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Abstract 
Aniline blue, one of the triphenylmethane dyes, is the most commonly pro-
duced and used of these dyes yet it is also the most dangerous and the most 
serious cause of pollution amongst them. An exploration of aniline blue de-
gradation is likely to facilitate an understanding of the degradation mechan-
ism for a range of related dyes. In this study, we managed to isolate a particu-
lar strain of microorganism, identified to be Lysinibacillus fusiformis N019a, 
which showed a significant capacity for aniline blue degradation in both labor-
atory tests and natural sewage treatment. In analysis aided by a UV-Visible 
spectrophotometer, we found that 96.7% of aniline blue had degraded within 
24 hours under laboratory conditions. When treating natural sewage, 80.1% 
of the aniline blue was removed after just 16 hours. Further analysis has shown 
that Lysinibacillus fusiformis N019a has a strong resistance to Cu2+, Mn2+, Zn2+, 
and Pb2+. We also found that the degradation product of aniline blue by Lysi-
nibacillus fusiformis N019a was of reduced toxicity to plants and microbes.  
 

Keywords 
Aniline Blue, Dye Degradation, Lysinibacillus fusiformis N019a, Natural  
Sewage Treatment 

 

1. Introduction 

More than 0.7 million tons of triphenylmethane dyes are used annually in textile 
production and other related industries [1] [2]. However, synthetic dyes are no-
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toriously difficult to degrade [3], so approximately 15% of synthetic dyes end up 
being released into the environment [4] [5] [6], with potentially harmful health 
and ecological outcomes [7]. In aqueous ecosystems, synthetic dyes can inhibit 
photosynthesis and in terrestrial ecosystems [8] [9], the primary broken-down 
molecules of synthetic dyes are known to have a detrimental effect on microor-
ganisms [10], animals and grain crops [11] [12]. For human-beings, some syn-
thetic dyes are potentially carcinogenic and mutagenic and can be harmful to the 
immune and respiratory systems [1] [2] [8] [13] [14]. 

In view of these health and ecological concerns [7] [15], chemical, physical 
and biological methods have been recruited to treat triphenylmethane dyes being 
harbored in the environment [2] [16]. Chemical and physical approaches, how-
ever, have proved relatively ineffective and expensive and a number of research-
ers have pointed to the significant secondary contamination produced by these 
treatments [6] [7] [17] [18]. 

Biological treatments are considered more environmentally friendly, less 
costly and more likely to succeed than physicochemical methods [4] [8] [12]. 
Microbial degradation of triphenylmethane dyes, in particular, has received a lot 
of attention [7] [19] [20]. The distinguishing features of this approach are lower 
treatment costs and higher efficiency [21]. This is because microorganisms are 
able to use triphenylmethane dyes as nutrients without the need for additional 
supplements [6] [22]. Fungi are considered to be the primary representative spe-
cies capable of removing triphenylmethane dyes [23] [24] [25]. Amongst them, 
Phanerochaete chrysosporium [26], Irpex lacteus [27], Pleurotus ostreatus [27], 
Aspergillus fusiformis [28], Penicillium fusiformis and Fusarium have all been 
reported to successfully degrade triphenylmethane dyes [29] [30]. 

However, fungi are not well-adapted to aqueous ecosystems and this has li-
mited the comprehensive and practical biological treatment of triphenylmethane 
dyes. Confronted with this problem, bacterium would seem to offer the opti-
mum alternative [12] [16] [31]. To date, Pseudomonas, Bacillus, Sphingomonas, 
Aeromonas, Citrobacter, Escherichia, Desulphovibrio, Proteus, Schewanella and 
Alcaligenes have had success in removing triphenylmethane dyes [4] [6]. 

