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Abstract: A brief historical narrative of the study of grating solitons in fiber Bragg grating is presented from 
the late 1970’s up to now. The formation of photogeneration gratings in optical fiber by sustained exposure of 
the core to the interference pattern produced by oppositely propagating modes of argon-ion laser radiation 
was first reported in 1978. One important nonlinear application of fiber Bragg grating is grating solitons, in-
cluding gap soliton and Bragg soliton. This paper summarily introduces the numerous theoretical and experi-
mental results on this field, each indicating the potential these solitons have in all-optical switching, pulse 
compression, limiting, and logic operations, and especially important for the optical communication systems. 
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1. Introduction 

After the invention of the laser, there has been much in-
terest in propagating nonlinear pulses through the peri-
odic medium such as a fiber Bragg grating (FBG), which 
is a periodic variation of the refractive index of the fiber 
core along the length of the fiber. Since the tirst demon-
stration of photo-induced optical fiber Bragg gratings by 
Hill and coworkers in 1978 [1], significant progress was 
made in the fabrication technology of fiber Bragg reflec-
tors [2–5]. The concept of “photonic band structure” is 
introduced by Yablonovitch in the late 1980’s [6]. A no-
table feature of this linear periodic structure is the pres-
ence of stop gap in the dispersion curve popularly known 
as photonic band gap (PBG) [7,8]. This PBG exists at 
frequencies for which the medium turns highly reflective 
and hence the light pulse will not be able to propagate 
through the periodic structure. Light interaction with 
nonlinear periodic media yields a diversity of fascinating 
phenomena, among which two solitonic phenomena have 
been studied most intensively, namely, discrete (or lattice) 
solitons [9–11] and gap (or Bragg) solitons [12–17]. 
While discrete solitons are spatial phenomena in two- 
dimensional or three-dimensional arrays of coupled 
waveguides, gap solitons are usually considered as a 
temporal phenomenon in one-dimensional (1D) periodic 
media [18–20]. Perhaps the most fascinating feature of 
solitons is their particle like behavior. Survival of two 
such colliding solitons is even more remarkable if one 
notes that solitons interact strongly with each other dur-

ing the collision. But for copropagating solitons, the in-
teraction is either attractive or repulsive, depending on 
the relative phase between two solitons. In both cases the 
evolution of the soliton pair is well understood [21–24]. 

As first pointed out by Winful [25], because the dis-
persion is many orders of magnitude larger than the total 
dispersion due to the combined effects of material and 
waveguide dispersions that arise in the conventional fi-
bers, the interactions lengths are reduced accordingly. 
Hence, the grating induced dispersion dominates over the 
total dispersion in the conventional fibers. When the en-
tire spectral components of the input pulse lie within the 
PBG structure, the grating induced dispersion counter-
balanced by the Kerr nonlinearity through the self-phase 
modulation (SPM) and cross-phase modulation (XPM) 
effects, forming solitons are referred to as gap solitons 
since their spectral components are within the PBG 
structure. Many research groups [3–10] theoretically 
predicted the existence of gap solitons and Bragg grating 
solitons in FBG and the investigations on these exciting 
entities are going on. However, it can be noticed that, in 
literatures, nowadays the distinction between gap soli-
tons and Bragg solitons is hardly maintained and, in 
general, they are simply called grating solitons [26]. Ul 
[25], because the dispersion is many orders of magnitude 
larger than the total dispersion due to the combined ef-
fects of material and waveguide dispersions that arise in 
the conventional fibers, the interactions lengths are re-
duced accordingly. Hence, the grating induced dispersion 
dominates over the total dispersion in the conventional 
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fibers. When the entire spectral components of the input 
pulse lie within the PBG structure, the grating induced 
dispersion counterbalanced by the Kerr nonlinearity 
through the self-phase modulation (SPM) and cross- 
phase modulation (XPM) effects, forming solitons are 
referred to as gap solitons since their spectral compo-
nents are within the PBG structure. Many research 
groups [3–10] theoretically predicted the existence of 
gap solitons and Bragg grating solitons in FBG and the 
investigations on these exciting entities are going on. 
However, it can be noticed that, in literatures, nowadays 
the distinction between gap solitons and Bragg solitons is 
hardly maintained and, in general, they are simply called 
grating solitons [26]. 

