for λ sufficiently large in the 
modified rectangular lattice in every node there is a small 
congestion that produces a few undelivered packets and 
the number of these undelivered packets grows slowly. 
Table 5 proposes an analogy between the phase transition 
phenomenon in statistical mechanics and the congestion 
phenomenon studied here. This analogy summarizes some 
of the facts explained in this section. More general results 
about network analysis based on the analogies between 
network behaviour and statistical mechanics can be found 
in [16,17].  

We conclude this Section noting that Figures 6, 7, 8  
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Table 5. Analogies between the phase transition phenome-
non in statistical mechanics and the network traffic conges-
tion phenomenon. 

Statistical Mechanics Network flow behaviour 

T
 

emperature 

under suitable conditions (the 
temperature reaches 100˚C in the 
most common H2O phase  
transition) collective states of the 
gaseous phase (gaseous bubbles) 
ppear in the liquid phase  a  

 
in the gaseous phase the properties 
of the medium considered are 
different from those of the liquid 
phase 

m
 

ean load λ per time unit  

under suitable condition (load λ 
sufficiently large) the network goes
from a free flow regime (liquid 
phase) to a congested regime  
(gaseous phase) and some packets
begin to remain undelivered  
gaseous bubbles) (

 
in the congested regime the 
network behaviour is different from
the behaviour of the network in the
free flow regime. 

 
and Table 3 show that the curves  Mt

   as a function of 
λ for α ∈ (0.3, 0.7) are the smallest ones between those 
considered and that this is also true for the expected value 
of ( ) /LD   , that is for   a

LN   t . From these 
facts we can say that the choice of the parameter α in the 
interval (0.3, 0.7) defines a set of networks that is an in-
teresting compromise between Inet 3037 (α = 0) and the 
modified rectangular lattice network (α = 1). 

4. The Traffic Congestion Phenomenon in the 
Heterogeneous Traffic Case 

Let us study the congestion phenomenon in the hete- 
rogenous traffic case. As already mentioned in the Intro- 
duction we study on the networks considered previously 
the traffic of three different kinds of data packets. We 
consider three different traffic situations assigning diffe- 
rent values to the constants βj, j = 1, 2, 3, that defines the 
mean load βiλ of the packets of kind i, i = 1, 2, 3. That is 
we consider the following cases:  

Case (a): β1 = β2 = β3 = 1/3. This is a balanced load 
situation and generates a load per unit time having in 
average the same number of packets for the three kinds of 
packets; 

Case (b): β1 = 5/7, β2 = 1/7, β3 = 1/7. This is an un-
balanced load situation and generates a load per unit time 
having in average a large number of packets with highest 
priority (kind i = 1), the remaining two kinds of packets 
have in average a smaller number of packets and in par-
ticular since β2 = β3 they have the same number of pac- 
kets; 

Case (c): β1 = 1/6, β2 = 2/6, β3 = 3/6. This is the most 
common load situation, that is the situation where the num- 
ber of packets per unit time with the highest priority (kind 
i = 1) is (in average) smaller than the number of packets 
per unit time of intermediate priority (kind i = 2) and this 
last number is (in average) smaller than the number of 
packets per unit time with lowest priority (kind i = 3). 

The simulation procedure in the heterogeneous traffic 
case is similar to the simulation procedure in the homo- 

geneous traffic case described in Section 3 except for Step 
4, packet generation, and Step 6, queue management, that 
must be adapted to the new situation. 

The simulation procedure in the heterogeneous traffic 
case can be summarized in the following steps:  

1) The same as Step 1 of the analogous procedure of 
Section 3;  

2) The same as Step 2 of the analogous procedure of 
Section 3;  

3) The same as Step 3 of the analogous procedure of 
Section 3;  

4) Packets generation: given βj ≥ 0, j = 1, 2, 3, such that  
3

1

1j
j




  in each time unit of the simulation the number  

of kind i packets generated is sampled from a Poisson 
random variable with parameter βiλ, i = 1, 2, 3, where λ is 
a positive parameter. The values of λ considered in the 
simulations are 201 values equispaced in the interval [2, 
3600], that is we choose λ = λk = 2 + (3600−2)k/200, k = 0, 
1, ···, 200. To each packet generated is assigned a couple 
of nodes. This couple of nodes is sampled from a random 
variable uniformly distributed on the set of the couples (s, 
d) such that s ≠ d, s, d = 1, 2, ···, 3037. The packet asso-
ciated to a couple of nodes originates in the first element 
of the couple and has destination in the the second element 
of the couple. The packets of kind i have priority pi, i = 1, 
2, 3. In the numerical simulations we choose: p1 = 3, p2 = 
2, p3 = 1;  