Usually, microbiological removal of triphenylmethane dyes is primarily de-
pendent on three kinds of essential enzymes. These are: laccase (Lac), ligninpe-
roxidase (LiP), and manganeseperoxidase (MnP) [32] [33] [34]. In previous 
work, some authors have reported the pre-screening of pure single microorgan-
isms for high-level enzyme activity so as to construct specific consortia for the 
removal of triphenylmethane dyes [35] [36]. Other authors have suggested that a 
microbial mixture will result in the simultaneous secretion of several kinds of 
enzymes, leading to a more complete removal of the dyes [2]. Others again have 
argued that prior high-level expression of the required enzymes is the most effi-
cient way of breaking down the molecular structure of triphenylmethane dyes 
[37] [38] [39]. However, the role of enzyme activity in triphenylmethane dye 
degradation is not the absolute determinant. The efficiency of triphenylmethane 
dye removal results from having a balance of organism type, the specific condi-
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tions of use and the character of the dyes themselves [4] [22].  
In general, most investigators tend to pay more attention to representative 

triphenylmethane dyes, such as Crystal Violet (CV), Methyl Violet (MV), Mala-
chite Green (MG) and Cotton Blue (CB). However, another important triphe-
nylmethane dye, aniline blue, is largely overlooked. Yet, in fact, aniline blue is 
more widely used than the other members of the triphenylmethane dye family. It 
is used not only in the polymer, rubber, agricultural and dye industries [40], but 
also as a staining marker in molecular research [41]. At the same time, the pres-
ence of three sulfonic acid groups in aniline blue give it high polarity, making it 
very difficult to degrade with ordinary microbes [42]. So, aniline blue is capable 
of producing particularly dangerous and serious pollution [43]. In view of its 
greater resistance, exploration of aniline blue degradation may further facilitate 
understanding of the degradation mechanism for other triphenylmethane dyes, 
Research, here, may also be more broadly beneficial for the development of de-
gradation microbes for bioremediation. 

The core background to the work presented here is the exploration of how to 
approach the degradation of aniline blue with newly-screened microorganisms 
that have the capacity to bring about highly efficient removal of triphenylme-
thane dyes. There are thousands of millions of microorganisms in the environ-
ment and many of them are likely to offer effective possibilities for triphenyl-
methane dye removal. 

2. Materials and Methods 
2.1. Isolation and Identification of Microbes for Degradation of  

Aniline Blue 

A wild-type strain of Lysinibacillus fusiformis N019a was isolated from decom-
posed timber in a wood-working factory in Enshi, Hubei province, China. The 
actual process of isolating this microbe has been previously described in [7] and 
[12]. The DNA sequence of the 16S RNA region of the microbe was blasted in 
NCBI and exported similar sequences used neighbor-joining method to con-
struct phylogenetic tree by MEGA7.0. Throughout the duration of our experi-
ments, strains were cultured in a Luria-Bertani (LB) medium at 37˚C. 

The medium used for testing degradation of aniline blue (DAB) contained 
(g∙L−1): Lactate 1.62, NaOH 0.3, NH4Cl 1.5, KCl 0.1, NaH2PO4 0.516, NaCl 5.85, 
yeast extract 0.5 and a trace mineral stock solution, The medium also contained 
50 mg/L aniline blue (Sinopharm Chemical Reagent Co., Ltd.) and was adjusted 
to pH 7.0 unless otherwise mentioned. All of the Erlenmeyer flasks containing 
50 ml of the DAB medium were autoclaved at 121˚C for 20 min. 4% log phase 
cells of Lysinibacillus fusiformis N019a were inoculated into each flask. Each 
experimental sample was incubated in a thermostat oscillator at 37˚C at 120 rpm 
for 36 hours. The cultured cells were harvested via centrifuge (12,000× g; 10 
min) using a Beckman Coulter Microfuge 20 under 4˚C. Degradation was de-
termined in relation to a cell-free supernatant. The uninoculated sterile dye-containing 
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medium was used as control. The degradation ratio was calculated using the fol-
lowing equation:  

2 1

2

Degradation% 100%
A A

A
 −

= × 
 

 

A1 = Final absorbance of dye after microbe incubation; A2 = Initial absorbance 
(Control check). Absorbance was detected using a UV-Visible spectrophotome-
ter at 585 nm (INESA 752N, China). 

2.2. Dye Degradation Rate According to Different Parameters  

The degradation rate of dyes can be influenced by the initial dye concentration，
the pH of the treatment medium and the incubation temperature [7]. In this 
study, we chose single factor experiment, the initial dye concentrations tests 
were set at 50, 100, 200, 500 and 1000 mg∙L−1, using electronic micro balance 
(METTLER TOLEDO), the pH tests were containing in 5.5 - 8.0, adjusted by pH 
meter (METTLER TOLEDO), and the temperature tests were ranged from 15˚C 
to 45˚C with the blanking of 5˚C, cultured in incubator shaker (Honour). As in-
dicated above, excepted the variable of each group, the initial dye concentration, 
pH and temperature was kept at 50 mg∙L−1, 7.0 and 37˚C respectively, and all the 
shake speed were at 120 rpm. 