2. Theory 

The usual quantitative description of grating solitons 
employs coupled-mode theory, leading to the nonlinear 
coupled-mode equations. In addition, in the appropriate 
limit, the envelope of the electric field satisfies the 
nonlinear Schrödinger (NLS) equation. The pulse propa-
gation through the FBG is described by the nonlin-
ear-coupled mode (NLCM) equations which are nonin-
tegrable in general. Therefore, the analytical solutions of 
the NLCM equations are not solitons but solitary waves 
that can propagate through FBG without changing their 
shape. These are obtained from the approximated non- 
linear Schrödinger (NLS) equation that results from re-
ducing the NLCM equations using the multiple scale 
analysis. The relation between the NLSE and the more 
general CME description, which was discussed earlier 
[28], is important. Gap solitons are obtained from the 
NLCM equations and their spectra lie within the pho- 
tonic bandgap structure. There is another class of solitons 
called Bragg solitons obtained from the NLS equations 
whose frequencies fall close to, but outside, the band 
edge of the photonic bandgap. Generally speaking, the 
gap solitons are the special class of Bragg solitons.  

For the first time, Chen and Mills [12] have analyzed 
the properties of these gap solitons in nonlinear periodic 
structure. Thereafter, Sipe and Winful published analyses 
showing that these “gap-solitons” are not only funda-
mental solutions in the weak-field regime but could be 
detected as propagating solutions in structures of finite 
length [14]. The general gap soliton solutions to the cou-
pled mode equations were first obtained in a limiting 
case by Christodoulides and Joseph [16]. The solutions 
were first reported in their most general form by Aceves 
and Wabnitz [17]. Aceves and Wabnitz appoint parame-
ters to form gap solitons in fiber Bragg grating, and the 
unique dispersion relation of the fiber grating, and the 
corresponding solitons, allows in theory all velocities 
from zero to the speed of light in the bare fiber. Their 
starting point is the massive Thirring model(MTM), and 
quantitative description of gap solitons employs cou-

pled-mode theory, leading to the nonlinear coupled-mode 
equations [16,17]. At same time, Sipe and de Sterke ex-
amined, in further publications [27–29], the pulse trans-
mission behavior as a function of both pulse energy and 
detuning from the Bragg resonance. Among the contribu-
tions of de Sterke, Sipe and others was a rigorous devel-
opment of coupled-wave and multiple-scales approxima-
tions as well as the description of numerical methods [30] 
suitable for examining the regimes of instability of these 
structures. In a word, Sipe and Winful [14], Christo-
doulides and Joseph [16], Aceves and Wabnitz [17], and 
Winful et al. [31] have obtained the analytical solutions 
for the grating solitons. These solitons in FBGs have 
been extensively reviewed in [19,32]. Comprehensive 
analyses of Bragg solitons stability have also been re-
ported [33,34]. Still other generalizations have been dis-
cussed by Feng and Kneubuhl [35] and by Feng [36]. In 
order to better simulate experimental conditions, Brod-
erick, de Sterke and Jackson presented a method of nu-
merically modeling periodic structures having optical 
nonlinearities [37]. Other important extensions and gen-
eralizations include a series of papers by Aceves and 
coworkers extending many of these principles to wave- 
guide arrays [38]. 