5) Routing strategy: the same as in Step 5 of the analo-
gous procedure of Section 3;  

6) Queue management: every node has a queue for each 
branch (of positive capacity) leaving the node that we 
assume potentially unbounded. When a packet arrives or 
is generated at a node, it is placed in the appropriate queue 
of the node to be delivered toward its destination along its 
route. The queue management rule consists in the choice 
of moving first the packet having the largest product 
waiting time at the node times priority factor. When two 
or more packets have the largest product waiting time at 
the node times priority factor we deliver first the packet 
that has been generated earlier. If at a node two or more 
packets having the largest waiting time times priority fac- 
tor have been generated at the same time we choose ran-
domly between them the packet to move first. When two 
or more packets present at a node must continue their 
route along the same branch and there is sufficient ca- 
pacity available on the branch the packets go in the same 
time unit through the branch;  

7) Packets movement: the same as in Step 7 of the ana- 
logous procedure of Section 3.  

Let 
i iM M ( )t t  ,

i iL L ( )N N  , λ > 0, α ∈ [0, 1], i = 1, 
2, 3, be the functions defined in the Introduction. To study 
the congestion phenomenon in the heterogeneous traffic 
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case we must generalize Criterion 1 and 2 used in Section 
3 in the homogeneous traffic case to study criticality. This 
is done as follows: 

1 2 3 1 2 3
( ) ( ) ( ), ( ) ( ) ( ),L L L M M MN N N t t t               

 0,  0,  1a                (13) 
Criterion 3: Given an α-network and the constants βj ≥  

That is, in Case (a) and Case (c), by virtue of (13) we 
have 1 2 3    

,

0, j = 1, 2, 3, such that 
3

1

1j
j




 , for i = 1, 2, 3, we say   . However in Case (b) the behaviour of 
the quantities 

i iL MN t   as a function of λ, i = 1, 2, 3, is not 
that simple and depends on the network considered, that is 
it depends on α, α ∈ [0, 1]. Let us be more specific.  

that *
i  is the critical value of the load parameter λ for the 

α-network and the kind i data packets when *
i  is the 

smallest value of λ such that the derivative with respect to 
λ of ( )

iLN   measured using λ as unit, that is the quantity 
 d (

iL


Figures 13, 16, 19 show the quantities 
( ) / ,

i iL MN t t t      , i = 1, 2, 3, as a function of the 
parameter λ when the network studied is Inet 3037 (α = 0) 
in the load situation described by Case (a), Case (b) and 
Case (c) respectively.  

) d1 N   , is greater than a given positive con- 
stant γ.  

Criterion 4： Given an α-network and the constants βj ≥  
Figures 14, 17, 20 show the quantities 

iL ( ) /N t    , 

iM
0, j = 1, 2, 3, such that 

3

1

1j
j




 , for i = 1, 2, 3, we say  t t  , i = 1, 2, 3, as a function of the parameter λ when 
the network studied is the α = 0.5-network in the load 
situation described by Case (a), Case (b) and Case (c) 
respectively.  

that *
i  is the critical value of the load parameter λ for the 

α-network and the kind i data packets when *
i  is the 

smallest value of λ such that the derivative with respect to 
λ of the mean travel time measured using tα as unit, that is 
the quantity (1/ )d ( ) / d

iMt t    , is greater than a given 
positive constant γ.  

Figures 15, 18, 21 show the quantities  
iL

aN t   , 

iMt t  , i = 1, 2, 3, as a function of the parameter λ when 
the network studied is the α = 0.9999-network in the load 
situation described by Case (a), Case (b) and Case (c) 
respectively.  The value assigned to the constant γ in the numerical 

simulations will be specified later.  Looking at Figures 13-21 we can see that, in Case (a) 
and Case (c), the kind 1 packets behave approximately 
like the other kinds of packets and the inequalities (13) are 
satisfied. We note that when we consider Inet 3037 (α = 0) 
and the α = 0.5-network the kind 1 packets reach the  

The numerical simulation shows that in Case (a) and 
Case (c) the curves that represent the quantities 

iLN  and 

iMt
  as a function λ, i = 1, 2, 3 do not intersect. In fact we 

have:  
 

 

Figure 13. The quantities   a
LiN t    and  a

Mit  at  as a function of λ, i = 1, 2, 3, when α = 0 and β1 = β2 = β3 = 1/3. 
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Figure 14. The quantities   a
LiN t    and  a

Mit  at  as a function of λ, i = 1, 2, 3, when α = 0.5 and β1 = β2 = β3 = 1/3. 