To explore the influence of carbon and nitrogen sources on aniline blue de-
gradation, 0.5% of sucrose, glucose, mannitol, maltose, starch, peptone, yeast 
extract (YE), sodium carbonate, sodium lactate (SL) and SL + YE were loaded as 
carbon sources. Inorganic nitrogen (0.2% of (NH3)2SO4, Urea, CH3COONH4, 
NH4NO3 and NaNO3), organic nitrogen (0.2% of peptone, yeast extract) and so-
dium lactate (0.5%) were chosen as nitrogen sources. To examine the impact of 
salinity on degradation efficiency, a graded concentration of NaCl (0, 5, 10, 20, 
40, 60, and 80 g/L) was added into the medium. We also considered it important 
to investigate the effects of several heavy metallic ions commonly found in dye-
ing wastewater on Lysinibacillus fusiformis N019a. The toxicity of heavy metals 
to microbes can be calculated using the following exponential function: 

e bxy a −=  

x = The metallic ion concentration/mmol·L−1; y = The biomass in the medium 
containing the metallic ions/mmol·L−1; a = The biomass in the medium contain-
ing no metallic ion; b = The toxicity index. The b value is positively related to the 
toxicity. 

2.3. Degradation Assay in Natural Sewage 

As another part of this study, natural wastewater was collected from the Wuhan 
Printing and Dyeing Factory. The primary concentration of aniline blue was de-
tected by spectrophotometry (585 nm) and 4 ml of Lysinibacillus fusiformis 
N019a (1.5 × 108 CFU/mL) was inoculated in 100 ml natural sewage. The degra-
dation ratio was detected by spectrophotometry (585 nm) every 4 h.  
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2.4. Phytotoxicity and Microbial Toxicity Assay 

In order to assess the phytotoxicity and microbial toxicity of aniline blue and its 
degradation/degradation products, the length of plumule and germination of 
tobacco, corn and tomato was measured. 10 mL of aniline blue (50 mg/L) and 
fermentation supernatant (500 mg/L initial concentration and 24 h fermenta-
tion) were used to culture tobacco, corn and tomato with methylsulfonylme-
thane (MSM) as a control [44]. The toxicity to Bacillus amyloliquefaciens ZM9 
was tested [45], with the mean inhibition zone (diameter in cm) treated by 
MSM, aniline blue and fermentation supernatant being recorded after 24 h of 
incubation at 30˚C on an LB plate [44] [46]. 

2.5. Statistical Analysis 

All of the experiments were performed independently in triplicate and the dif-
ferences amongst the treatments were subjected to a one-way analysis of va-
riance (ANOVA) using a Tukey Kramer multiple comparisons test. 

3. Results and Discussion 
3.1. Isolation and Identification of Microbes for Aniline Blue  

Degradation  

As mentioned above, the wild-type strain Lysinibacillus fusiformis N019a was 
originally isolated from decomposed timber in a wood-working factory in China 
[7] [12]. The DNA sequence of the 16S RNA region of the microbe was blasted 
in NCBI and the resulting phylogenetic tree revealed that it was close to Lysini-
bacillus fusiformis strain NFS-STR-1 (MF079349.1), Lysinibacillus sp. B4 
(KC310820.1) and Lysinibacillus fusiformis strain HBUM07011 (MF662437.1) 
(Figure 1). The microbe was therefore inferred to be Lysinibacillus fusiformis 
N019a and deposited in GenBank (accession number BankIt2112285 N019a 
MH327493). 