Inverse scattering transform (IST) is currently the 
standard analytical technique for obtaining the soliton 
solution for the homogenous NLSE [39,40]. IST has 
been used to solve the two-dimensional space-time 
NLSE with initial-boundary conditions and coupled 
NLSE in the form of fundamental and higher-order soli-
tons [39]. To our knowledge, no other analytical method 
has been published besides the IST for solving the NLSE 
systems. Another method can be described as effective 
particle pictures EPP’s, since they represent the continu-
ous field distribution as a point particle with a limited 
number of degrees of freedom. The key difference be-
tween the NLSE and NLCME’s is that the NLSE is inte-
grable, whereas NLCME’s are not [37], hence that an 
EPP would be more accurate in that case [42–46]. How-
ever, previously, gap soliton propagation in the presence 
of uniform gain and loss was succesfully treated using an 
EPP [43,47] method, which was also used by Capobi-
anco et al. to treat propagation between two quadratically 
nonlinear materials [48]. One method to analyze deep 
gratings is using Bloch wave solutions as the fundamen-
tal waves. Actually the modulation of a single Bloch 
wave is known to obey the nonlinear Schrödinger equa-
tion in Kerr optical media [13,49,50], and its fundamen-
tal soliton corresponds to gap solitons in this geometry. 
Note that the Bloch function formalism has the feature 
that the linear system needs to be solved first, and the 
nonlinearity is then considered as a perturbation which 
can be treated in a variety of approximations. A different 
formalism developed for linear gratings only to treat 
deep gratings was reported by Sipe et al. [51]. The linear 
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properties are therefore not obtained exactly, but in terms 
of an asymptotic series, only a few terms of which are 
retained. Nonetheless, the method leads naturally to 
low-order corrections to the coupled mode equations for 
shallow gratings. Then, one may expect that the model 
may give rise to two qualitatively different families of 
gap solitons: low-frequency ones, in which the 
self-focusing (cubic) nonlinearity is balanced by the dis-
persion branch with a sign corresponding to anomalous 
dispersion, and high-power solitons, supported by the 
balance between self- defocusing (quintic) nonlinearity 
and the normal branch of the dispersion. The simplest 
model of this type may be based on the cubic-quintic 
(CQ) nonlinearity that has recently attracted considerable 
attention, as the combination of the SF cubic and SDF 
quintic terms prevents collapse and makes it possible to 
anticipate the existence of stable solitons [52–60]. Atai 
and Malomed introduced the quintic nonlinearity into the 
NLCM equations and investigated two different families 
of zero-velocity solitons. One family was the usual 
Bragg grating solitons supported by the cubic nonlinear-
ity. The other family was named as twotier solitons sup-
ported by the quintic nonlinearity [26]. In fact, in the 
cubic model, the final soliton retains only 11.6% of the 
initial energy, while the energy-retention share in the 
cubic-quintic model is 92.4% [59]. 

3. Experimentation and Applications 

Recently conducted experiments have provided strong 
evidence for the existence of the grating solitons in FBGs 
[61–66]. To our knowledge, it was Larochelle, Hihino, 
Mizrahi and Stegeman [67] who were the first to report 
(in 1990) an experimental investigation of the optical 
response of nonlinear periodic structures. They employed 
an optical Kerr-effect cross-phase modulation in fiber 
gratings to achieve switching of a probe beam by a con-
trol beam.The first detailed experimental observation of 
all-optical switching dynamics in a nonlinear periodic 
structure was reported by Sankey, Prelewitz and Brown 
in 1992 [68]. Experimental observations of nonlinear 
grating behaviour are limited, principally by the diffi-
culty in getting sufficiently high power densities within 
the core of a FBG in a suitable spectral and temporal 
range. In order to reduce the nonlinear threshold for gap 
soliton formation one can use the somewhat weaker dis-
persive properties of FBGs outside of the band gap. An 
investigation of nonlinear pulse propagation in uniform 
fiber gratings was published by Eggleton et al. in 1996 
[61].In this report, the Bragg solitons are most easily 
generated in the laboratory travel at 60–80% of veocity 
of light in fiber absence of grating [61,64]. This was fol-
lowed by further reports from the same group, which 
both refined the experimental technique and broadened 
the experimental understanding of the dynamics of pulse 