 

α = 0.9999 

 

Figure 15. The quantities   a
LiN t   , and  a

Mit  at  as a function of λ, i = 1, 2, 3, when α = 0.9999 and β1 = β2 = β3 = 1/3. 
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Figure 16. The quantities   a
LiN t   , and  a

Mit  at  as a function of λ, i = 1, 2, 3, when α = 0 and β1 = 5/7, β2 = β3 = 1/7. 

 

 

Figure 17. The quantities   a
LiN t   , and  a

Mit  at  as a function of λ, i = 1, 2, 3, when α = 0.5 and β1 = 5/7, β2 = β3 = 1/7. 
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Figure 18. The quantities   a
LiN t   , and  a

Mit  at  as a function of λ, i = 1, 2, 3, when α = 0.9999 and β1 = 5/7, β2 = β3 = 

1/7. 
 

 

Figure 19. The quantities   a
LiN t   , and  a

Mit  at  as a function of λ, i = 1, 2, 3, when α = 0 and β1 = 1/6, β2 = 2/6, β3 = 

3/6. 
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Figure 20. The quantities   a
LiN t   , and  a

Mit  at  as a function of λ, i = 1, 2, 3, when α = 0.5 and β1 = 1/6, β2 = 2/6, β3 

= 3/6. 
 

 

Figure 21. The quantities   a
LiN t   , and  a

Mit  at  as a function of λ, i = 1, 2, 3, when α = 0.9999 and β1 = 1/6, β2 = 2/6, 

β3 = 3/6. 
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criticality after the other kinds of packets in all Cases (a), 
(b), (c) when we apply Criterion 4. However when we use 
Criterion 3 and we consider Case (b) the kind 1 packets 
reach criticality before the remaining kinds of packets. 

The traffic on the α = 0.9999-network is substantially 
different. In particular it seems that, in the balanced load 
condition (Case (a)) and in the usual load condition (Case 
(c)) the kind 1 packets behave as the remaining kinds of 
packets. That is, in the α = 0.9999-network the priorities 
assigned to the different kinds of packets seem to have a 
small effect. In fact when α = 0.9999 if we compare the 
values assumed by   a

LN   t  in the homogenous 
traffic case to the values assumed by  

iL
aN t    in 

the heterogeneous traffic case for kind i packets, i = 1, 2, 3, 
we can see that they are approximately the same (see 
Figures 15, 18 and 21). Moreover, in the unbalanced load 
condition described by Case (b) we observe that the 
number of undelivered kind 1 packets is greater than the 
number of undelivered packets of kind 1 and 2. The fact 
that the effect of the priorities on the traffic of the α = 
0.9999-network in term of the delivery of the packets is 
almost negligible can be attributed to the following facts: 
the absence of a rich club and the fact that the capacities of 
all the branches are equal. Note that these two facts are 
true only for the α = 1-network (modified rectangular 
lattice) and that they are only approximately true for the α 
= 0.9999-network. In fact, on the α = 0.9999-network 
most of the shortest weighted paths do not go through the 
rich club, that is the packets move between nodes fol-
lowing their routes and they are not attracted by the nodes 
of the rich club where the priority plays a fundamental 
role in the queue management. The effect of the priorities 
in a lattice-like network (α = 0.9999, α = 1) is significant 
only for larger values of the parameter λ (see Table 7). In 
the free flow regime the traffic behavior on the α = 
0.9999-network is very similar for the three different 
kinds of packets and the travel times of the three kinds of 
packets remain substantially the same as the travel time 
observed in the free flow regime for the homogeneous 
traffic case.  

Let us consider the traffic behaviour on Inet 3037 and 
on the α = 0.5-network. We can see that, in the Case (a) 
load situation it is difficult to establish which one of the 
networks has the best performance. In fact both Inet 3037 
and the α = 0.5-network in the region of λ explored are 
well performing networks for packets of kind 1 and 2 
while they penalize the packets of kind 3.  

Moreover, looking at Inet 3037, the packets of kind 1 
and 2 have mean travel times that are at most 3 times the 
mean travel time of the free flow regime, while the mean 
travel time of the kind 3 packets is up to six times the 
mean travel time of the free flow regime.  