Aniline blue can be decolored within 3 h when the strain is mature. When Ly-
sinibacillus fusiformis N019a was cultured on the LB medium, an obvious 
transparent ring could be observed 8 h later. After a further 6 h, the aniline blue 
had been completely decolored (see Figure 2(a)). The degradation rate of aniline  
 

 
Figure 1. Distance tree inferred from the alignment of N019a after an NCBI BLAST 
search (MEGA7). 
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Figure 2. Schedule of aniline blue degradation induced by Lysinibacillus fusiformis 
N019a (a); Dynamic medium color change process after Lysinibacillus fusiformis N019 
was inoculated (b). 
 
blue initiated by Lysinibacillus fusiformis N019a was found to be higher than 
that reported for a number of other microbes in the literature [12] [39] [47]. 

About 3 h after inoculation of Lysinibacillus fusiformis N019 in a shake flask 
culture, the color of the aniline blue had started to discolor. 6 h later it was al-
most colorless (see Figure 2(b)) and after 24 h the fermentation culture had re-
mained colorless. Comparing the degradation performance of Lysinibacillus fu-
siformis N019 for aniline blue against that of other microbes, it achieved degra-
dation in a shorter period of time than Shewanella oneidensis MR-1 [12], Strep-
tomyces AG-56 [39], Mucoromycotina fusiformis HS-3 [48], Bjerkandera fumo-
sa X X-3 and Cerrena fusiformis A-02 [47] [49]. 

UV-visible absorption spectra were used to analyze the degradation of aniline 
blue by Lysinibacillus fusiformis N019a. The absorption spectrum of aniline blue 
and its degradation products was measured across wavelengths ranging from 
350 to 640 nm. Aniline blue solution has a characteristic absorption peak at 585 
nm, but this absorption peak disappeared when it was treated with Lysinibacillus 
fusiformis N019a (Figure 3(a)). In previous investigations, disappearance of an 
absorption peak has indicated that the chemical structure of the triphenylme-
thane dye has changed [25] [50]. These results therefore suggested that the ani-
line blue had been degraded by Lysinibacillus fusiformis N019a.  

The absorption spectrum of aniline blue was explored across the 24 h fermen-
tation period. After just the initial 3 h, 80% of the aniline blue had been de-
graded and at 6 h this had risen to 85%. After 24 h 96.7% of the aniline blue had 
been degraded (see Figure 3(b)). All of this data indicates that the efficiency of 
aniline blue degradation induced by Lysinibacillus fusiformis N019a is higher 
than other microbes tested in the literature, such as S. oneidensis MR-1 (85.56% 
after 96 h) Bjerkandera fumosa (90% after 5 days) [12] [47], and Mucoromyco-
tina fusiformis HS-3 (95% after more than 5 days) [48]. 
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(a) 

 
(b) 

Figure 3. Degradation assays using UV-V is spectral analysis (a) and absorption spectra 
(b). (a) UV-V is spectral analysis of aniline blue (black curve) and its degradation prod-
ucts after incubation for 24 h with lysinibacillus sp. N019a (red curve); (b) Degradation 
(%) of aniline blue by lysinibacillus sp. N019a over 24 h. 

3.2. Dye Degradation Rate across Different Parameters 

The degradation rate of dyes can be influenced by the initial dye concentration 
[50]. This phenomenon was also found to hold in this investigation. Aniline blue 
can be more rapidly decolored at lower concentrations than higher ones during 
the initial 6 h (see Figure 4(a)). After 6 h, 86.5% of aniline blue at a concentra-
tion of 50 mgL−1 had been decolored. At 1000 mg∙L−1, this figure had dropped to 
only 63.5%. However, after 12 h, 95.5%, 94.4%, 92.4%, 89.8% and 87.4% of the 
aniline blue had been decolored by Lysinibacillus fusiformis N019a at 50, 100, 
200, 500 and 1000 mg∙L−1, respectively. The overall tendency for degradation ef-
ficiency at different concentrations is for it to gradually decrease as the aniline 
blue concentration increases. In line with several previous investigations [7] 
[51], we find the implication of this to be that the initial concentration of tri-
phenylmethane dyes and microbial degradation efficiency is negatively corre-
lated [39]. 
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(a) 

 
(b) 

 
(c) 

 
(d) 
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(e) 

 
(f) 

Figure 4. Effects on the degradation efficiency of lysinibacillus sp. N019a for: different 
initial concentrations of aniline blue (a); pH values (b); temperatures (c); salinity (d); 
carbon sources (e); and nitrogen sources. All values represent the average of the results 
across three samples ± SD (standard deviation). 
 