propagation in periodic structures [65]. In their initial 
experimental observations of Bragg solitons [61,62,64], 
the agreement between the experiments and the numeri-
cal calculations was qualitative. However, stationary (or 
nearly stationary) gap solitons have not been observed 
yet. Subsequently, the Southhampton group [69] first 
demonstrated switching at the important optical commu-
nication wavelength of 1550 nm, and in doing so have 
confirmed certain key aspects of the physics of pulse 
propagation in nonlinear periodic structures. We now 
understand that a Bragg soliton need not be centered near 
the Bragg resonance--indeed, some very interesting 
propagation effects occur rather far from the band edge. 
Experimental studies of BG solitons were further devel-
oped including, in particular, formation of multiple BG 
solitons inRefs [42]. Broderick et al. also report the first 
experimental demonstration of a novel type of all-optical 
pulse compression [71]. It is significant experimentation 
that Taverner et al. [42,70] reported the first observation 
of gap soliton generation in a Bragg grating at frequen-
cies within the photonic bandgap. Furthermore the sets of 
experiments were performed in relatively short gratings. 
Thus, in these experiments, pure soliton propagation ef-
fects are difficult to distinguish from effects due to soli-
ton formation. The occurrence of modulational instability 
(MI) in fibers had been first suggested by Hasegawa and 
Brickman [72] and experimentally verified by Tai et al. 
[73]. The effects of MI which occurs when a perturbed 
continuous wave experiences an instability that leads to 
an exponential growth of its amplitude or phase during 
the course of propagation in optical fibers due to an in-
terplay between the nonlinearity and group velocity dis-
persion (GVD) act in opposition. THE studies on modu-
lational instability (MI) have some impacts on solitons 
[8,74,75].  

The researchers recently have realized the potential 
applications of these solitons in fiber Bragg grating for 
all-optical switching [67,76,77], pulse compression 
[69,71,78], limiting [80], and logic operations [81,84], 
also promising for the fiber-sensing technology [79], 
especially important for the optical communication sys-
tems [78,82]. One would hope to achieve zero velocity 
by a clever tailoring of the Bragg grating. This research 
goes beyond its intellectual value; all optical buffers and 
storing devices can be based on such fibers. About logic 
operations, for the first time to our knowledge, an all- 
optical ‘AND’ gate based on a configuration proposed by 
S. Lee and S.T. Ho [84]. The operation of the gate relies 
on the formation and propagation of coupled gap solitons 
by two orthogonally polarised high intensity input beams 
incident within the bandgap of a FBG [81]. Recently 
Nuran Dogru was pursueing for the hybrid soliton pulse 
source (HSPS) developed as a pulse source for the soli-
ton transmission system [88–92]. In a Bragg grating 
SPM results in the transmission being bistable with one 
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state (high power) having a transmission of unity while 
in the other (low power) the transmission is vanishingly 
small [31]. For strong optical pulses this behavior can 
result in all-optical switching. The all- optical switching 
of a fiber Bragg grating (FBG) was first seen by La-
Rochelle et al. in 1990 [67] using a self-written grating 
centered at 514 nm. In their experiment the probe beam 
was centered on the grating, while the pump beam had a 
wavelength of 1064 nm. It was in this vein that Radic, 
George and Agrawal suggested the use of l/4 phase- 
shifted gratings for use in optical switching [77]. Ju Han 
Lee [85–87] demonstrate the use of a superstructured 
fiber Bragg grating obtain more optimal operation of 
nonlinear all-optical switches [85], all-optical modula-
tion and demultiplexing systems [86], tunable optical 
pulse source [87]. In long distance communications, that 
a third-order nonlinear effect is together with anomalous 
dispersion, can result in the formation of bright temporal 
optical solitons. Beacause of the shape-preserving prop-
erty of the bright and dark solitons, they have received 
considerable attention from optical communication in-
dustries. Solitons are particularly desirable for dtra-long 
distance communication system and high-bit-rate fiber 
communications. A challenging possibility is to use fiber 
gratings for the creation of pulses of slow light, which is 
a topic of great current interest. A possible way to trap a 
zero-velocity soliton is to use an attractive finite-size or 
local defect [83] in BG. The interaction of the soliton 
with an attractive defect in the form of a local suppres-
sion of BG was studied recently in Refs [78,79]. 

4. Conclusions 

My attempt on this article is to give a survey and update 
some of fiber Bragg grating solitons. There have been 
two papers for summarizing to Bragg solions [93] and 
gap solitons [20], gave readers insight into a series of 
working methods and results before these generalize. 
Clearly grating solitons have played an important role in 
past and ongoing nonlinear optical research in fiber 
Bragg grating, and we believe fiber Bragg grating solions 
to have their greatest impact in the years to come. 
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