Figures 13-21 show that going from the α = 0 to the α = 
0.9999-network the role played by the priorities decreases. 

In fact in all the situations considered when α = 0 the 
curves corresponding to the three kinds of packets are well 
separated (i.e. the priorities are working), when α = 0.5 
only the curve of the kind 3 packets is well separated from 
the remaining ones (i.e. the priorities of the first two kinds 
of packets reduce their role) and when α = 0.9999, as 
already mentioned, there is no substantial difference in the 
three curves except for the Case (b) load situation.  

Let us look more closely to the Case (b) load situation 
and let us try to establish an analogy between the traffic 
associated to Case (b) and the so called thermodynamical 
triple point.  

In thermodynamics, the triple point of a substance is the 
temperature and the pressure such that three phases (for 
example, gaseous, liquid, and solid phase) of the sub-
stance coexist in thermodynamic equilibrium. For exam-
ple let us consider H2O (see [18]) as the substance, the 
combination of pressure and temperature such that water, 
ice, and water vapor can coexist in a stable equilibrium 
occurs at a temperature of 273.16 K and a vapor pressure 
of 611.73 Pascals. In that circumstance, it is possible to 
change all the water present in the experiment in one of 
the three phases ice, water, and water vapor by making 
arbitrarily small changes in pressure and temperature.  

In our context the three kinds of packets play the role of 
the three phases. For example, we can image the kind 1 
packets as the gaseous phase due to their greater possi-
bility of moving in the network because of their highest 
priority, the kind 2 packets as the liquid phase due to their 
intermediate possibility of moving in the network and, 
finally, the kind 3 packets as the solid phase since these 
packets are those whose movement in the network is less 
easy. The role of the temperature is played by the pa-
rameter λ and the role of the pressure is played by the 
parameter α. Given the choice of the parameters βj, j = 1, 2, 
3, the curves * ( )i   , α ∈ [0, 1], i = 1, 2, 3, deter-
mine the critical temperatures that separate the phases one 
from the others as a function of the pressure (i.e. the value 
of α). In practice for each kind of packets the curve 

* ( )i   , α ∈ [0, 1] represents the curve such that 
below it we have the free regime and above it we have the 
congested regime, i = 1, 2, 3.  

However under suitable “pressure and temperature 
conditions” (i.e. a suitable choice of �   and �  ) 
we can observe that all the phases coexist, i.e. we have: 
� � �   �

1 2 3( ) ( )          .  
Given the load condition (that is given βi, i = 1, 2, 3) the 

knowledge of the “triple point temperature and pressure” 
� ,   is interesting, in fact the knowledge of this “triple 

point temperature and pressure” makes possible to design 
slightly modified networks that at that “temperature” 
operate with the three kinds of packets at the same time in 
a traffic condition in the free flow regime just below the 
transition to a congested regime. In this condition the  



A. FARINA  ET  AL. 179

Table 6. Critical value of λ obtained applying Criterion 3 
with γ = 0.001 for several values of parameter α ∈ [0, 1] and 
for each data packet kind ( *

1  kind 1, *
2  kind 2, *

3  kind 

3). 

Criterion 3 - γ = 0.001 

Case (a): β1 = 1/3, β2 = 1/3, β3 = 1/3 

α-network 1
  2

  3
  

0 220 60 40 

0.5 800 560 180 

0.7 440 380 120 

0.9999 20 20 20 

Case (b): β1 = 5/7, β2 = 2/7, β3 = 1/7 

0 40 40 40 

0.5 560 180 140 

0.7 440 200 120 

0.9999 20 20 20 

Case (c): β1 = 1/6, β2 = 2/6, β3 = 3/6 

0 800 120 40 

0.5 800 760 200 

0.7 700 440 180 

0.9999 20 20 20 

 
Table 7. Critical value of λ/  obtained applying Criterion 

4 with γ = 0.5 for several values of parameter α ∈ [0, 1] and 
for each data packet kind (

a
Mt

a
Mt

*
1  kind 1, a

Mt
*
2  kind 2, 

a
Mt

*
3  kind 3). 