An optimum pH and temperature of the treatment medium is required to 
maximize the efficiency of dye degradation (Mishra and Maiti, 2018). Lysiniba-
cillus fusiformis N019a possessed a degradation capacity at pH 6.0 8.0. Its max-
imum degradation efficiency (97.1%) was obtained at pH 8.0 after incubation for 
24 h (see Figure 4(b)). The degradation activity of Lysinibacillus fusiformis 
N019a was significantly influenced by temperature and was positively correlated 
with temperatures from 15˚C to 40˚C. However, when the temperature was 
higher than 45˚C, the degradation efficiency started to decline (Figure 4(c)). 
And the salinity tolerance of Lysinibacillus fusiformis N019a was higher than 
40 g/L, although it dragged the growth of strain N019a at the front 12 h after 
inoculation, but it recovered after that, what can be seen clearly from Figure 
4(d). 

As mentioned in Section 2.2, a DAB medium to which we had added 0.5% su-
crose, glucose, mannitol, maltose, starch, peptone, yeast extract (YE), sodium 
carbonate, sodium lactate (SL) and SL + YE was used to explore the influence of 
carbon sources on aniline blue degradation. The degradation rate of aniline blue 
induced by Lysinibacillus fusiformis N019a using yeast extract, peptone and so-
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dium lactate as the unique carbon source reached 77.3%, 74.8% and 69.1%, re-
spectively (see Figure 4(e)), while using a composite carbon source of sodium 
lactate + yeast extract (4:1) enabled the degradation rate to reach 80.2%. After 
comprehensive testing, sodium lactate + yeast extract (4:1) appears to be the op-
timal carbon source for Lysinibacillus fusiformis N019a. In addition, when in-
organic nitrogen (0.2%), organic nitrogen (0.2%) and sodium lactate (0.5%) 
were selected as the nitrogen source, (NH4)2SO4 and yeast extract produced the 
best degradation results (Figure 4(f)). 

It was noticed that Lysinibacillus fusiformis N019a was capable of maintaining 
a high degradation efficiency of over 94% for aniline blue after 36 h of incuba-
tion when the added NaCl concentration did not exceed 40 g∙L−1. However, Ly-
sinibacillus fusiformis N019a spent longer adapting to growth at above 40 g∙L−1 
NaCl. Color reduction disappeared once the saline concentration reached 60 
g∙L−1. As this figure is relatively high, it indicates that Lysinibacillus fusiformis 
N019a is able to tolerate a wide range of salt concentrations. This adaptability 
will clearly increase the feasibility of its practical application. 

Some metal compounds in the environment do not have an adverse effect on 
microbes but, rather, are beneficial to them. However, when some metals, espe-
cially heavy metals, exceed a certain concentration, they have a toxic effect on 
microorganisms, inhibiting their growth and reproduction, damaging their res-
piration, making their cell morphology abnormal and even causing cell lysis. In 
that case, it was important to investigate the effects of several heavy metallic ions 
commonly found in dyeing wastewater on Lysinibacillus fusiformis N019a. Ag-
SO4, CdCl2, K2Cr2O4 and HgCl2 had a significant toxic inhibition effect on the 
growth of Lysinibacillus fusiformis N019a, with a toxicity index ranging from 
17.345 to 71.405 (see Table 1). The toxicity index of CuSO4, MnSO4, ZnSO4, 
Pb(Ac)2 was less, ranging from 0.094 to 2.591. This shows that Lysinibacillus fu-
siformis N019a has a strong resistance to Cu2+, Mn2+, Zn2+, Pb2+. 
 
Table 1. Effect of heavy metallic ions on lysinibacillus sp. N019a. 