Criterion 4 - γ = 0.5 

Case (a): β1 = 1/3, β2 = 1/3, β3 = 1/3 

α-network 1

at  2

at  3

at  

0 10.78 7.19 7.19 

0.5 26.21 26.21 26.21 

0.7 27.07 27.07 27.07 

0.9999 48.75 44.11 25.53 

Case (b): β1 = 5/7, β2 = 2/7, β3 = 1/7 

0 9.85 6.56 3.28 

0.5 28.30 21.23 21.23 

0.7 25.70 25.70 25.70 

0.9999 38.69 26.60 16.93 

Case (c): β1 = 1/6, β2 = 2/6, β3 = 3/6 

0 10.69 7.13 7.13 

0.5 26.28 26.28 26.28 

0.7 27.41 27.41 27.41 

0.9999 48.45 46.14 29.99 

network is fully exploited.  
Table 6 shows the critical values i

  of λ, i = 1, 2, 3, 
as a function of the parameter α when we use Criterion 3 
with γ = 0.001 for the three choices of the parameters βi, i 
= 1, 2, 3, considered (Case (a), (b), (c)). Table 7 shows 
the critical values i

  of λ, i = 1, 2, 3, divided by the 
mean travel time as a function of the parameter α when we 
use Criterion 4 with γ = 0.5 for the three choices of the 
parameters βi, i = 1, 2, 3, considered (Case (a), (b), (c)). 
The behaviour of the critical values ( )i i    , α ∈ [0, 
1], i = 1, 2, 3, shown in Tables 6 and 7 confirms the con-
clusions reached discussing Figures 13-21. 

Figure 22 shows the critical values i
  of λ, i = 1, 2, 3, 

divided by the mean travel time as a function of the pa-
rameter α when we use Criterion 4 with the threshold γ 
equal to 0.4. We note that the three curves * ( )i  , α ∈ [0, 
1], i = 1, 2, 3, shown in Figure 22 delimit a bounded 
polygonal region. This situation is somehow similar to the 
thermodynamical triple point phenomenon. Note that in 
the thermodynamical triple point phenomenon the po-
lygonal region delimited reduces to a point.  

We conclude this section with a numerical experiment 
analogous to an experiment proposed in Section 3. Let us 
consider the function ( ) ( )

iMiz t t    , λ > 0, i = 1, 2, 3. 
Let us assume that ( )iz  , i = 1, 2, 3, as a function of λ 
behaves as follows:  

,
, ,min , ,max,

, ,min

,
( )

1

iq
i ii

i

i

z


 



   


 

      


, i = 1, 2, 3, (14) 

where ξi,α is a positive constant, qi,α is a negative exponent, 
λi,α,min, λi,α,max are, respectively, the lower and upper 
bounds of the interval where for the kind i packets the 
transition from a free flow regime to a congested regime 
takes place, i = 1, 2, 3.  

Equation (14) can be justified reasoning as done in 
Section 3 to justify Equation (12). For i = 1, 2, 3 we 
choose λi,α,max = 800 and we calibrate the parameters qi,α, 
ξi,α, λi,α,min appearing in formula (14) starting from the 
simulation data relative to the function ( )iz   using a 
least squares procedure.  

Tables 8 and 9 show some of the results obtained. In 
particular Table 9 shows that the exponents qi,α, i = 1, 2, 3, 
seem to be independent of the data packet kind and, de-
pend substantially only on the network topology. On the 
contrary the values of the parameters λi,α,min, i = 1, 2, 3, in 
Table 8 seems to be dependent on the data packet kind 
and on the choice of the values of the constants βj, j = 1, 2, 
3. We can conclude that the network topology and the load 
condition (given by the choice of the values of the quan-
tities βj, j = 1, 2, 3) play an important role in the traffic 
congestion phenomenon in the heterogeneous traffic case. 

5. Conclusions 

In this paper a study of the congestion phenomenon for  
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Table 8. Calibration of the parameters λi,α,min, i = 1, 2, 3. Table 9. Calibration of the parameters qi,α, i = 1, 2, 3. 

Case (a) β1 = 1/3, β2 = 1/3, β3 = 1/3 

α network λ1,α,min λ2,α,min λ3,α,min 

α = 0 220 200 210 

α = 0.5 220 220 220 

α = 0.9 180 180 200 

Case (b) β1 = 5/7, β2 = 1/7, β3 = 1/7 

α-network λ1,α,min λ2,α,min λ3,α,min 

α = 0 130 80 110 

α = 0.5 160 150 160 

α = 0.9 150 100 120 

Case (c) β1 = 1/6, β2 = 2/6, β3 = 3/6 

α-network λ1,α,min λ2,α,min λ3,α,min 

α = 0 300 200 150 

α = 0.5 400 200 150 

α = 0.9 200 150 200 

Case (a) β1 = 1/3, β2 = 1/3, β3 = 1/3 

α-network q1,α q2,α q3,α 

α = 0 –0.25 –0.25 –0.25 

α = 0.5 –0.17 –0.14 –0.15 

α = 0.9 –0.08 –0.07 –0.08 

Case (b) β1 = 5/7, β2 = 1/7, β3 = 1/7 

α-network q1,α q2,α q3,α 

α = 0 –0.22 –0.20 –0.22 

α = 0.5 –0.13 –0.14 –0.14 

α = 0.9 –0.08 –0.08 –0.09 

Case (c) β1 = 1/6, β2 = 2/6, β3 = 3/6 

α-network q1,α q2,α q3,α 

α = 0 –0.16 –0.18 –0.23 

α = 0.5 –0.08 –0.12 –0.13 

α = 0.9 –0.07 –0.06 –0.06 

  

 

Figure 22. The quantities λi
*(α)/tα as a function of the parameter α, i = 1, 2, 3, according to Criterion 4 (Case (b): β1 = 5/7, β2 = 

1/7, β3 = 1/7). 
 
homogeneous and heterogeneous traffic of data packets in 
complex transmission networks is presented. We consider 
a class of complex networks that we call α-networks, that 
consists of networks whose topology is obtained by an 
“interpolation” between the topology of a network having 
the small world property (i.e.: α = 0) and the topology of a 
(modified) lattice network (i.e.: α = 1) changing the ca-

pacities of the branches. We assume that there are three 
kind of packets flowing on the α-networks and for i = 1, 2, 
3 we find a load critical value ( )i   corresponding to 
packets of kind i. The study of the load critical value 

( )i   , α ∈ [0, 1], shows that there exist intermedi-
ate network topologies corresponding to suitable choice of 
the parameters i  , 0 < i

  < 1, i = 1, 2, 3, that are 
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reasonable compromises from the data packets traffic 
properties point of view between the network having the 
small world property (i.e. Inet 3037 in our study) and the 
modified lattice network (i.e. the modified rectangular 
lattice in our study). In particular for i = 1, 2, 3 the to-
pology corresponding to i   can be characterized as 
the topology with the greatest mean load critical value for 
packets of kind i when we require the mean travel time of 
the packets of kind i to be smaller than a given quantity. In 
fact, a well behaved network should guarantee a traffic 
flow characterized by a reasonably small mean travel time 
and by a region of free traffic flow as big as possible. 
Hence for i = 1, 2, 3 the network corresponding to the 
choice i  , for the kind i packets, absorbs a traffic 
load greater than the traffic load absorbed by a network 
having the small world property (i.e.: α = 0) before be-
coming congested and delivers the packets travelling on 
the network to their destination in a mean travel time 
smaller than the mean travel time observed on the corre-
sponding lattice network (i.e.: α = 1) that handles the same 
load (see Figures 6-8 and Figures 13-21 where we con-
sider α = 0, 0.5, 0.9999). We call these networks 

i
 -networks, i = 1, 2, 3.  
Moreover the analysis presented in this paper shows, in 

the heterogeneous traffic case, an interesting relation 
between the balance of the load between the different 
kinds of packets and the critical load values. When the 
quantities βj, j = 1, 2, 3, are such that β1 < β2 < β3 we have 

1 2 3( ) ( )( )    
i

  

( )
, α ∈ [0, 1], that is the critical 

values     as a function of α ∈ [0, 1], i = 1, 2, 3, 
are three curves that do not intersect each other in the (α, λ) 
plane. These inequalities between critical values corre-
spond to the fact that when the load increases, that is when 
λ increases, for α ∈ [0, 1] the traffic with lowest priority 
gets congested first, followed by the traffic of intermedi-
ate priority and finally by the traffic of highest priority. 
This is the most usual traffic condition on real networks. 
However when the choice of the quantities βj, j = 1, 2, 3, 
does not satisfy the inequalities β1 < β2 < β3, and in par-
ticular when we have β2 ≤ β3 < β1 the three curves that 
represent the critical values ( )i  

( )



( )

, α ∈ [0, 1], i = 1, 
2, 3, in the (α, λ) plane may have intersections in fact the 
inequalities 1 2 3( )         may not hold eve-
rywhere for α ∈ [0, 1]. This is an anomalous traffic con-
dition for the network. Some analogies inspired by this 
last fact between the congestion phenomenon of data 
packet traffic on networks and the phase transition phe-
nomenon studied in statistical mechanics have been dis-
cussed. 
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