Metallic 
ion 

Biomass 
(OD600) 

Metallic ion concentration 
(mmol/L) 

Degradation 
(%) 

Toxicity 
Index 

CK 1.525 - 91.4% - 

CuSO4 0.115 1.00 6.2% 2.588 

AgSO4 0.088 0.04 3.7% 71.405 

MnSO4 0.151 1.00 13.5% 2.312 

CdCl2 0.236 0.04 23.3% 46.648 

K2Cr2O4 0.762 0.04 87.8% 17.345 

ZnSO4 0.114 1.00 10.3% 2.591 

Pb(Ac)2 1.389 1.00 93.9% 0.094 

HgCl2 0.088 0.04 4.6% 71.216 
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3.3. Degradation Assay in Natural Sewage 

For the degradation of dyes in wastewater, a large number of microorganisms 
have now been screened, with numerous lab studies [52]. However, the compo-
sition of natural sewage is very complex [53], so it is necessary to explore 
whether screened microorganisms perform so well when treating natural waste-
water. The typical aniline blue content in natural wastewater is 398.5 ± 2.85 
mg/L. 4 ml of Lysinibacillus fusiformis N019a. (1.5 × 108 CFU/mL) was inocu-
lated into 100 ml of natural sewage. After 16 h, 80.1% of the aniline blue had 
been removed (see Figure 5). These results suggest that Lysinibacillus fusiformis 
N019a performs well in natural wastewater. 

3.4. Phytotoxicity and Microbial Toxicity Assay 

The microbes used for dye degradation/degradation end up being disposed of in 
the environment and in bodies of water. In that case, it is important to ensure 
that the end-products of dye degradation/degradation processes are safe for the 
environment and their toxicity must be assessed [54]. 

In order to assess the phytotoxicity and microbial toxicity of aniline blue and 
its degradation/degradation products, the plumule length and germination of 
tobacco, corn and tomatoes were measured, with MSM being used as a control. 
The toxicity to Bacillus amyloliquefaciens ZM9 was also assessed and the mean 
inhibition zone (diameter in cm) was recorded after 24 h of incubation at 30˚C 
[44] [46]. The average germination of tobacco treated by MSM, aniline blue and 
fermentation supernatant was 89% ± 7.37%, 43% ± 1.25%, and 77% ± 0.94%, 
respectively (Figure 6(a)). The length (shoots + roots) of the tobacco treated by 
MSM, aniline blue and fermentation supernatant was 69.72 ± 5.91 mm, 58.09 ± 
6.53 mm, and 62.60 ± 4.04 mm, respectively (Figure 6(b)). The germination and 
the length of the shoots and roots show that the degradation product has a low 
toxicity to plants. The diameter of the inhibition zone for Bacillus amyloliquefa-
ciens ZM9 for MSM, aniline blue and fermentation supernatant was 0 mm,  
 

 
Figure 5. The removal of aniline blue in natural wastewater by lysinibacillus sp. N019a. 
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(a) 

 
(b) 

Figure 6. Phytotoxicity of aniline blue and its degradation products. Germination (a) and 
the length of the shoots and roots (b) of tobacco, tomatoes and corn were measured. 
 
8.95 ± 0.21 mm, 2.35 ± 0.19 mm, respectively. These results once again indicate 
that the product of aniline blue degradation does not have a particularly toxic 
nature. Previous investigations have shown that the product of some kinds of 
triphenylmethane dye degradation by microbes have almost no toxicity at all 
[44]. However, in this study, there was still less toxicity for the fermentation su-
pernatant. This may imply that some of the aniline blue was not completely de-
graded. Indeed, our results have shown that 3.3% of the aniline blue was still not 
degraded after 24 h (see Figure 3). 

4. Conclusion 

A strain of microorganism, Lysinibacillus fusiformis N019a, was screened from 
the natural environment and its capacity for aniline blue degradation was ana-
lyzed using a UV-visible spectrophotometer. 96.7% of the aniline blue had been 
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degraded after 24 h. The efficiency of aniline blue degradation induced by Lysi-
nibacillus fusiformis N019a is notably higher than that for some other microbes 
(see Figures 1-3). On the basis of previous investigations [6] [55], the disap-
pearance of absorption peaks can be taken to demonstrate that the color removal 
of aniline blue by Lysinibacillus fusiformis N019a was largely attributable to 
biodegradation. Lysinibacillus fusiformis N019a was also found to effectively 
degrade aniline blue in natural sewage and it has a strong resistance to the heavy 
metallic ions Cu2+, Mn2+, Zn2+, and Pb2+ (see Figures 4-6 and Table 1). We were 
further able to confirm that the product of aniline blue degradation by Lysiniba-
cillus fusiformis N019a has a low toxicity to plants and microbes (Figure 6).  
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